Skip to content
Snippets Groups Projects
Verified Commit e3331a2c authored by Björn Ludwig's avatar Björn Ludwig
Browse files

docs(examples): improve examples docstrings

parent d0ec0ea1
No related branches found
No related tags found
No related merge requests found
"""Does the actual propagation to be profiled for MLPs equipped with GUMQuadLU"""
"""Profile propagation for :doc:`pytorch_gum_uncertainty_propagation.modules`' MLPs"""
__all__ = ["assemble_pipeline", "iterate_over_activations_and_architectures"]
......@@ -32,7 +32,7 @@ def assemble_pipeline(
depth: int = 1,
set_uncertainties_to_none: bool = False,
) -> Any:
"""Propagate data through an MLP equipped with GUMQuadLU activation"""
"""Propagate data through an MLP exclusively equipped with a specific activation"""
torch.set_default_dtype(torch.double) # type: ignore[no-untyped-call]
input_values = convert_zema_std_uncertainties_into_synthetic_full_cov_matrices(
n_samples=1, size_scaler=size_scaler, normalize=True, idx_start=idx_start
......
......@@ -20,9 +20,8 @@ def convert_zema_std_uncertainties_into_synthetic_full_cov_matrices(
"""Prepare the ZeMA data for forward propagations in any PyTorch GUM-enabled network
The main task is turning the standard uncertainties in the ZeMA dataset [Dorst2021]_
synthetically into full covariance matrices only for showcasing
:class:`~pytorch_gum_uncertainty_propagation.modules.GUMQuadLU`'s
capabilities.
synthetically into full covariance matrices only for showcasing the capabilities
of the GUM-enabled :doc:`pytorch_gum_uncertainty_propagation.modules`.
"""
uncertain_array = ZeMASamples(n_samples, size_scaler, normalize, idx_start)
uncertain_values = UncertainTensor(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment