The device was shipped under atmospheric pressure kept in the producers plastic shell.
A memory module belonging to the stabil ion gauge (serial 06800) was provided. It was active during calibration.
\section{ Calibration procedure }
The device was installed in a vertical orientation. Before calibration the gauge head was baked at \(?\) °C for \(?\) h. During the cool down phase the head was degassed for \(?\) minutes. At room temperature it was exposed for \(?\) h at \(?⋅10^{?}\) mbar argon for sputtering the ion collector.
The sensitivity factor was kept at an value of \(?\) mbar\(^{-1}\) during the calibration. The calibration was carried out with the following device settings:
Before each calibration point the residual pressure indication \(p_r\) was checked.
The temperature \(θ\) during the calibration was \(?\) °C and varied from this value within \(\pm?\) °C.
The device was calibrated with ? in the pressure range \(?⋅ 10^{?}\) mbar to \(?⋅10^{?}\) mbar by comparing its reading with the calibration pressure that was established by the primary standard CE3 of PTB applying the continuous expansion method.
\section{ Relative error of indication }
The correction factor \(CF\) given in the table below was calculated from the indicated pressure \(p_{ind}\) as follows:\[CF =\frac{p_{cal}}{p_{ind}- p_{r}}\] where \(p_{cal}\) denotes the calibration pressure as generated in the primary standard and \(p_{r}\) the reading at residual pressure. From this, the corrected pressure \(p\) can be calculated from the residual pressure indication and the indicated pressure by:\[p = CF (p_{ind}- p_{r})\]
The uncertainty \(U\) of \(CF\) at the time of calibration is given in the last column of the table below. It includes the repeatability of \(p_{ind}\) for otherwise identical conditions (\(p_{cal}\), \(θ\)).\printResultTable
\section{ Uncertainty of Calibration }
The uncertainty \(U\) stated is the expanded measurement uncertainty obtained by multiplying the standard measurement uncertainty by the coverage factor \(k =2\). It has been determined in accordance with the “Guide to the Expression of Uncertainty in Measurement (GUM)”. The value of the measurand then normally lies, with a probability of approximately \(95\)\%. within the attributed coverage interval.\par\(95\)\,\% 95\,\% 95~\%\(95\)\%\par