Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
neural_networks_101
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ptb-843
neural_networks_101
Compare revisions
dccf52edcd228978717b4bb33a6cea19e2cf0f36 to 2a01272a90b622998ad3a56107aef350fda995c1
Compare revisions
Changes are shown as if the
source
revision was being merged into the
target
revision.
Learn more about comparing revisions.
Source
ptb-843/neural_networks_101
Select target project
No results found
2a01272a90b622998ad3a56107aef350fda995c1
Select Git revision
Branches
main
Swap
Target
ptb-843/neural_networks_101
Select target project
ptb-843/neural_networks_101
1 result
dccf52edcd228978717b4bb33a6cea19e2cf0f36
Select Git revision
Branches
main
Show changes
Only incoming changes from source
Include changes to target since source was created
Compare
Commits on Source (2)
Update conda environment
· 5184039b
Nando Farchmin
authored
2 years ago
5184039b
Add script to draw images
· 2a01272a
Nando Farchmin
authored
2 years ago
2a01272a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
doc/image_creator.py
+236
-0
236 additions, 0 deletions
doc/image_creator.py
environment.yml
+3
-3
3 additions, 3 deletions
environment.yml
with
239 additions
and
3 deletions
doc/image_creator.py
0 → 100644
View file @
2a01272a
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
scipy
import
interpolate
from
scipy.stats
import
multivariate_normal
import
neural_networks_101.src
as
src
def
relu
(
x
,
slope
=
0
):
ret
=
np
.
zeros
(
x
.
size
)
idx
=
np
.
where
(
x
>=
0
)[
0
]
ret
[
idx
]
=
x
[
idx
]
idx
=
np
.
where
(
x
<
0
)[
0
]
ret
[
idx
]
=
slope
*
x
[
idx
]
return
ret
def
softmax
(
z
):
return
np
.
exp
(
z
)
/
np
.
sum
(
np
.
exp
(
z
))
def
argmax
(
z
):
ret
=
np
.
zeros
(
z
.
size
)
idx
=
np
.
argmax
(
z
)
ret
[
idx
]
=
z
[
idx
]
return
ret
def
maxpool
(
z
):
ret
=
np
.
zeros
((
2
,
2
))
ret
[
0
,
0
]
=
np
.
max
(
z
[:
2
,
:
2
])
ret
[
0
,
1
]
=
np
.
max
(
z
[:
2
,
2
:])
ret
[
1
,
0
]
=
np
.
max
(
z
[
2
:,
:
2
])
ret
[
1
,
1
]
=
np
.
max
(
z
[
2
:,
2
:])
return
ret
def
spline_interp
(
x
,
y
,
res
):
tck
=
interpolate
.
splrep
(
x
,
y
,
s
=
0
,
k
=
3
)
x_new
=
np
.
linspace
(
np
.
min
(
x
),
np
.
max
(
x
),
res
)
y_fit
=
interpolate
.
BSpline
(
*
tck
)(
x_new
)
return
x_new
,
y_fit
def
plot_relu
(
file_name
):
x
=
np
.
linspace
(
-
2
,
2
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
relu
(
x
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_leaky_relu
(
file_name
):
x
=
np
.
linspace
(
-
2
,
2
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
relu
(
x
,
0.1
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_tanh
(
file_name
):
x
=
np
.
linspace
(
-
3
,
3
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
tanh
(
x
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_softmax
(
file_name
):
z
=
np
.
array
([
0.229
,
0.070
,
1.163
,
1.826
,
1.184
,
1.311
,
0.189
,
0.200
,
1.881
,
0.738
])
val
=
softmax
(
z
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
val
)
x
,
y
=
spline_interp
(
np
.
arange
(
1
,
z
.
size
+
1
),
val
,
200
)
plt
.
plot
(
x
,
y
,
c
=
"
k
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_argmax
(
file_name
):
z
=
np
.
array
([
0.229
,
0.070
,
1.163
,
1.826
,
1.184
,
1.311
,
0.189
,
0.200
,
1.881
,
0.738
])
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
z
)
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
argmax
(
z
),
color
=
"
grey
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_maxpool
(
file_name
):
row1
=
np
.
concatenate
(
[
np
.
random
.
uniform
(
0
,
1
,
(
2
,
2
)),
np
.
random
.
uniform
(
1
,
2
,
(
2
,
2
))],
axis
=
1
)
row2
=
np
.
concatenate
(
[
np
.
random
.
uniform
(
2
,
3
,
(
2
,
2
)),
np
.
random
.
uniform
(
3
,
4
,
(
2
,
2
))],
axis
=
1
)
mat
=
np
.
concatenate
([
row1
,
row2
],
axis
=
0
)
with
plt
.
xkcd
():
fig
,
ax
=
plt
.
subplot_mosaic
([[
"
big
"
,
"
arrow
"
,
"
small
"
]])
ax
[
"
big
"
].
matshow
(
mat
,
cmap
=
"
Blues
"
)
ax
[
"
arrow
"
].
arrow
(
0.5
,
1
,
0.8
,
0
,
head_width
=
0.2
,
width
=
0.05
)
ax
[
"
arrow
"
].
set_xlim
(
0
,
2
)
ax
[
"
arrow
"
].
set_ylim
(
0
,
2
)
ax
[
"
arrow
"
].
axis
(
"
off
"
)
ax
[
"
small
"
].
matshow
(
maxpool
(
mat
),
cmap
=
"
Blues
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_venn
(
file_name
):
with
plt
.
xkcd
():
fig
,
ax
=
plt
.
subplots
()
ai
=
plt
.
Circle
((
0.5
,
0.5
),
0.45
,
color
=
"
k
"
,
fill
=
False
)
ml
=
plt
.
Circle
((
0.6
,
0.42
),
0.3
,
color
=
"
k
"
,
fill
=
False
)
nn
=
plt
.
Circle
((
0.5
,
0.4
),
0.15
,
color
=
"
k
"
,
fill
=
False
)
ai_fill
=
plt
.
Circle
((
0.5
,
0.5
),
0.45
,
alpha
=
0.15
)
ml_fill
=
plt
.
Circle
((
0.6
,
0.42
),
0.3
,
alpha
=
0.15
)
nn_fill
=
plt
.
Circle
((
0.5
,
0.4
),
0.15
,
alpha
=
0.15
)
ax
.
add_patch
(
ai_fill
)
ax
.
add_patch
(
ml_fill
)
ax
.
add_patch
(
nn_fill
)
ax
.
add_patch
(
ai
)
ax
.
add_patch
(
ml
)
ax
.
add_patch
(
nn
)
ax
.
text
(
0.2
,
0.6
,
"
AI
"
,
fontsize
=
"
xx-large
"
)
ax
.
text
(
0.7
,
0.5
,
"
ML
"
,
fontsize
=
"
xx-large
"
)
ax
.
text
(
0.4
,
0.35
,
"
NN
"
,
fontsize
=
"
xx-large
"
)
ax
.
axis
(
"
off
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
landscape
(
xs
):
mean1
,
cov1
=
np
.
array
([
1
,
-
1
]),
np
.
eye
(
2
)
f1
=
multivariate_normal
(
mean1
,
cov1
)
ret
=
f1
.
pdf
(
xs
)
/
f1
.
pdf
(
mean1
)
mean2
,
cov2
=
np
.
array
([
1
,
1
]),
0.2
*
np
.
array
([[
1
,
-
.
1
],
[.
1
,
1
]])
f2
=
multivariate_normal
(
mean2
,
cov2
)
ret
+=
f2
.
pdf
(
xs
)
/
f2
.
pdf
(
mean2
)
mean3
,
cov3
=
np
.
array
([
-
3.5
,
-
1
]),
2.0
*
np
.
array
([[
1
,
0
],
[
0
,
5
]])
f3
=
multivariate_normal
(
mean3
,
cov3
)
ret
+=
f3
.
pdf
(
xs
)
/
f3
.
pdf
(
mean3
)
mean4
,
cov4
=
np
.
array
([
0
,
2
]),
0.1
*
np
.
array
([[
1
,
0
],
[
0
,
5
]])
f4
=
multivariate_normal
(
mean4
,
cov4
)
ret
+=
f4
.
pdf
(
xs
)
/
f4
.
pdf
(
mean4
)
mean5
,
cov5
=
np
.
array
([
-
1.5
,
2
]),
0.5
*
np
.
array
([[
3
,
-
1
],
[
1
,
1
]])
f5
=
multivariate_normal
(
mean5
,
cov5
)
ret
+=
f5
.
pdf
(
xs
)
/
f5
.
pdf
(
mean5
)
return
ret
def
plot_sgd
(
file_name
):
x
=
np
.
linspace
(
-
3
,
2
,
50
)
y
=
np
.
linspace
(
-
1.5
,
2.5
,
50
)
xs
=
src
.
misc
.
cart_prod
([
x
,
y
])
fig
,
ax
=
plt
.
subplot_mosaic
([[
"
sgd
"
]])
ax
[
"
sgd
"
].
contourf
(
x
,
x
,
landscape
(
xs
).
reshape
(
x
.
size
,
-
1
).
T
,
cmap
=
"
Blues
"
)
ax
[
"
sgd
"
].
axis
(
"
off
"
)
start_end
=
np
.
array
([[
-
0.1
,
1.7
],
[
-
0.8
,
-
1.4
],
])
points1
=
np
.
array
([
start_end
[
0
],
[
-
0.6
,
0.5
],
start_end
[
-
1
],
])
points2
=
np
.
array
([
start_end
[
0
],
[
-
0.6
,
1.6
],
[
-
0.8
,
1.7
],
[
-
1.1
,
1.4
],
[
-
1.05
,
1.2
],
[
-
1.6
,
0.7
],
[
-
1.7
,
0.4
],
[
-
1.3
,
0.0
],
[
-
1.8
,
-
0.3
],
[
-
1.3
,
-
0.8
],
[
-
1.2
,
-
1.4
],
[
-
0.7
,
-
2.4
],
[
-
0.2
,
-
1.6
],
[
-
0.4
,
-
1.0
],
[
-
1.0
,
-
1.2
],
[
-
0.95
,
-
1.5
],
[
-
0.7
,
-
1.6
],
start_end
[
-
1
],
])
ax
[
"
sgd
"
].
plot
(
points1
[:,
0
],
points1
[:,
1
],
"
-o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
points1
[:,
0
],
points1
[:,
1
],
"
-o
"
,
lw
=
2
,
color
=
"
green
"
)
ax
[
"
sgd
"
].
plot
(
points2
[:,
0
],
points2
[:,
1
],
"
-o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
points2
[:,
0
],
points2
[:,
1
],
"
-o
"
,
lw
=
2
,
color
=
"
orange
"
)
ax
[
"
sgd
"
].
plot
(
start_end
[:,
0
],
start_end
[:,
1
],
"
o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
start_end
[:,
0
],
start_end
[:,
1
],
"
o
"
,
lw
=
2
,
color
=
"
w
"
)
# color1, edgecolor1 = "orange", "k"
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.3, dy=-0.5, width=0.04,
# facecolor=color1, edgecolor=edgecolor1)
# ax["sgd"].arrow(x=-0.45, y=0.99, dx=-0.2, dy=-1.2, width=0.04,
# facecolor=color1, edgecolor=edgecolor1)
# color2, edgecolor2 = "green", "k"
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.4, dy=-0.08, width=0.04,
# facecolor=color2, edgecolor=edgecolor2)
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.4, dy=-0.08, width=0.04,
# facecolor=color2, edgecolor=edgecolor2)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
main
():
"""
Main.
"""
# plot_venn("./venn.png")
# plot_relu("./relu.png")
# plot_leaky_relu("./leaky_relu.png")
# plot_tanh("./tanh.png")
# plot_argmax("./argmax.png")
# plot_softmax("./softmax.png")
# plot_maxpool("./maxpool_tmp.png")
plot_sgd
(
"
./sgd.png
"
)
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
environment.yml
View file @
2a01272a
...
...
@@ -3,15 +3,15 @@ channels:
-
pypi
-
defaults
dependencies
:
-
autopep8=1.5.*
-
jupyter=1.0.*
-
pip=22.1.*
-
python=3.9.*
-
jupyter=1.0.*
-
autopep8=1.5.*
-
pip
:
-
ipython==8.4.*
-
jupyter-contrib-nbextensions==0.5.*
-
matplotlib==3.5.*
-
numpy==1.22.*
-
scipy==1.8.*
-
torch==1.11.*
-
torchvision==0.12.*
-
jupyter-contrib-nbextensions==0.5.*
This diff is collapsed.
Click to expand it.