Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
neural_networks_101
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ptb-843
neural_networks_101
Commits
2a01272a
Commit
2a01272a
authored
2 years ago
by
Nando Farchmin
Browse files
Options
Downloads
Patches
Plain Diff
Add script to draw images
parent
5184039b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/image_creator.py
+236
-0
236 additions, 0 deletions
doc/image_creator.py
with
236 additions
and
0 deletions
doc/image_creator.py
0 → 100644
+
236
−
0
View file @
2a01272a
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
scipy
import
interpolate
from
scipy.stats
import
multivariate_normal
import
neural_networks_101.src
as
src
def
relu
(
x
,
slope
=
0
):
ret
=
np
.
zeros
(
x
.
size
)
idx
=
np
.
where
(
x
>=
0
)[
0
]
ret
[
idx
]
=
x
[
idx
]
idx
=
np
.
where
(
x
<
0
)[
0
]
ret
[
idx
]
=
slope
*
x
[
idx
]
return
ret
def
softmax
(
z
):
return
np
.
exp
(
z
)
/
np
.
sum
(
np
.
exp
(
z
))
def
argmax
(
z
):
ret
=
np
.
zeros
(
z
.
size
)
idx
=
np
.
argmax
(
z
)
ret
[
idx
]
=
z
[
idx
]
return
ret
def
maxpool
(
z
):
ret
=
np
.
zeros
((
2
,
2
))
ret
[
0
,
0
]
=
np
.
max
(
z
[:
2
,
:
2
])
ret
[
0
,
1
]
=
np
.
max
(
z
[:
2
,
2
:])
ret
[
1
,
0
]
=
np
.
max
(
z
[
2
:,
:
2
])
ret
[
1
,
1
]
=
np
.
max
(
z
[
2
:,
2
:])
return
ret
def
spline_interp
(
x
,
y
,
res
):
tck
=
interpolate
.
splrep
(
x
,
y
,
s
=
0
,
k
=
3
)
x_new
=
np
.
linspace
(
np
.
min
(
x
),
np
.
max
(
x
),
res
)
y_fit
=
interpolate
.
BSpline
(
*
tck
)(
x_new
)
return
x_new
,
y_fit
def
plot_relu
(
file_name
):
x
=
np
.
linspace
(
-
2
,
2
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
relu
(
x
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_leaky_relu
(
file_name
):
x
=
np
.
linspace
(
-
2
,
2
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
relu
(
x
,
0.1
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_tanh
(
file_name
):
x
=
np
.
linspace
(
-
3
,
3
,
200
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
axvline
(
x
=
0
,
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
zeros
(
x
.
size
),
ls
=
"
--
"
,
color
=
"
k
"
)
plt
.
plot
(
x
,
np
.
tanh
(
x
))
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_softmax
(
file_name
):
z
=
np
.
array
([
0.229
,
0.070
,
1.163
,
1.826
,
1.184
,
1.311
,
0.189
,
0.200
,
1.881
,
0.738
])
val
=
softmax
(
z
)
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
val
)
x
,
y
=
spline_interp
(
np
.
arange
(
1
,
z
.
size
+
1
),
val
,
200
)
plt
.
plot
(
x
,
y
,
c
=
"
k
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_argmax
(
file_name
):
z
=
np
.
array
([
0.229
,
0.070
,
1.163
,
1.826
,
1.184
,
1.311
,
0.189
,
0.200
,
1.881
,
0.738
])
with
plt
.
xkcd
():
fig
=
plt
.
figure
()
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
z
)
plt
.
bar
(
range
(
1
,
z
.
size
+
1
),
argmax
(
z
),
color
=
"
grey
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_maxpool
(
file_name
):
row1
=
np
.
concatenate
(
[
np
.
random
.
uniform
(
0
,
1
,
(
2
,
2
)),
np
.
random
.
uniform
(
1
,
2
,
(
2
,
2
))],
axis
=
1
)
row2
=
np
.
concatenate
(
[
np
.
random
.
uniform
(
2
,
3
,
(
2
,
2
)),
np
.
random
.
uniform
(
3
,
4
,
(
2
,
2
))],
axis
=
1
)
mat
=
np
.
concatenate
([
row1
,
row2
],
axis
=
0
)
with
plt
.
xkcd
():
fig
,
ax
=
plt
.
subplot_mosaic
([[
"
big
"
,
"
arrow
"
,
"
small
"
]])
ax
[
"
big
"
].
matshow
(
mat
,
cmap
=
"
Blues
"
)
ax
[
"
arrow
"
].
arrow
(
0.5
,
1
,
0.8
,
0
,
head_width
=
0.2
,
width
=
0.05
)
ax
[
"
arrow
"
].
set_xlim
(
0
,
2
)
ax
[
"
arrow
"
].
set_ylim
(
0
,
2
)
ax
[
"
arrow
"
].
axis
(
"
off
"
)
ax
[
"
small
"
].
matshow
(
maxpool
(
mat
),
cmap
=
"
Blues
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
plot_venn
(
file_name
):
with
plt
.
xkcd
():
fig
,
ax
=
plt
.
subplots
()
ai
=
plt
.
Circle
((
0.5
,
0.5
),
0.45
,
color
=
"
k
"
,
fill
=
False
)
ml
=
plt
.
Circle
((
0.6
,
0.42
),
0.3
,
color
=
"
k
"
,
fill
=
False
)
nn
=
plt
.
Circle
((
0.5
,
0.4
),
0.15
,
color
=
"
k
"
,
fill
=
False
)
ai_fill
=
plt
.
Circle
((
0.5
,
0.5
),
0.45
,
alpha
=
0.15
)
ml_fill
=
plt
.
Circle
((
0.6
,
0.42
),
0.3
,
alpha
=
0.15
)
nn_fill
=
plt
.
Circle
((
0.5
,
0.4
),
0.15
,
alpha
=
0.15
)
ax
.
add_patch
(
ai_fill
)
ax
.
add_patch
(
ml_fill
)
ax
.
add_patch
(
nn_fill
)
ax
.
add_patch
(
ai
)
ax
.
add_patch
(
ml
)
ax
.
add_patch
(
nn
)
ax
.
text
(
0.2
,
0.6
,
"
AI
"
,
fontsize
=
"
xx-large
"
)
ax
.
text
(
0.7
,
0.5
,
"
ML
"
,
fontsize
=
"
xx-large
"
)
ax
.
text
(
0.4
,
0.35
,
"
NN
"
,
fontsize
=
"
xx-large
"
)
ax
.
axis
(
"
off
"
)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
landscape
(
xs
):
mean1
,
cov1
=
np
.
array
([
1
,
-
1
]),
np
.
eye
(
2
)
f1
=
multivariate_normal
(
mean1
,
cov1
)
ret
=
f1
.
pdf
(
xs
)
/
f1
.
pdf
(
mean1
)
mean2
,
cov2
=
np
.
array
([
1
,
1
]),
0.2
*
np
.
array
([[
1
,
-
.
1
],
[.
1
,
1
]])
f2
=
multivariate_normal
(
mean2
,
cov2
)
ret
+=
f2
.
pdf
(
xs
)
/
f2
.
pdf
(
mean2
)
mean3
,
cov3
=
np
.
array
([
-
3.5
,
-
1
]),
2.0
*
np
.
array
([[
1
,
0
],
[
0
,
5
]])
f3
=
multivariate_normal
(
mean3
,
cov3
)
ret
+=
f3
.
pdf
(
xs
)
/
f3
.
pdf
(
mean3
)
mean4
,
cov4
=
np
.
array
([
0
,
2
]),
0.1
*
np
.
array
([[
1
,
0
],
[
0
,
5
]])
f4
=
multivariate_normal
(
mean4
,
cov4
)
ret
+=
f4
.
pdf
(
xs
)
/
f4
.
pdf
(
mean4
)
mean5
,
cov5
=
np
.
array
([
-
1.5
,
2
]),
0.5
*
np
.
array
([[
3
,
-
1
],
[
1
,
1
]])
f5
=
multivariate_normal
(
mean5
,
cov5
)
ret
+=
f5
.
pdf
(
xs
)
/
f5
.
pdf
(
mean5
)
return
ret
def
plot_sgd
(
file_name
):
x
=
np
.
linspace
(
-
3
,
2
,
50
)
y
=
np
.
linspace
(
-
1.5
,
2.5
,
50
)
xs
=
src
.
misc
.
cart_prod
([
x
,
y
])
fig
,
ax
=
plt
.
subplot_mosaic
([[
"
sgd
"
]])
ax
[
"
sgd
"
].
contourf
(
x
,
x
,
landscape
(
xs
).
reshape
(
x
.
size
,
-
1
).
T
,
cmap
=
"
Blues
"
)
ax
[
"
sgd
"
].
axis
(
"
off
"
)
start_end
=
np
.
array
([[
-
0.1
,
1.7
],
[
-
0.8
,
-
1.4
],
])
points1
=
np
.
array
([
start_end
[
0
],
[
-
0.6
,
0.5
],
start_end
[
-
1
],
])
points2
=
np
.
array
([
start_end
[
0
],
[
-
0.6
,
1.6
],
[
-
0.8
,
1.7
],
[
-
1.1
,
1.4
],
[
-
1.05
,
1.2
],
[
-
1.6
,
0.7
],
[
-
1.7
,
0.4
],
[
-
1.3
,
0.0
],
[
-
1.8
,
-
0.3
],
[
-
1.3
,
-
0.8
],
[
-
1.2
,
-
1.4
],
[
-
0.7
,
-
2.4
],
[
-
0.2
,
-
1.6
],
[
-
0.4
,
-
1.0
],
[
-
1.0
,
-
1.2
],
[
-
0.95
,
-
1.5
],
[
-
0.7
,
-
1.6
],
start_end
[
-
1
],
])
ax
[
"
sgd
"
].
plot
(
points1
[:,
0
],
points1
[:,
1
],
"
-o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
points1
[:,
0
],
points1
[:,
1
],
"
-o
"
,
lw
=
2
,
color
=
"
green
"
)
ax
[
"
sgd
"
].
plot
(
points2
[:,
0
],
points2
[:,
1
],
"
-o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
points2
[:,
0
],
points2
[:,
1
],
"
-o
"
,
lw
=
2
,
color
=
"
orange
"
)
ax
[
"
sgd
"
].
plot
(
start_end
[:,
0
],
start_end
[:,
1
],
"
o
"
,
lw
=
4
,
color
=
"
k
"
,
ms
=
8
)
ax
[
"
sgd
"
].
plot
(
start_end
[:,
0
],
start_end
[:,
1
],
"
o
"
,
lw
=
2
,
color
=
"
w
"
)
# color1, edgecolor1 = "orange", "k"
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.3, dy=-0.5, width=0.04,
# facecolor=color1, edgecolor=edgecolor1)
# ax["sgd"].arrow(x=-0.45, y=0.99, dx=-0.2, dy=-1.2, width=0.04,
# facecolor=color1, edgecolor=edgecolor1)
# color2, edgecolor2 = "green", "k"
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.4, dy=-0.08, width=0.04,
# facecolor=color2, edgecolor=edgecolor2)
# ax["sgd"].arrow(x=-0.05, y=1.7, dx=-0.4, dy=-0.08, width=0.04,
# facecolor=color2, edgecolor=edgecolor2)
plt
.
savefig
(
file_name
,
dpi
=
200
)
def
main
():
"""
Main.
"""
# plot_venn("./venn.png")
# plot_relu("./relu.png")
# plot_leaky_relu("./leaky_relu.png")
# plot_tanh("./tanh.png")
# plot_argmax("./argmax.png")
# plot_softmax("./softmax.png")
# plot_maxpool("./maxpool_tmp.png")
plot_sgd
(
"
./sgd.png
"
)
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment