Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
T
Theolw
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
vaclab
Theolw
Commits
78a10aa0
Commit
78a10aa0
authored
12 years ago
by
wactbprot
Browse files
Options
Downloads
Patches
Plain Diff
with db
parent
b1799375
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
db/sz_mc.couch
+0
-0
0 additions, 0 deletions
db/sz_mc.couch
sim/gen-SZ.R
+102
-0
102 additions, 0 deletions
sim/gen-SZ.R
sim/plot-SZ.R
+20
-0
20 additions, 0 deletions
sim/plot-SZ.R
sim/theo.R
+0
-91
0 additions, 91 deletions
sim/theo.R
with
122 additions
and
91 deletions
db/sz_mc.couch
0 → 100644
+
0
−
0
View file @
78a10aa0
File added
This diff is collapsed.
Click to expand it.
sim/gen-SZ.R
0 → 100644
+
102
−
0
View file @
78a10aa0
library
(
ggplot2
)
library
(
R4CouchDB
)
cdb
<-
cdbIni
()
cdb
$
DBName
<-
"sz_mc"
for
(
randSdRel
in
c
(
1e-3
,
3e-3
,
5e-3
,
9e-3
,
1e-2
,
3e-2
,
5e-2
,
9e-2
,
1e-1
,
3e-1
,
5e-1
,
9e-1
)){
for
(
k
in
1
:
100
){
### --------------------------------------------------------
d
<-
list
(
M
=
100
,
# Anz. Messpunkte pro SZ
N
=
5
,
# Anz. der SZ
dyn
=
1.6e-3
,
# Dynamikbereich des SZ
p
=
list
(
fill
=
44.6
,
# mbar
randSdRel
=
randSdRel
),
#
m
=
list
(
mean
=
-1.8e-3
),
# mbar/s
t
=
list
(
between
=
5.0
,
# s
randSdRel
=
0
)
#
)
### -------------------------------------------------------
d
$
p
$
meanSz
<-
rep
(
0.0
,
d
$
N
)
# Druckmittelwert der SZ
d
$
p
$
typeSz
<-
"const"
# Druckmittelwert der SZ
d
$
m
$
sz
<-
rep
(
d
$
m
$
mean
,
d
$
N
)
# Ausgangssteigung der SZ
idx
<-
seq
(
1
,
d
$
M
)
d
$
p
$
D
<-
d
$
dyn
*
d
$
p
$
fill
d
$
p
$
d
<-
-
d
$
p
$
D
/
d
$
M
d
$
p
$
upper
<-
d
$
p
$
meanSz
+
d
$
p
$
D
/
2
d
$
p
$
lower
<-
d
$
p
$
meanSz
-
d
$
p
$
D
/
2
d
$
t
$
d
<-
d
$
p
$
d
/
d
$
m
$
sz
d
$
t
$
randSd
<-
abs
(
d
$
t
$
d
*
d
$
t
$
randSdRel
)
d
$
p
$
randSd
<-
abs
(
d
$
p
$
D
*
d
$
p
$
randSdRel
)
## neue knstliche SZs
## erzeugen
d
$
p
$
pure
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
p
$
rand
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
t
$
pure
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
t
$
rand
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
m
$
rand
<-
rep
(
NA
,
d
$
N
)
d
$
c
$
rand
<-
rep
(
NA
,
d
$
N
)
d
$
p
$
randMean
<-
rep
(
NA
,
d
$
N
)
d
$
t
$
randMean
<-
rep
(
NA
,
d
$
N
)
for
(
i
in
1
:
d
$
N
){
if
(
i
==
1
){
d
$
t
$
pure
[
i
,]
<-
d
$
t
$
d
[
i
]
*
idx
}
else
{
d
$
t
$
pure
[
i
,]
<-
d
$
t
$
pure
[
i
-1
,
d
$
M
]
+
d
$
t
$
between
+
d
$
t
$
d
[
i
]
*
idx
}
d
$
p
$
pure
[
i
,]
<-
seq
(
d
$
p
$
upper
[
i
],
d
$
p
$
lower
[
i
],
length.out
=
d
$
M
)
d
$
p
$
rand
[
i
,]
<-
d
$
p
$
pure
[
i
,]
+
rnorm
(
d
$
M
,
0
,
d
$
p
$
randSd
)
d
$
t
$
rand
[
i
,]
<-
d
$
t
$
pure
[
i
,]
+
rnorm
(
d
$
M
,
0
,
d
$
t
$
randSd
)
temp.lm
<-
lm
(
d
$
p
$
rand
[
i
,]
~
d
$
t
$
rand
[
i
,])
d
$
m
$
rand
[
i
]
<-
coefficients
(
temp.lm
)[
2
]
d
$
p
$
randMean
[
i
]
<-
mean
(
d
$
p
$
rand
[
i
,])
d
$
t
$
randMean
[
i
]
<-
mean
(
d
$
t
$
rand
[
i
,])
}
d
$
p
$
randIntercept
<-
d
$
p
$
randMean
-
d
$
m
$
rand
*
d
$
t
$
randMean
d
$
t
$
rand0
<-
(
mean
(
d
$
p
$
randMean
)
-
d
$
p
$
randIntercept
)
/
d
$
m
$
rand
d
$
t
$
DeltaSd
<-
sd
(
diff
(
d
$
t
$
rand0
))
d
$
t
$
DeltaMean
<-
mean
(
diff
(
d
$
t
$
rand0
))
d
$
t
$
DeltaSdRel
<-
sd
(
diff
(
d
$
t
$
rand0
))
/
d
$
t
$
DeltaMean
cdb
$
dataList
<-
d
dn
<-
cdbAddDoc
(
cdb
)
}
}
pt.df
<-
data.frame
(
d.p.pure
=
as.vector
(
d
$
p
$
pure
),
d.t.pure
=
as.vector
(
d
$
t
$
pure
),
d.p.rand
=
as.vector
(
d
$
p
$
rand
),
d.t.rand
=
as.vector
(
d
$
t
$
rand
))
ggplot
(
pt.df
)
+
geom_point
(
aes
(
x
=
d.t.pure
,
y
=
d.p.pure
),
color
=
'black'
)
+
geom_point
(
aes
(
x
=
d.t.rand
,
y
=
d.p.rand
),
color
=
'red'
)
+
geom_abline
(
aes
(
intercept
=
d
$
p
$
randIntercept
,
slope
=
d
$
m
$
rand
),
color
=
'red'
)
+
geom_vline
(
xintercept
=
d
$
t
$
rand0
,
linetype
=
"longdash"
)
+
geom_point
(
aes
(
y
=
d
$
p
$
randMean
,
x
=
d
$
t
$
randMean
),
color
=
"black"
,
size
=
4
)
+
ggtitle
(
"dp vs. dt"
)
This diff is collapsed.
Click to expand it.
sim/plot-SZ.R
0 → 100644
+
20
−
0
View file @
78a10aa0
cdb
<-
cdbInit
()
cdb
$
DBName
<-
"sz_mc"
cdb
$
id
<-
"1f817eefa918f5bb1a8620eaa01f9aac"
d
<-
cdbGetDoc
(
cdb
)
$
res
pt.df
<-
data.frame
(
d.p.pure
=
unlist
(
d
$
p
$
pure
),
d.t.pure
=
unlist
(
d
$
t
$
pure
),
d.p.rand
=
unlist
(
d
$
p
$
rand
),
d.t.rand
=
unlist
(
d
$
t
$
rand
))
ggplot
(
pt.df
)
+
geom_point
(
aes
(
x
=
d.t.pure
,
y
=
d.p.pure
),
color
=
'black'
)
+
geom_point
(
aes
(
x
=
d.t.rand
,
y
=
d.p.rand
),
color
=
'red'
)
+
geom_abline
(
aes
(
intercept
=
unlist
(
d
$
p
$
randIntercept
),
slope
=
unlist
(
d
$
m
$
rand
)),
color
=
'red'
)
+
geom_vline
(
xintercept
=
unlist
(
d
$
t
$
rand0
),
linetype
=
"longdash"
)
+
geom_point
(
aes
(
y
=
unlist
(
d
$
p
$
randMean
),
x
=
unlist
(
d
$
t
$
randMean
)),
color
=
"black"
,
size
=
4
)
+
ggtitle
(
"dp vs. dt"
)
This diff is collapsed.
Click to expand it.
sim/theo.R
deleted
100644 → 0
+
0
−
91
View file @
b1799375
library
(
ggplot2
)
library
(
R4CouchDB
)
### --------------------------------------------------------
d
<-
list
(
M
=
100
,
# Anz. Messpunkte pro SZ
N
=
5
,
# Anz. der SZ
dyn
=
1.6e-3
,
# dynamikbereich des SZ
p
=
list
(
fill
=
44.6
,
# mbar
randSdRel
=
0
),
#1e-8
# relativer hub der SZ
m
=
list
(
mean
=
-1.8e-3
),
# mbar/s
t
=
list
(
between
=
5.0
,
# s
randSdRel
=
1.0e-3
)
#
)
### -------------------------------------------------------
d
$
p
$
meanSz
<-
rep
(
0.0
,
d
$
N
)
# Druckmittelwert der SZ
d
$
m
$
sz
<-
rep
(
d
$
m
$
mean
,
d
$
N
)
# Ausgangssteigung der SZ
d
$
idx
<-
seq
(
1
,
d
$
M
)
d
$
p
$
D
<-
d
$
dyn
*
d
$
p
$
fill
d
$
p
$
d
<-
-
d
$
p
$
D
/
d
$
M
d
$
p
$
upper
<-
d
$
p
$
meanSz
+
d
$
p
$
D
/
2
d
$
p
$
lower
<-
d
$
p
$
meanSz
-
d
$
p
$
D
/
2
d
$
t
$
d
<-
d
$
p
$
d
/
d
$
m
$
sz
d
$
t
$
randSd
<-
abs
(
d
$
t
$
d
*
d
$
t
$
randSdRel
)
d
$
p
$
randSd
<-
abs
(
d
$
p
$
fill
*
d
$
t
$
randSdRel
)
## neue knstliche SZs
## erzeugen
d
$
p
$
pure
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
p
$
rand
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
t
$
pure
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
t
$
rand
<-
matrix
(
NA
,
ncol
=
d
$
M
,
nrow
=
d
$
N
)
d
$
m
$
rand
<-
rep
(
NA
,
d
$
N
)
d
$
c
$
rand
<-
rep
(
NA
,
d
$
N
)
d
$
p
$
randMean
<-
rep
(
NA
,
d
$
N
)
d
$
t
$
randMean
<-
rep
(
NA
,
d
$
N
)
for
(
i
in
1
:
d
$
N
){
if
(
i
==
1
){
d
$
t
$
pure
[
i
,]
<-
d
$
t
$
d
[
i
]
*
d
$
idx
}
else
{
d
$
t
$
pure
[
i
,]
<-
d
$
t
$
pure
[
i
-1
,
d
$
M
]
+
d
$
t
$
between
+
d
$
t
$
d
[
i
]
*
d
$
idx
}
d
$
p
$
pure
[
i
,]
<-
seq
(
d
$
p
$
upper
[
i
],
d
$
p
$
lower
[
i
],
length.out
=
d
$
M
)
d
$
p
$
rand
[
i
,]
<-
d
$
p
$
pure
[
i
,]
+
rnorm
(
d
$
M
,
0
,
d
$
p
$
randSd
)
d
$
t
$
rand
[
i
,]
<-
d
$
t
$
pure
[
i
,]
+
rnorm
(
d
$
M
,
0
,
d
$
t
$
randSd
)
temp.lm
<-
lm
(
d
$
p
$
rand
[
i
,]
~
d
$
t
$
rand
[
i
,])
d
$
c
$
rand
[
i
]
<-
coefficients
(
temp.lm
)[
1
]
d
$
m
$
rand
[
i
]
<-
coefficients
(
temp.lm
)[
2
]
d
$
p
$
randMean
[
i
]
<-
mean
(
d
$
p
$
rand
[
i
,])
d
$
t
$
randMean
[
i
]
<-
mean
(
d
$
t
$
rand
[
i
,])
}
d
$
ci
<-
d
$
p
$
randMean
-
d
$
m
$
rand
*
d
$
t
$
randMean
d
$
t
$
rand0
<-
(
mean
(
d
$
p
$
randMean
)
-
d
$
ci
)
/
d
$
m
$
rand
d
$
t
$
DeltaSd
<-
sd
(
diff
(
d
$
t
$
rand0
))
d
$
t.DeltaMean
<-
mean
(
diff
(
d
$
t
$
rand0
))
d
$
t.DeltaSdRel
<-
sd
(
diff
(
d
$
t
$
rand0
))
/
d
$
t
$
DeltaMean
### --- plot ---
pt.df
<-
data.frame
(
d.p.pure
=
as.vector
(
d
$
p
$
pure
),
d.t.pure
=
as.vector
(
d
$
t
$
pure
),
d.p.rand
=
as.vector
(
d
$
p
$
rand
),
d.t.rand
=
as.vector
(
d
$
t
$
rand
))
ggplot
(
pt.df
)
+
geom_point
(
aes
(
x
=
d.t.pure
,
y
=
d.p.pure
),
color
=
'black'
)
+
geom_point
(
aes
(
x
=
d.t.rand
,
y
=
d.p.rand
),
color
=
'red'
)
+
geom_abline
(
aes
(
intercept
=
d
$
c
$
rand
,
slope
=
d
$
m
$
rand
),
color
=
'red'
)
+
geom_vline
(
xintercept
=
d
$
t
$
rand0
,
linetype
=
"longdash"
)
+
geom_point
(
aes
(
y
=
d
$
p
$
randMean
,
x
=
d
$
t
$
randMean
),
color
=
"black"
,
size
=
4
)
+
ggtitle
(
"dp vs. dt"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment