Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mc-ve-informative-prior
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Analyze
Contributor analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Finn Hughes
mc-ve-informative-prior
Commits
451b726e
Commit
451b726e
authored
5 months ago
by
Finn Hughes
Browse files
Options
Downloads
Patches
Plain Diff
Upload R code
parent
d6e8e875
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Final_TM_Code.R
+223
-0
223 additions, 0 deletions
Final_TM_Code.R
with
223 additions
and
0 deletions
Final_TM_Code.R
0 → 100644
+
223
−
0
View file @
451b726e
#### VE Model + parameters ####
D1
<-
function
(
z
)
{
1
+
z
}
D2
<-
function
(
z
)
{
0
}
VE
<-
function
(
y
,
z
,
eps
)
{
D1
(
z
)
*
y
+
D2
(
z
)
+
eps
}
r
=
1e7
n
<-
4
xbar
<-
50
s
<-
5
y0
<-
50
/
8.5
alpha
<-
8
sig0
<-
1
/
2
beta
<-
alpha
*
sig0
^
2
#### JCGM 101 method ####
ziJ
<-
runif
(
r
,
5
,
10
)
xiJ
<-
xbar
+
rt
(
r
,
n
-1
)
*
s
/
sqrt
(
n
)
yiJ
<-
(
xiJ
)
/
(
1
+
ziJ
)
#### JCGM 101 + inf. method ####
ziJi
<-
runif
(
r
,
5
,
10
)
xiJi
<-
xbar
+
rt
(
r
,
2
*
alpha
+
n
-1
)
*
sqrt
((
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
n
*
(
2
*
alpha
+
n
-1
)))
yiJi
<-
(
xiJi
)
/
(
1
+
ziJi
)
#### MCVE method ####
yia
<-
c
()
i
=
1
while
(
i
<=
r
){
epsi
<-
rnorm
(
4
,
0
,
sig0
)
zi
<-
runif
(
1
,
5
,
10
)
xsimi
<-
c
(
VE
(
y0
,
zi
,
epsi
[
1
]),
VE
(
y0
,
zi
,
epsi
[
2
]),
VE
(
y0
,
zi
,
epsi
[
3
]),
VE
(
y0
,
zi
,
epsi
[
4
]))
xvebar
<-
mean
(
xsimi
)
ci
=
rchisq
(
1
,
df
=
(
n
-1
))
mu
<-
y0
*
(
zi
+1
)
Tia
<-
s
*
(
sqrt
(
n
-1
))
/
(
sig0
*
sqrt
(
ci
))
yia
[
i
]
<-
((
1
+
zi
)
^
(
-1
))
*
(
Tia
*
(
mu
-
xvebar
)
+
(
xbar
-
mu
))
+
y0
i
=
i
+1
}
#### MCVE inf. method ####
yib
<-
c
()
i
=
1
while
(
i
<=
r
){
epsi
<-
rnorm
(
4
,
0
,
sig0
)
zi
<-
runif
(
1
,
5
,
10
)
xsimi
<-
c
(
VE
(
y0
,
zi
,
epsi
[
1
]),
VE
(
y0
,
zi
,
epsi
[
2
]),
VE
(
y0
,
zi
,
epsi
[
3
]),
VE
(
y0
,
zi
,
epsi
[
4
]))
xvebar
<-
mean
(
xsimi
)
ci
=
rchisq
(
1
,
df
=
(
2
*
alpha
+
n
-1
))
mu
<-
y0
*
(
zi
+1
)
Tib
<-
sqrt
(
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
sig0
*
sqrt
(
ci
))
yib
[
i
]
<-
((
1
+
zi
)
^
(
-1
))
*
(
Tib
*
(
mu
-
xvebar
)
+
(
xbar
-
mu
))
+
y0
i
=
i
+1
}
#### Comparison ####
## Mean
c
(
mean
(
yiJ
),
mean
(
yiJi
),
mean
(
yia
),
mean
(
yib
))
## Standard Deviation
c
(
sd
(
yiJ
),
sd
(
yiJi
),
sd
(
yia
),
sd
(
yib
))
## Shortest 95% Coverage Interval
# JCGM 101 method
SortedJ
<-
sort
(
yiJ
)
CovIntsJ
<-
c
()
i
=
1
while
(
i
<=
(
0.05
*
r
)){
CovIntsJ
[
i
]
<-
SortedJ
[
0.95
*
r
+
i
]
-
SortedJ
[
i
]
i
=
i
+1
}
ShCovIJ
<-
c
(
SortedJ
[
which
(
CovIntsJ
==
min
(
CovIntsJ
))],
SortedJ
[
which
(
CovIntsJ
==
min
(
CovIntsJ
))
+
(
0.95
*
r
)])
# JCGM 101 + inf. method
SortedJi
<-
sort
(
yiJi
)
CovIntsJi
<-
c
()
i
=
1
while
(
i
<=
(
0.05
*
r
)){
CovIntsJi
[
i
]
<-
SortedJi
[
0.95
*
r
+
i
]
-
SortedJi
[
i
]
i
=
i
+1
}
ShCovIJi
<-
c
(
SortedJi
[
which
(
CovIntsJi
==
min
(
CovIntsJi
))],
SortedJi
[
which
(
CovIntsJi
==
min
(
CovIntsJi
))
+
(
0.95
*
r
)])
# MC-VE method
Sorteda
<-
sort
(
yia
)
CovIntsa
<-
c
()
i
=
1
while
(
i
<=
(
0.05
*
r
)){
CovIntsa
[
i
]
<-
Sorteda
[
0.95
*
r
+
i
]
-
Sorteda
[
i
]
i
=
i
+1
}
ShCovIa
<-
c
(
Sorteda
[
which
(
CovIntsa
==
min
(
CovIntsa
))],
Sorteda
[
which
(
CovIntsa
==
min
(
CovIntsa
))
+
(
0.95
*
r
)])
# MC-VE inf. method
Sortedb
<-
sort
(
yib
)
CovIntsb
<-
c
()
i
=
1
while
(
i
<=
(
0.05
*
r
)){
CovIntsb
[
i
]
<-
Sortedb
[
0.95
*
r
+
i
]
-
Sortedb
[
i
]
i
=
i
+1
}
ShCovIb
<-
c
(
Sortedb
[
which
(
CovIntsb
==
min
(
CovIntsb
))],
Sortedb
[
which
(
CovIntsb
==
min
(
CovIntsb
))
+
(
0.95
*
r
)])
ShCovIJ
ShCovIJi
ShCovIa
ShCovIb
## Coefficient of Variance
sd
(
yiJ
)
/
mean
(
yiJ
)
sd
(
yiJi
)
/
mean
(
yiJi
)
sd
(
yia
)
/
mean
(
yia
)
sd
(
yib
)
/
mean
(
yib
)
#### Density Plot ####
histJ
<-
hist
(
ifelse
(
yiJ
>
2
&
yiJ
<
10
,
yiJ
,
NA
),
breaks
=
100
,
plot
=
FALSE
)
histJi
<-
hist
(
ifelse
(
yiJi
>
2
&
yiJi
<
10
,
yiJi
,
NA
),
breaks
=
100
,
plot
=
FALSE
)
hista
<-
hist
(
ifelse
(
yia
>
2
&
yia
<
10
,
yia
,
NA
),
breaks
=
100
,
plot
=
FALSE
)
histb
<-
hist
(
ifelse
(
yib
>
2
&
yib
<
10
,
yib
,
NA
),
breaks
=
100
,
plot
=
FALSE
)
par
(
cex
=
1.5
)
plot
(
histJi
$
mids
,
histJi
$
density
,
type
=
"l"
,
lwd
=
4
,
xlab
=
"Y"
,
xlim
=
c
(
4
,
9
),
ylab
=
"Probability Density"
,
col
=
2
)
lines
(
histb
$
mids
,
histb
$
density
,
lwd
=
4
,
lty
=
2
,
col
=
"yellow"
)
lines
(
histJ
$
mids
,
histJ
$
density
,
lwd
=
4
,
col
=
1
)
lines
(
hista
$
mids
,
hista
$
density
,
lwd
=
4
,
lty
=
2
,
col
=
5
)
legend
(
x
=
"topright"
,
legend
=
c
(
"JCGM 101"
,
"MC-VE"
,
"JCGM 101 + inf."
,
"MC-VE inf."
),
fill
=
c
(
1
,
5
,
2
,
"yellow"
))
#### Assessing different values of alpha ####
## alpha >= 1
k
=
1
meantestJi
<-
c
()
meantestb
<-
c
()
sdtestJi
<-
c
()
sdtestb
<-
c
()
while
(
k
<=
15
){
alpha
<-
k
sig0
<-
5
beta
<-
alpha
*
sig0
^
2
#### JCGM 101 + inf. method
ziJi
<-
runif
(
r
,
5
,
10
)
xiJi
<-
xbar
+
rt
(
r
,
2
*
alpha
+
n
-1
)
*
sqrt
((
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
n
*
(
2
*
alpha
+
n
-1
)))
yiJi
<-
(
xiJi
)
/
(
1
+
ziJi
)
#### MCVE inf. method
yib
<-
c
()
i
=
1
while
(
i
<=
r
){
epsi
<-
rnorm
(
4
,
0
,
sig0
)
zi
<-
runif
(
1
,
5
,
10
)
xsimi
<-
c
(
VE
(
y0
,
zi
,
epsi
[
1
]),
VE
(
y0
,
zi
,
epsi
[
2
]),
VE
(
y0
,
zi
,
epsi
[
3
]),
VE
(
y0
,
zi
,
epsi
[
4
]))
xvebar
<-
mean
(
xsimi
)
ci
=
rchisq
(
1
,
df
=
(
2
*
alpha
+
n
-1
))
mu
<-
y0
*
(
zi
+1
)
Tib
<-
sqrt
(
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
sig0
*
sqrt
(
ci
))
yib
[
i
]
<-
((
1
+
zi
)
^
(
-1
))
*
(
Tib
*
(
mu
-
xvebar
)
+
(
xbar
-
mu
))
+
y0
i
=
i
+1
}
meantestJi
[
k
]
<-
mean
(
yiJi
)
meantestb
[
k
]
<-
mean
(
yib
)
sdtestJi
[
k
]
<-
sd
(
yiJi
)
sdtestb
[
k
]
<-
sd
(
yib
)
k
=
k
+1
}
meantestJi
meantestb
sdtestJi
sdtestb
## alpha < 1
k
=
1
meansmallJi
<-
c
()
meansmallb
<-
c
()
sdsmallJi
<-
c
()
sdsmallb
<-
c
()
while
(
k
<=
9
){
alpha
<-
k
/
10
sig0
<-
5
beta
<-
alpha
*
sig0
^
2
#### JCGM 101 + inf. method
ziJi
<-
runif
(
r
,
5
,
10
)
xiJi
<-
xbar
+
rt
(
r
,
2
*
alpha
+
n
-1
)
*
sqrt
((
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
n
*
(
2
*
alpha
+
n
-1
)))
yiJi
<-
(
xiJi
)
/
(
1
+
ziJi
)
#### MCVE inf. method
yib
<-
c
()
i
=
1
while
(
i
<=
r
){
epsi
<-
rnorm
(
4
,
0
,
sig0
)
zi
<-
runif
(
1
,
5
,
10
)
xsimi
<-
c
(
VE
(
y0
,
zi
,
epsi
[
1
]),
VE
(
y0
,
zi
,
epsi
[
2
]),
VE
(
y0
,
zi
,
epsi
[
3
]),
VE
(
y0
,
zi
,
epsi
[
4
]))
xvebar
<-
mean
(
xsimi
)
ci
=
rchisq
(
1
,
df
=
(
2
*
alpha
+
n
-1
))
mu
<-
y0
*
(
zi
+1
)
Tib
<-
sqrt
(
2
*
beta
+
(
n
-1
)
*
s
^
2
)
/
(
sig0
*
sqrt
(
ci
))
yib
[
i
]
<-
((
1
+
zi
)
^
(
-1
))
*
(
Tib
*
(
mu
-
xvebar
)
+
(
xbar
-
mu
))
+
y0
i
=
i
+1
}
meansmallJi
[
k
]
<-
mean
(
yiJi
)
meansmallb
[
k
]
<-
mean
(
yib
)
sdsmallJi
[
k
]
<-
sd
(
yiJi
)
sdsmallb
[
k
]
<-
sd
(
yib
)
k
=
k
+1
}
meansmallJi
meansmallb
sdsmallJi
sdsmallb
#### JCGM 101 with Perfect PK ####
xiperf
<-
rnorm
(
r
,
50
,
5
/
2
)
ziperf
<-
runif
(
r
,
5
,
10
)
yiperf
<-
(
xiperf
)
/
(
1
+
ziperf
)
#### Line Plot ####
par
(
cex
=
1.5
)
plot
(
c
((
1
:
9
)
/
10
,
1
:
15
),
c
(
sdsmallJi
,
sdtestJi
),
type
=
"l"
,
lwd
=
4
,
col
=
2
,
xlab
=
"alpha"
,
ylab
=
"Standard Deviation"
,
ylim
=
c
(
1.10
,
1.2
))
lines
(
c
((
1
:
9
)
/
10
,
1
:
15
),
c
(
sdsmallb
,
sdtestb
),
lwd
=
4
,
lty
=
2
,
col
=
"yellow"
)
abline
(
h
=
sd
(
yiJ
),
col
=
1
)
abline
(
h
=
sd
(
yiperf
),
col
=
4
)
legend
(
x
=
"right"
,
legend
=
c
(
"JCGM 101 + inf."
,
"MC-VE inf."
,
"JCGM 101 + No PK"
,
"JCGM 101 + Perfect PK"
),
fill
=
c
(
2
,
"yellow"
,
1
,
4
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment