Skip to content
Snippets Groups Projects
Commit 838c6b95 authored by Thomas Bruns's avatar Thomas Bruns
Browse files

Initial commit

parents
No related branches found
No related tags found
No related merge requests found
# SineTools Python Library for sine approximation
Sinetools is a collection of python procedures which support simulation
and data analysis based on sine and multi-sine waveforms.
The origin os the use in primary accelerometercalibration.
Hence, several routines are pointed at fm-based heterodyne interferometry.
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 14 20:36:01 2013
SineTools.py
auxiliary functions related to sine-approximation
@author: bruns01
"""
import scipy as sp
from scipy import linalg as la
def sampletimes(Fs, T): #
"""
generate a t_i vector with \n
sample rate Fs \n
from 0 to T
"""
num = sp.ceil(T * Fs)
return sp.linspace(0, T, num, dtype=sp.float64)
# a = displacement, velocity or acceleration amplitude
def sinewave(f,a,phi, ti, offset=0, noise=0, absnoise=0, drift=0, ampdrift=0):
"""
generate a sampled sine wave s_i = s(t_i) with \n
amplitude a \n
initial phase phi \n
sample times t_i \n
bias offset (default 0)\n
noise as multiple of the amplitude in noise level \n
absnoise as a additive noise component \n
drift as multiples of amplitude per duration in drifting zero \n
ampdrift as a drifting amplitude given as multiple of amplitude \n
"""
Tau = ti[-1] - ti[0]
n = 0
n = 0
if noise != 0:
n = a*noise*sp.randn(len(ti))
if absnoise != 0:
n = n + absnoise*sp.randn(len(ti))
d = drift*a/Tau
s = a*(1+ampdrift/Tau*ti)*sp.sin(2*sp.pi*f * ti - phi) + n +d*ti + offset
return s
def fm_counter_sine(fm, f,a,phi, ti, offset=0, noise=0, absnoise=0, drift=0, ampdrift=0):
"""
# calculate counter value of heterodyne signal at \n
carrier freq. fm
a = displacement amplitude
initial phase phi \n
sample times t_i \n
bias or offset (default 0)\n
noise as multiple of the amplitude in noise level \n
absnoise as a additive noise component \n
drift as multiples of amplitude per duration in drifting zero \n
ampdrift as a drifting amplitude given as multiple of amplitude \n
"""
Tau = ti[-1] - ti[0]
n = 0
if noise != 0:
n = a*noise*sp.randn(len(ti))
if absnoise != 0:
n = n + absnoise*sp.randn(len(ti))
d = drift*a/Tau
s = 2/633e-9 * (a*(1+ampdrift/Tau*ti)*sp.sin(2*sp.pi*f * ti - phi) + n +d*ti + offset)
s = sp.floor(s+fm*ti)
return s
# sine fit at known frequency
def threeparsinefit(y,t,f0):
"""
sine-fit at a known frequency\n
y vector of sample values \n
t vector of sample times\n
f0 known frequency\n
\n
returns a vector of coefficients [a,b,c]\n
for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
"""
w0 = 2*sp.pi*f0
a = sp.array([sp.sin(w0*t),sp.cos(w0*t),sp.ones(t.size)])
abc = la.lstsq(a.transpose(),y)
return abc[0][0:3] ## fit vector a*sin+b*cos+c
# sine fit at known frequency and detrending
def threeparsinefit_lin(y,t,f0):
"""
sine-fit with detrending at a known frequency\n
y vector of sample values \n
t vector of sample times\n
f0 known frequency\n
\n
returns a vector of coefficients [a,b,c,d]\n
for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c*t + d
"""
w0 = 2*sp.pi*f0
a = sp.array([sp.sin(w0*t),sp.cos(w0*t),sp.ones(t.size),t,sp.ones(t.size)])
abc = la.lstsq(a.transpose(),y)
return abc[0][0:4] ## fit vector
def calc_threeparsine(abc,t,f0):
"""
return y = abc[0]*sin(2*pi*f0*t) + abc[1]*cos(2*pi*f0*t) + abc[2]
"""
w0 =2*sp.pi*f0
return abc[0]*sp.sin(w0*t)+abc[1]*sp.cos(w0*t)+abc[2]
def amplitude(abc):
"""
return the amplitude given the coefficients of\n
y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
"""
return sp.absolute(abc[1]+1j*abc[0])
def phase(abc, deg=False):
"""
return the (sine-)phase given the coefficients of\n
y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c \n
returns angle in rad by default, in degree if deg=True
"""
return sp.angle(abc[1]+1j*abc[0], deg=deg)
def magnitude(A1,A2):
"""
return the magnitude of the complex ratio of sines A2/A1\n
given two sets of coefficients \n
A1 = [a1,b1,c1]\n
A2 = [a2,b2,c2]
"""
return amplitude(A2) / amplitude(A1)
def phase_delay(A1,A2, deg=False):
"""
return the phase difference of the complex ratio of sines A2/A1\n
given two sets of coefficients \n
A1 = [a1,b1,c1]\n
A2 = [a2,b2,c2]\n
returns angle in rad by default, in degree if deg=True
"""
return phase(A2, deg=deg) - phase(A1, deg=deg)
# periodical sinefit at known frequency
def seq_threeparsinefit(y,t,f0):
"""
period-wise sine-fit at a known frequency\n
y vector of sample values \n
t vector of sample times\n
f0 known frequency\n
\n
returns a (n,3)-matrix of coefficient-triplets [[a,b,c], ...]\n
for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
"""
Tau = 1.0/f0
dt = t[1]-t[0]
N = Tau/dt ## samples per section
M = sp.floor(t.size/N) ## number of sections or periods
abc = sp.zeros((M,3))
for i in range(int(M)):
ti = t[i*N:(i+1)*N]
yi = y[i*N:(i+1)*N]
abc[i,:] = (threeparsinefit(yi,ti,f0))
return abc ## matrix of all fit vectors per period
#def fourparsinefit(y,t,f0,df_max=None):
# if dy_max is None :
# df_max = 0.05*f0
# fitting a pseudo-random multi-sine signal with 2*Nf+1 parameters
def multi_threeparsinefit(y,t,f0): # fo vector of frequencies
"""
fit a time series of a sum of sine-waveforms with a given set of frequencies\n
y vector of sample values \n
t vector of sample times\n
f0 vector of known frequencies\n
\n
returns a vector of coefficient-triplets [a,b,c] for the frequencies\n
for y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
"""
w0 = 2 * sp.pi * f0
# set up design matrix
a = sp.ones(len(t))
for w in w0:
a = sp.vstack((sp.vstack((sp.sin(w*t), sp.cos(w*t))),a))
abc = sp.linalg.lstsq(a.transpose(), y)
return abc[0] ## fit vector a*sin+b*cos+c
def multi_amplitude(abc): # abc = [a1,b1 , a2,b2, ...,bias]
"""
return the amplitudes given the coefficients of a multi-sine\n
abc = [a1,b1 , a2,b2, ...,bias] \n
y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
"""
x = abc[0::2] + 1j*abc[1::2]
return sp.absolute(x)
def multi_phase(abc, deg=False): # abc = [bias, a1,b1 , a2,b2, ...]
"""
return the initial phases given the coefficients of a multi-sine\n
abc = [a1,b1 , a2,b2, ...,bias] \n
y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
"""
x = abc[1::2] + 1j*abc[2::2]
return sp.angle(x,deg=deg)
def multi_waveform_abc(f,abc,t):
"""
generate a sample time series of a multi-sine from coefficients and frequencies\n
f vector of given frequencies \n
abc = [a1,ba, a2,b2, ..., bias]\n
t vector of sample times t_i\n
\n
returns the vector \n
y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + bias
"""
ret = 0.0*t +abc[-1] # bias
for fi,a,b in zip(f,abc[0::2],abc[1::2]):
ret = ret+a*sp.sin(2*sp.pi*fi*t)+b*sp.cos(2*sp.pi*fi*t)
return ret
##################################
# Counter based stuff
# periodical sinefit to the linearly increasing heterodyne counter
# version based on Blume
def seq_threeparcounterfit(y,t,f0, diff=False):
"""
period-wise (single-)sinefit to the linearly increasing heterodyne counter
version based on "Blume et al. "\n
y vector of sampled counter values
t vector of sample times
f given frequency\n
\n
returns (n,3)-matrix of coefficient-triplets [a,b,c] per period \n
if diff=True use differentiation to remove carrier (c.f. source)
"""
Tau = 1.0/f0
dt = t[1]-t[0]
N = sp.floor(Tau/dt) ## samples per section
M = sp.floor(t.size/N) ## number of sections or periods
if diff :
d = sp.diff(y)
d = d - sp.mean(d)
y = sp.hstack((0,sp.cumsum(d)))
else:
slope = (y[M*N-1]-y[0])/(M*N) # slope of linear increment
y = y-slope*sp.linspace(0,t.size-1,t.size) # removal of linear increment
abc = sp.zeros((M,3))
for i in range(int(M)):
ti = t[i*N:(i+1)*N]
yi = y[i*N:(i+1)*N]
abc[i,:] = threeparsinefit_lin(yi,ti,f0)
return abc ## matrix of all fit vectors per period
# calculate displacement and acceleration to the same analytical s(t)
# Bsp: fm = 2e7, f=10, s0=0.15, phi0=sp.pi/3, ti, drift=0.03, ampdrift=0.03,thd=[0,0.02,0,0.004]
def disp_acc_distorted(fm, f,s0,phi0, ti, drift=0, ampdrift=0, thd=0):
"""
calculate the respective (displacement-) counter and acceleration
for a parmeterized distorted sine-wave motion in order to compare accelerometry with interferometry \n
fm is heterodyne carrier frequency (after mixing)\n
f is mechanical sine frequency (nominal) \n
phi_0 accelerometer phase delay \n
ti vector of sample times \n
drift is displacement zero drift \n
ampdrift is displacement amplitude druft\n
thd is vector of higher harmonic amplitudes (c.f. source)
"""
om = 2*sp.pi*f
om2 = om**2
tau = ti[-1]-ti[0]
disp = sp.sin(om*ti+phi0)
if (thd != 0) :
i = 2
for h in thd :
disp = disp + h*sp.sin(i*om*ti+phi0)
i = i+1
if ampdrift != 0 :
disp = disp *(1+ampdrift/tau*ti)
if drift != 0:
disp = disp + s0*drift/tau*ti
disp = disp*s0
disp = sp.floor((disp*2/633e-9)+fm*ti)
acc = -s0*om2*(1+ampdrift/tau*ti)*sp.sin(om*ti+phi0)
if ampdrift != 0:
acc = acc+ (2*ampdrift*s0*om*sp.cos(om*ti+phi0))/tau
if thd != 0:
i = 2
for h in thd :
acc = acc - s0*h*om2*(1+ampdrift/tau*ti)*i**2*sp.sin(i*om*ti+phi0)
if ampdrift != 0:
acc = acc + (2*ampdrift*s0*om*i*h*sp.cos(om*ti+phi0))/tau
i=i+1
return disp,acc
###################################
# Generation and adaptation of Parameters of the Multi-Sine considering hardware constraints
def PR_MultiSine_adapt(f1, Nperiods, Nsamples, Nf=8, fs_min=0,fs_max=1e9, frange=10, log=True, phases=None, sample_inkr=1):
"""
Returns an additive normalized Multisine time series. \n
f1 = start frequency (may be adapted) \n
Nperiods = number of periods of f1 (may be increased) \n
Nsamples = Minimum Number of samples \n
Nf = number of frequencies in multi frequency mix \n
fs_min = minimum sample rate of used device (default 0) \n
fs_max = maximum sample rate of used device (default 0) \n
frange = range of frequency as a factor relative to f1 (default 10 = decade) \n
log = boolean for logarithmic (True, default) or linear (False) frequency scale \n
phases = float array of given phases for the frequencies (default=None=random) \n
deg= boolean for return phases in deg (True) or rad (False) \n
sample_inkr = minimum block of samples to add to a waveform
\n
returns: freq,phase,fs,ti,multi \n
freq= array of frequencies \n
phase=used phases in deg or rad \n
fs=sample rate \n
ti=timestamps \n
multi=array of time series values \n
"""
if Nsamples//sample_inkr*sample_inkr != Nsamples: # check multiplicity of sample_inkr
Nsamples = (Nsamples//sample_inkr +1)*sample_inkr # round to next higher multiple
T0 = Nperiods/f1 # given duration
fs0 = Nsamples/T0 # (implicitly) given sample rate
if False:
print ("0 Nperiods: "+str(Nperiods))
print ("0 Nsamples: "+str(Nsamples))
print ("0 fs: "+str(fs0))
print ("0 T0: "+str(T0))
print ("0 f1: "+str(f1))
fs = fs0
if fs0 < fs_min: # sample rate too low, then set to minimum
fs = fs_min
print("sample rate increased")
elif fs0 > fs_max: # sample rate too high, set to max-allowed and
fs = fs_max
Nperiods = sp.ceil(Nperiods*fs0/fs_max) # increase number of periods to get at least Nsamples samples
T0 = Nperiods/f1
print("sample rate reduced, Nperiods="+str(Nperiods))
Nsamples = T0*fs
if Nsamples//sample_inkr*sample_inkr != Nsamples: # check multiplicity of sample_inkr
Nsamples = (Nsamples//sample_inkr +1)*sample_inkr # round to next higher multiple
T1 = Nsamples/fs # adapt exact duration
f1 = Nperiods/T1 # adapt f1 for complete cycles
if False:
print ("Nperiods: "+str(Nperiods))
print ("Nsamples: "+str(Nsamples))
print ("fs: "+str(fs))
print ("T1: "+str(T1))
print ("f1: "+str(f1))
f_res = 1/T1 # frequency resolution
# determine a series of frequencies (freq[])
if log:
fact = sp.power(frange, 1.0/(Nf-1)) # factor for logarithmic scale
freq = f1*sp.power(fact, sp.arange(Nf))
else:
step = (frange-1)*f1/(Nf-1)
freq = sp.arange(f1,frange*f1+step,step)
# auxiliary function to find the nearest available frequency
def find_nearest(x,possible): # match the theoretical freqs to the possible periodic freqs
idx = (sp.absolute(possible - x)).argmin()
return possible[idx]
fi_pos = sp.arange(f1,frange*f1+f_res, f_res) # possible periodic frequencies
f_real=[]
for f in freq:
f_real.append(find_nearest(f,fi_pos))
freq = sp.hstack(f_real)
if True:
print("freq: " +str(freq))
if phases is None: # generate random phases
phase = sp.randn(Nf)*2*sp.pi # random phase
else: # use given phases
phase=phases
return freq, phase,T1,fs
###################################
# Pseudo-Random-MultiSine for "quick calibration"
def PR_MultiSine(f1, Nperiods, Nsamples, Nf=8, fs_min=0, fs_max=1e9, frange=10, log=True, phases=None,deg=False, sample_inkr=1):
"""
Returns an additive normalized Multisine time series. \n
f1 = start frequency (may be adapted) \n
Nperiods = number of periods of f1 (may be increased) \n
Nsamples = Minimum Number of samples \n
Nf = number of frequencies in multi frequency mix \n
fs_min = minimum sample rate of used device (default 0) \n
fs_max = maximum sample rate of used device (default 0) \n
frange = range of frequency as a factor relative to f1 (default 10 = decade) \n
log = boolean for logarithmic (True, default) or linear (False) frequency scale \n
phases = float array of given phases for the frequencies (default=None=random) \n
deg= boolean for return phases in deg (True) or rad (False) \n
sample_inkr = minimum block of samples to add to a waveform
\n
returns: freq,phase,fs,ti,multi \n
freq= array of frequencies \n
phase=used phases in deg or rad \n
fs=sample rate \n
ti=timestamps \n
multi=array of time series values \n
"""
freq,phase,T1,fs = PR_MultiSine_adapt(f1,Nperiods,Nsamples, Nf=Nf,fs_min=fs_min,fs_max=fs_max,frange=frange,log=log, phases=phases, sample_inkr=sample_inkr)
if deg : # rad -> deg
phase = phase*sp.pi/180.0
ti = sp.arange(T1*fs,dtype=sp.float32)/fs
multi = sp.zeros(len(ti), dtype=sp.float64)
for f,p in zip(freq,phase):
multi = multi + sp.sin(2*sp.pi*f*ti + p)
multi = multi / sp.amax(sp.absolute(multi)) # normalize
if False:
import matplotlib.pyplot as mp
fig = mp.figure(1)
fig.clear()
pl1 = fig.add_subplot(211)
pl2 = fig.add_subplot(212)
pl1.plot(ti,multi,"-o")
pl2.plot(sp.hstack((ti,ti+ti[-1]+ti[1])),sp.hstack((multi,multi)),"-o")
mp.show()
return freq,phase,fs,multi # frequency series, sample rate, sample timestamps, waveform
#PR_MultiSine(1,10,1500,5,fs_max=101,sample_inkr=7)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment