Skip to content
Snippets Groups Projects
Commit 60456b77 authored by Rolf Niepraschk's avatar Rolf Niepraschk
Browse files

aufgeräumt

parent c404fbe7
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 2949 deletions
ptbposter/poster-ce/CE_3.jpg

275 KiB

File deleted
ptbposter/poster-ce/Skizze-poster-en.jpg

108 KiB

File deleted
ptbposter/poster-ce/method-poster-en.jpg

71.9 KiB

\documentclass[english,sanserif]{ptbposter}
%\documentclass[ngerman,sanserif]{ptbposter}
\addtokomafont{caption}{\scriptsize}% hässlich!!!
\phone{+49-30-3481-7262}
\fax{+49-30-3481-7503}
\email{Karl.Jousten@ptb.de}
\workingGroup{7.54 Vacuum Metrology}
\department{7.5 Heat and Vacuum}
\location{10587 Berlin}
\street{Abbestraße 2--12}
\QRcode{http://www.ptb.de/cms/fachabteilungen/abt7/fb-75/ag-754.html}
\title{\huge Continuous Expansion}
\begin{document}
\begin{multicols}{2}
\section{Method}
In the continuous expansion method, the pressure is reduced by a restriction. The gas flows continuously from a volume at relativ high pressure into the calibration chamber and thereafter to the vacuum pump.
\includegraphics[width=0.9\columnwidth]{method-poster-en}
%\caption{Korrekturen der Keithley}
The pressure in the calibration chamber is given by:
\begin{equation}
p= \frac{q_{pv}}{C} \qquad
\begin{tabular}{@{}lll@{}}
$q_{pV}$& & Gas flow \\
$C$ & & Conductance \\
\end{tabular}
\end{equation}
\section{The Primary Standard CE-3}
\includegraphics[width=0.5\columnwidth]{CE_3}
At the PTB, pressures in the range $10^{-10}$ Pa to $10^{-2}$ Pa are generated by the primary standard CE-3, based on the continuous expansion method. This method was improved to enlarge the calibration range.
For these purposes two calibration chambers (UHV-chamber $V_1$ and XHV-chamber $V_2$ (Figure 3))and two cryo pumps were used. Between these chambers a flow divider channels about 99\% of the gas flow into $V_1$ and 1\% into $V_2$.
Thus the gas flow in $V_2$ will be about a factor 100 lower than in $V_1$. The gas flow $q_{pv}$ is produced and measured by the flowmeter FM-3.
\begin{figure}
\includegraphics[width=0.9\columnwidth]{Skizze-poster-en}
\caption{Scheme}
\end{figure}
Cold surfaces at 2.6 K pump the gas molecules exiting from the two calibration chambers through the pump orifices. The high condensation probability of the gas molecules on these surfaces avoids backstreaming for most gas species into the calibration chamber. As a result the orifices act as a “black hole” for the gas molecules. If both cryo pumps operate, the gas flow $q_{pV}$ is subdivided into two gas flows into the respective chambers :
\begin{equation}
q_{pv}= q_{01}+q_{02} \qquad
\end{equation}
If only cryo pump KP1 operates, the calibration pressure in volume V 1 is given by:
\begin{equation}
p_1= \frac{q_{pv}}{\gamma_1 C_1}\cdot \frac{\sqrt{T_{CH_1}T_0}}{T_{FM}} \qquad
\begin{tabular}{@{}lll@{}}
$T_{CH1}$ & Temperatur of $V_1$ & \\
$T_{FM}$& Temperatur of flowmeter& \\
$\gamma_1$ & factor accounting back- & \\
& streaming ($\approx1$) & \\
$q_{pV}$& Gas flow rate & \\
$T_{0}$& Reference & \\
& temperatur 23°C & \\
$C_1$& Conductance of orifice & \\
\end{tabular}
\end{equation}
\includegraphics[width=0.8\columnwidth]{uns-ce34evc}
\end{multicols}
\end{document}
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand*\new@tpo@label[2]{}
\catcode `"\active
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand\BKM@entry[2]{}
\BKM@entry{id=1,dest={73656374696F6E2A2E31},srcline={23},srcfile={2E2F707462706F737465722D63652E746578}}{4D6574686F64}
\BKM@entry{id=2,dest={73656374696F6E2A2E32},srcline={41},srcfile={2E2F707462706F737465722D63652E746578}}{546865205072696D617279205374616E646172642043452D33}
\ifx\qr@savematrix\@undefined\def\qr@savematrix{\begingroup\let\do\@makeother\dospecials\catcode`\{=1\catcode`\}=2\relax \qr@savematrix@int}\def\qr@savematrix@int#1#2#3#4{\endgroup}\fi
\babel@aux{english}{}
\@writefile{toc}{\contentsline {section}{\nonumberline Method}{1}{section*.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\nonumberline The Primary Standard CE-3}{1}{section*.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Scheme\relax }}{1}{figure.1}\protected@file@percent }
\qr@savematrix{http://www.ptb.de/cms/fachabteilungen/abt7/fb-75/ag-754.html}{4}{0}{111111101101101001101110001111111100000101100000001010100101000001101110101010000100000110001011101101110100010000011100110101011101101110101001101100011100001011101100000100100001010001111101000001111111101010101010101010101111111000000000011010010010001000000000100111111001001001001010010010111111100010001101100110111010111100001101100001001101000111101011111110110001100001111001001110100110110100101111111110101011101100001010011001111100110001111010101000000001101111010101011000000000000010011000110111000110011010101101011101110001111000001010011111000001001011011011101111010011010111011001100010000101010001111001101101110010011100000101011010111111010011110100100111110011100101001110101010000111100110001110011100100100110100100101100111011110011101001001100001001000010011100100111001100011110110011001111111000000000001101010111100000100010110111111101010001111011101101010100100000101110111010110000100010111101110101001100010011001111110000101110101001100101111010010000111101110100100101110110100100110111100000100010001000000011001011111111111101110000011000010110100000}
This diff is collapsed.
File deleted
File deleted
\documentclass[english,sanserif]{ptbposter}
%\documentclass[ngerman,sanserif]{ptbposter}
\usepackage[
,font=scriptsize
,labelfont=bf
,skip=\baselineskip
]{caption}
\phone{+49-30-3481-7262}
\fax{+49-30-3481-7503}
\email{Karl.Jousten@ptb.de}
\workingGroup{7.54 Vacuum Metrology}
\department{7.5 Heat and Vacuum}
\location{10587 Berlin}
\street{Abbestraße 2--12}
\QRcode{http://www.ptb.de/cms/fachabteilungen/abt7/fb-75/ag-754.html}
\title{\huge Continuous Expansion}
\begin{document}
\begin{multicols}{2}
\section{Method}
In the continuous expansion method, the pressure is reduced by a restriction. The gas flows continuously from a volume at relativ high pressure into the calibration chamber and thereafter to the vacuum pump.
\includegraphics[width=0.9\columnwidth]{method-poster-en}
%\caption{Korrekturen der Keithley}
The pressure in the calibration chamber is given by:
\begin{equation}
p= \frac{q_{pv}}{C} \qquad
\begin{tabular}{@{}lll@{}}
$q_{pV}$& & Gas flow \\
$C$ & & Conductance \\
\end{tabular}
\end{equation}
\section{The Primary Standard CE-3}
\includegraphics[width=0.5\columnwidth]{CE_3}
At the PTB, pressures in the range $10^{-10}$ Pa to $10^{-2}$ Pa are generated by the primary standard CE-3, based on the continuous expansion method. This method was improved to enlarge the calibration range.
For these purposes two calibration chambers (UHV-chamber $V_1$ and XHV-chamber $V_2$ (Figure 3))and two cryo pumps were used. Between these chambers a flow divider channels about 99\% of the gas flow into $V_1$ and 1\% into $V_2$.
Thus the gas flow in $V_2$ will be about a factor 100 lower than in $V_1$. The gas flow $q_{pv}$ is produced and measured by the flowmeter FM-3.
\begin{center}
\includegraphics[width=0.9\columnwidth]{Skizze-poster-en}
\captionof{figure}{Scheme}
\end{center}
Cold surfaces at 2.6 K pump the gas molecules exiting from the two calibration chambers through the pump orifices. The high condensation probability of the gas molecules on these surfaces avoids backstreaming for most gas species into the calibration chamber. As a result the orifices act as a “black hole” for the gas molecules. If both cryo pumps operate, the gas flow $q_{pV}$ is subdivided into two gas flows into the respective chambers :
\begin{equation}
q_{pv}= q_{01}+q_{02} \qquad
\end{equation}
If only cryo pump KP1 operates, the calibration pressure in volume V 1 is given by:
\begin{equation}
p_1= \frac{q_{pv}}{\gamma_1 C_1}\cdot \frac{\sqrt{T_{CH_1}T_0}}{T_{FM}} \qquad
\begin{tabular}{@{}lll@{}}
$T_{CH1}$ & Temperatur of $V_1$ & \\
$T_{FM}$& Temperatur of flowmeter& \\
$\gamma_1$ & factor accounting back- & \\
& streaming ($\approx1$) & \\
$q_{pV}$& Gas flow rate & \\
$T_{0}$& Reference & \\
& temperatur 23°C & \\
$C_1$& Conductance of orifice & \\
\end{tabular}
\end{equation}
\includegraphics[width=0.8\columnwidth]{uns-ce34evc}
\end{multicols}
\end{document}
File deleted
File deleted
File deleted
File deleted
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment