Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
R
Repeatability_Reproducibility
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Layla Riemann
Repeatability_Reproducibility
Commits
57ac3134
Commit
57ac3134
authored
3 years ago
by
Layla Riemann
Browse files
Options
Downloads
Patches
Plain Diff
python code BA plots
parent
9dc8bbc8
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
bland_altman.py
+123
-0
123 additions, 0 deletions
bland_altman.py
with
123 additions
and
0 deletions
bland_altman.py
0 → 100644
+
123
−
0
View file @
57ac3134
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 16 15:42:58 2020
@author: rieman01
Code to obtain the Bland-Altman plots for the spectral shape for the HS-, GOIA-,
and WURST-SPECIAL sequence variants.
"""
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
glob
import
matplotlib
from
xlwt
import
Workbook
font
=
{
'
family
'
:
'
normal
'
,
'
weight
'
:
'
normal
'
,
'
size
'
:
15
}
matplotlib
.
rc
(
'
font
'
,
**
font
)
plt
.
close
(
'
all
'
)
def
bland_altman_plot
(
data1
,
data2
,
a
,
b
,
col
,
coli
,
*
args
,
**
kwargs
):
"""
to generate points in BA plots for the differnet pulses and scenarios;
blue = HS, orange = GOIA, green = WURST, upper row: R_0, middle row: R_1,Mc,
bottom row: R_1,Wc
"""
data1
=
np
.
asarray
(
data1
)
data2
=
np
.
asarray
(
data2
)
meani
=
np
.
mean
(
np
.
sum
([
abs
(
data1
),
abs
(
data2
)],
axis
=
1
))
diffabs
=
np
.
sum
(
abs
(
data1
))
-
np
.
sum
(
abs
(
data2
))
axs
[
a
,
b
].
scatter
(
meani
,
diffabs
,
color
=
col
,
marker
=
'
o
'
,
edgecolor
=
coli
,
*
args
,
**
kwargs
)
return
diffabs
def
alterman
(
diff
,
a
,
b
):
"""
to generate mean and +/- 1.96*SD line in plots
"""
md
=
np
.
mean
(
diff
)
# Mean of the difference
sd
=
np
.
std
(
diff
,
ddof
=
1
)
# Standard deviation of the difference
print
(
np
.
round
(
md
,
3
),
np
.
round
(
sd
,
4
))
axs
[
a
,
b
].
axhline
(
md
,
color
=
'
red
'
,
linestyle
=
'
--
'
)
axs
[
a
,
b
].
axhline
(
md
+
(
1.96
*
sd
),
color
=
'
gray
'
,
linestyle
=
'
--
'
)
axs
[
a
,
b
].
axhline
(
md
-
(
1.96
*
sd
),
color
=
'
gray
'
,
linestyle
=
'
--
'
)
files
=
glob
.
glob
(
'
*.npy
'
)
data
=
[]
for
i
in
files
:
data
.
append
(
np
.
load
(
i
))
data
=
np
.
asarray
(
data
)
data
=
np
.
reshape
(
data
,[
int
(
len
(
data
)
/
12
),
3
,
4
,
np
.
shape
(
data
)[
1
]])
fig
,
axs
=
plt
.
subplots
(
3
,
3
,
sharex
=
'
all
'
,
sharey
=
'
all
'
)
HS_same
=
[]
HS_repro
=
[]
HS_2sess
=
[]
GOIA_same
=
[]
GOIA_repro
=
[]
GOIA_2sess
=
[]
WURST_same
=
[]
WURST_repro
=
[]
WURST_2sess
=
[]
RM_same
=
[]
RM_repro
=
[]
RM_2sess
=
[]
colors
=
[
'
blue
'
,
'
orange
'
,
'
green
'
]
colori
=
[
'
deepskyblue
'
,
'
orangered
'
,
'
limegreen
'
]
for
i
in
range
(
len
(
data
)):
for
j
in
range
(
3
):
diff_same
=
bland_altman_plot
(
data
[
i
][
j
][
2
],
data
[
i
][
j
][
3
],
0
,
j
,
colors
[
j
],
colori
[
j
])
#R_0
diff_2sess3
=
bland_altman_plot
(
data
[
i
][
j
][
1
],
data
[
i
][
j
][
3
],
2
,
j
,
colors
[
j
],
colori
[
j
])
#R_1,Mc
diff_repro
=
bland_altman_plot
(
data
[
i
][
j
][
0
],
data
[
i
][
j
][
1
],
1
,
j
,
colors
[
j
],
colori
[
j
])
#R_1,Wc
if
j
==
1
:
GOIA_same
.
append
(
diff_same
)
GOIA_repro
.
append
(
diff_repro
)
GOIA_2sess
.
append
(
diff_2sess3
)
elif
j
==
0
:
HS_same
.
append
(
diff_same
)
HS_repro
.
append
(
diff_repro
)
HS_2sess
.
append
(
diff_2sess3
)
elif
j
==
2
:
WURST_same
.
append
(
diff_same
)
WURST_repro
.
append
(
diff_repro
)
WURST_2sess
.
append
(
diff_2sess3
)
for
k
in
range
(
3
):
if
k
==
1
:
alterman
(
GOIA_same
,
0
,
k
)
alterman
(
GOIA_repro
,
1
,
k
)
alterman
(
GOIA_2sess
,
2
,
k
)
elif
k
==
0
:
alterman
(
HS_same
,
0
,
k
)
alterman
(
HS_repro
,
1
,
k
)
alterman
(
HS_2sess
,
2
,
k
)
elif
k
==
2
:
alterman
(
WURST_same
,
0
,
k
)
alterman
(
WURST_repro
,
1
,
k
)
alterman
(
WURST_2sess
,
2
,
k
)
fig
.
text
(
0.03
,
0.55
,
'
$BA_{i,y}$ / a.u.
'
,
ha
=
'
center
'
,
va
=
'
center
'
,
rotation
=
'
vertical
'
)
fig
.
text
(
0.55
,
0.019
,
'
$BA_{i,x}$ / a.u.
'
,
ha
=
'
center
'
,
va
=
'
center
'
)
plt
.
subplots_adjust
(
top
=
0.987
,
bottom
=
0.14
,
left
=
0.14
,
right
=
0.987
,
wspace
=
0.05
,
hspace
=
0.05
)
plt
.
show
()
data_neu
=
np
.
sum
(
np
.
absolute
(
data
),
axis
=
3
)
#to generate .xls file for the REML analysis
dat
=
[
'
HS
'
,
'
GOIA
'
,
'
WURST
'
]
rep
=
[
'
ASR
'
,
'
ESR
'
,
'
WBSR
'
]
sess
=
[
'
1_1
'
,
'
1_2
'
,
'
2_1
'
,
'
2_2
'
]
wb
=
Workbook
()
sheet1
=
wb
.
add_sheet
(
'
Sheet 1
'
)
sheet1
.
write
(
0
,
0
,
'
Pulse
'
)
sheet1
.
write
(
0
,
1
,
'
Subject
'
)
sheet1
.
write
(
0
,
2
,
'
Session
'
)
sheet1
.
write
(
0
,
3
,
'
Data
'
)
nvol
=
9
kk
=
0
for
i
in
range
(
3
):
sheet1
.
write
(
kk
+
1
,
0
,
dat
[
i
])
for
j
in
range
(
nvol
):
sheet1
.
write
(
kk
+
1
,
1
,
j
+
1
)
for
k
in
range
(
4
):
sheet1
.
write
(
kk
+
1
,
2
,
sess
[
k
])
sheet1
.
write
(
kk
+
1
,
3
,
data_neu
[
j
,
i
,
k
])
kk
+=
1
wb
.
save
(
'
pulse_shape.xls
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment