Skip to content
Snippets Groups Projects
train.ipynb 3.8 KiB
Newer Older
Kerstin Kaspar's avatar
Kerstin Kaspar committed
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "84110e61",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from data import LodopabDataset\n",
    "from trainer import Trainer\n",
    "from model import UNet"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15aaa025",
   "metadata": {},
   "outputs": [],
   "source": [
    "# data locations\n",
    "cache_files = {\n",
    "    'train':\n",
    "        '//hpc.isc.pad.ptb.de/hipcl/daten841/kaspar01/lodopab-ct/fbp/cache_lodopab_train_fbp.npy',\n",
    "    'validation':\n",
    "        '//hpc.isc.pad.ptb.de/hipcl/daten841/kaspar01/lodopab-ct/fbp/cache_lodopab_validation_fbp.npy',\n",
    "    'test':\n",
    "        '//hpc.isc.pad.ptb.de/hipcl/daten841/kaspar01/lodopab-ct/fbp/cache_lodopab_test_fbp.npy'}\n",
    "\n",
    "ground_truth_data_loc = '//hpc.isc.pad.ptb.de/hipcl/daten841/kaspar01/lodopab-ct/'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b12a5345",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create Dataloaders\n",
    "training_dataset = LodopabDataset(cache_files=cache_files,\n",
    "                                  ground_truth_data_loc=ground_truth_data_loc,\n",
    "                                  split='train')\n",
    "\n",
    "training_dataloader = torch.utils.data.DataLoader(dataset=training_dataset,\n",
    "                                                  batch_size=16,\n",
    "                                                  shuffle=True)\n",
    "\n",
    "validation_dataset = LodopabDataset(cache_files=cache_files,\n",
    "                                    ground_truth_data_loc=ground_truth_data_loc,\n",
    "                                    split='validation')\n",
    "\n",
    "validation_dataloader = torch.utils.data.DataLoader(dataset=validation_dataset,\n",
    "                                                    batch_size=16,\n",
    "                                                    shuffle=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ada1e3df",
   "metadata": {},
   "outputs": [],
   "source": [
    "# model defition\n",
    "model = UNet()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "235cced9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# training parameters\n",
    "criterion = torch.nn.MSELoss()\n",
    "optimizer = torch.optim.SGD(model.parameters(),\n",
    "                            lr=0.01,\n",
    "                            weight_decay=1e-8)\n",
    "\n",
    "# auto define the correct device\n",
    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
    "print(f\"Using {device} device.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cadd871b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# initiate Trainer\n",
    "trainer = Trainer(model=model,\n",
    "                  device=torch.device(device),\n",
    "                  criterion=criterion,\n",
    "                  optimizer=optimizer,\n",
    "                  training_dataloader=training_dataloader,\n",
    "                  validation_dataloader=validation_dataloader,\n",
    "                  lr_scheduler=None,\n",
    "                  epochs=2,\n",
    "                  epoch=0,\n",
    "                  notebook=False)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}