Skip to content
Snippets Groups Projects
Verified Commit dbdd45af authored by Björn Ludwig's avatar Björn Ludwig
Browse files

Revert "refactor(thesis): introduce commands for the natural and real numbers"

This reverts commit 2ce3ae45 but reintroduces the actually desired changes.
parent 107bb96c
No related branches found
No related tags found
No related merge requests found
Pipeline #13127 passed
...@@ -93,9 +93,9 @@ ...@@ -93,9 +93,9 @@
The task we eventually aim to solve is: The task we eventually aim to solve is:
\begin{task} \begin{task}
Let \(X = (X_j)_{j=1, \hdots, N}\) the input quantities of a Let \(X = (X_j)_{j=1, \hdots, N}\) the input quantities of a
measurement function \(f \colon \R^N \to \R \colon x \mapsto f measurement function \(f \colon \mathbb R^N \to \mathbb R \colon x \mapsto f
(x) = y\), which takes the form of an already trained, deep neural network. (x) = y\), which takes the form of an already trained, deep neural network.
Let \((x_j)_{j=1, \hdots, N} \in \R^N\) the best estimates representing Let \((x_j)_{j=1, \hdots, N} \in \mathbb R^N\) the best estimates representing
the input quantities and \(u(x_j), j=1, \ldots, N\) the associated standard the input quantities and \(u(x_j), j=1, \ldots, N\) the associated standard
uncertainties (\cite[paragraph 3.18]{jcgm_evaluation_2008}). uncertainties (\cite[paragraph 3.18]{jcgm_evaluation_2008}).
Propagate the \(x_j\) and \(u(x_j), j=1, \ldots, N\) through Propagate the \(x_j\) and \(u(x_j), j=1, \ldots, N\) through
...@@ -123,15 +123,15 @@ ...@@ -123,15 +123,15 @@
As starting point we consider an already trained, fully-connected multi-layer As starting point we consider an already trained, fully-connected multi-layer
perceptron (MLP) with input vector \(x = (x_j)_{j=1, \hdots, N}\) comprised of perceptron (MLP) with input vector \(x = (x_j)_{j=1, \hdots, N}\) comprised of
the input quantities, any number \(l \in \N\) of layers and a possibly the input quantities, any number \(l \in \mathbb N\) of layers and a possibly
vector-valued output quantity \(Y\) of the last layer. vector-valued output quantity \(Y\) of the last layer.
Each layer consists of \(n^{(i)} \in \N\) neurons, \(i= 0, 1, \hdots, l\) Each layer consists of \(n^{(i)} \in \mathbb N\) neurons, \(i= 0, 1, \hdots, l\)
where \(n^{(0)} = N\). where \(n^{(0)} = N\).
We denote for \(i = 1, \hdots, l\) the \(i\)th layer's linear transformations We denote for \(i = 1, \hdots, l\) the \(i\)th layer's linear transformations
\(z^{(i)} \colon \R^{n^{(i-1)}} \to \R^{n^{(i)}}\) as \(z^{(i)} \colon \mathbb R^{n^{(i-1)}} \to \mathbb R^{n^{(i)}}\) as
\[z^{(i)}(X) = W^{(i)} \cdot x + b^{(i)}\] \[z^{(i)}(X) = W^{(i)} \cdot x + b^{(i)}\]
with weights \(W^{(i)} \in \R^{n^{(i)} \times n^{(i-1)}}\) and biases \({b^{ with weights \(W^{(i)} \in \mathbb R^{n^{(i)} \times n^{(i-1)}}\) and biases \({b^{
(i)}} \in \R^{n^{(i)}}\). (i)}} \in \mathbb R^{n^{(i)}}\).
As activation functions we consider As activation functions we consider
\begin{itemize} \begin{itemize}
\item the so-called \textit{rectifier} \item the so-called \textit{rectifier}
...@@ -144,7 +144,7 @@ ...@@ -144,7 +144,7 @@
\textit{rectifier}: \textit{rectifier}:
\begin{gather} \begin{gather}
\tag{rectifier} \tag{rectifier}
g(z) = \max\{0, z\}, \quad z \in \R. g(z) = \max\{0, z\}, \quad z \in \mathbb R\label{eq:rectifier}, \text{ and}
\end{gather} \end{gather}
We define the first derivative of \(g\) at \(0\) to be \(g'(0) \coloneqq 1\). We define the first derivative of \(g\) at \(0\) to be \(g'(0) \coloneqq 1\).
This results in \(g \in C^\infty([0, \infty))\) and \(g \in C^\infty((-\infty, 0) This results in \(g \in C^\infty([0, \infty))\) and \(g \in C^\infty((-\infty, 0)
......
...@@ -219,8 +219,8 @@ in neural network inputs through the networks in a GUM-compliant way. ...@@ -219,8 +219,8 @@ in neural network inputs through the networks in a GUM-compliant way.
The task we eventually aim to solve is: The task we eventually aim to solve is:
\begin{task}[Uncertainty propagation] \begin{task}[Uncertainty propagation]
Let \(X = (X_j)_{j=1, \hdots, N}\) the input quantities of a measurement function Let \(X = (X_j)_{j=1, \hdots, N}\) the input quantities of a measurement function
\(f \colon \R^N \to \R \colon x \mapsto f (x) = y\), which takes the \(f \colon \R^N \to \R \colon x \mapsto f (x) = y\), which takes the form of an
form of an already trained, deep neural network. already trained, deep neural network.
Let \((x_j)_{j=1, \hdots, N} \in \R^N\) the best estimates representing the Let \((x_j)_{j=1, \hdots, N} \in \R^N\) the best estimates representing the
input quantities and \(u(x_j), j=1, \ldots, N\) the associated standard input quantities and \(u(x_j), j=1, \ldots, N\) the associated standard
uncertainties (\cite[paragraph 3 .18]{jcgm_evaluation_2008}). uncertainties (\cite[paragraph 3 .18]{jcgm_evaluation_2008}).
...@@ -248,8 +248,8 @@ method's inputs and result. ...@@ -248,8 +248,8 @@ method's inputs and result.
As starting point we consider an already trained, fully-connected multi-layer As starting point we consider an already trained, fully-connected multi-layer
perceptron (MLP) with input vector \(x^{(0)} = \left( x_k^{(0)} \right)_{k=1, \hdots, perceptron (MLP) with input vector \(x^{(0)} = \left( x_k^{(0)} \right)_{k=1, \hdots,
n^{(0)}}\) comprised of the estimates of the input quantities, any number \(l \in n^{(0)}}\) comprised of the estimates of the input quantities, any number \(l \in
\N\) of layers and a possibly vector-valued estimate $y$ of the output \N\) of layers and a possibly vector-valued estimate $y$ of the output quantity in
quantity in the last layer. the last layer.
Each layer consists of \(n^{(i)} \in \N\) neurons, \(i= 0, 1, \hdots, l\). Each layer consists of \(n^{(i)} \in \N\) neurons, \(i= 0, 1, \hdots, l\).
We denote for \(i = 1, \hdots, l\) the \(i\)th layer's linear transformations We denote for \(i = 1, \hdots, l\) the \(i\)th layer's linear transformations
\(z^{(i)} \colon \R^{n^{(i-1)}} \to \R^{n^{(i)}}\) as \(z^{(i)} \colon \R^{n^{(i-1)}} \to \R^{n^{(i)}}\) as
...@@ -304,7 +304,7 @@ with weights \(W^{(i)} \in \R^{n^{(i)} \times n^{(i-1)}}\) and biases \({b^{(i)} ...@@ -304,7 +304,7 @@ with weights \(W^{(i)} \in \R^{n^{(i)} \times n^{(i-1)}}\) and biases \({b^{(i)}
\begin{gather} \begin{gather}
\label{eq:sigmoid} \label{eq:sigmoid}
\tag{sigmoid} \tag{sigmoid}
\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}, \quad x \in \R. \sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}.
\end{gather} \end{gather}
\textit{First derivative of sigmoid}: \textit{First derivative of sigmoid}:
...@@ -371,8 +371,7 @@ referred to as the ...@@ -371,8 +371,7 @@ referred to as the
\begin{gather} \begin{gather}
\label{eq:parametric_softplus} \label{eq:parametric_softplus}
\tag{parametric softplus} \tag{parametric softplus}
\softplus(x) = \frac{\ln \left( 1 + e^{nx} \right)}{n}, \quad n \in \softplus(x) = \frac{\ln \left( 1 + e^{nx} \right)}{n}, \quad n \in \R^+.
\R^+.
\end{gather} \end{gather}
Its further investigation is justified by the well-known fact, that in the limit Its further investigation is justified by the well-known fact, that in the limit
...@@ -393,8 +392,7 @@ transition from $n \to \infty$ one obtains the most wide spread activation funct ...@@ -393,8 +392,7 @@ transition from $n \to \infty$ one obtains the most wide spread activation funct
\textit{(parametric) softplus first derivative}: \textit{(parametric) softplus first derivative}:
\begin{gather} \begin{gather}
\odv{\softplus}{x} (x) = \frac{1}{1 + e^{-nx}} = \sigma(nx), \quad n \in \odv{\softplus}{x} (x) = \frac{1}{1 + e^{-nx}} = \sigma(nx), \quad n \in \R^+.
\R^+.
\label{eq:parametric-softplus-first-derivative} \label{eq:parametric-softplus-first-derivative}
\end{gather} \end{gather}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment