Skip to content
Snippets Groups Projects
Verified Commit 6807f6b9 authored by Björn Ludwig's avatar Björn Ludwig
Browse files

fix: adapt all calls of ZeMASamples to most recent version v0.7.0 of zema_emc_annotated

parent 8f1056b5
No related branches found
No related tags found
No related merge requests found
Pipeline #16364 passed
......@@ -2,6 +2,7 @@
import sys
import yappi # type: ignore[import]
from zema_emc_annotated.data_types import SampleSize # type: ignore[import]
from zema_emc_annotated.dataset import ZeMASamples # type: ignore[import]
from lp_nn_robustness_verification.data_acquisition.activation_functions import (
......@@ -38,7 +39,9 @@ def solve_and_store_timed_solutions(task_id: int) -> None:
out_features = size_scaler * 11 - depth
else:
out_features = 10
zema_data = ZeMASamples(100, size_scaler, True)
zema_data = ZeMASamples(
SampleSize(0, 100, datapoints_per_cycle=size_scaler), normalize=True
)
print(
f"Trying to solve for {size_scaler * 11} inputs and {depth} "
f"{'layers' if depth > 1 else 'layer'}"
......
......@@ -15,6 +15,7 @@ We might add command line parameters at a later time. For now please edit the ma
function at the very bottom of this file to change inputs.
"""
import yappi # type: ignore[import]
from zema_emc_annotated.data_types import SampleSize # type: ignore[import]
from zema_emc_annotated.dataset import ZeMASamples # type: ignore[import]
from lp_nn_robustness_verification.data_acquisition.activation_functions import Sigmoid
......@@ -34,7 +35,7 @@ def optimize() -> None:
"""Solve one specific hard coded instance and time the process"""
samples_per_sensor = 10
depth = 1
zema_data = ZeMASamples(size_scaler=samples_per_sensor, normalize=True)
zema_data = ZeMASamples(SampleSize(datapoints_per_cycle=samples_per_sensor), True)
nn_params = generate_weights_and_biases(
len(zema_data.values[0]),
construct_out_features_counts(len(zema_data.values[0]), depth=depth),
......
......@@ -5,6 +5,7 @@ import pytest
from _pytest.capture import CaptureFixture
from numpy.ma.testutils import assert_almost_equal
from numpy.testing import assert_equal
from zema_emc_annotated.data_types import SampleSize # type: ignore[import]
from zema_emc_annotated.dataset import ZeMASamples # type: ignore[import]
from lp_nn_robustness_verification.data_acquisition.activation_functions import (
......@@ -67,7 +68,9 @@ def compute_linear_inclusion_for_instance() -> Callable[
def compute_linear_inclusion(
size_scaler: int, depth: int, sample_idx: int, seed: int
) -> LinearInclusion:
zema_data = ZeMASamples(4766, size_scaler, True)
zema_data = ZeMASamples(
SampleSize(n_cycles=4766, datapoints_per_cycle=size_scaler), normalize=True
)
uncertain_inputs = UncertainInputs(
UncertainArray(
zema_data.values[sample_idx], zema_data.uncertainties[sample_idx]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment