Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
J
journal_eiv
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jörg Martin
journal_eiv
Commits
f9f0119d
Commit
f9f0119d
authored
3 years ago
by
Jörg Martin
Browse files
Options
Downloads
Patches
Plain Diff
repeated sampling updated
parent
b4f1f576
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
EIVPackage/EIVData/repeated_sampling.py
+45
-8
45 additions, 8 deletions
EIVPackage/EIVData/repeated_sampling.py
with
45 additions
and
8 deletions
EIVPackage/EIVData/repeated_sampling.py
+
45
−
8
View file @
f9f0119d
...
@@ -7,7 +7,8 @@ import sys
...
@@ -7,7 +7,8 @@ import sys
import
torch
import
torch
from
torch.utils.data
import
TensorDataset
from
torch.utils.data
import
TensorDataset
from
EIVGeneral.manipulate_tensors
import
add_noise
from
EIVGeneral.manipulate_tensors
import
add_noise
,
normalize_tensor
,
\
unnormalize_tensor
class
repeated_sampling
():
class
repeated_sampling
():
"""
"""
...
@@ -25,17 +26,35 @@ class repeated_sampling():
...
@@ -25,17 +26,35 @@ class repeated_sampling():
"""
"""
def
__init__
(
self
,
dataclass
,
fixed_seed
=
0
):
def
__init__
(
self
,
dataclass
,
fixed_seed
=
0
):
self
.
dataclass
=
dataclass
self
.
dataclass
=
dataclass
self
.
func
=
dataclass
.
func
self
.
fixed_seed
=
fixed_seed
self
.
fixed_seed
=
fixed_seed
self
.
x_noise_strength
=
dataclass
.
x_noise_strength
self
.
x_noise_strength
=
dataclass
.
x_noise_strength
self
.
y_noise_strength
=
dataclass
.
y_noise_strength
self
.
y_noise_strength
=
dataclass
.
y_noise_strength
def
__call__
(
self
,
seed
=
0
,
splitting_part
=
0.8
,
normalize
=
True
,
def
__call__
(
self
,
seed
=
0
,
splitting_part
=
0.8
,
normalize
=
True
,
return_ground_truth
=
False
):
return_ground_truth
=
False
,
return_normalized_func
=
False
):
_
,
_
,
true_trainset
,
true_testset
\
_
,
_
,
true_trainset
,
true_testset
\
=
self
.
dataclass
.
load_data
(
=
self
.
dataclass
.
load_data
(
seed
=
self
.
fixed_seed
,
splitting_part
=
splitting_part
,
seed
=
self
.
fixed_seed
,
splitting_part
=
splitting_part
,
normalize
=
False
,
normalize
=
False
,
return_ground_truth
=
True
)
return_ground_truth
=
True
)
"""
Loads repeated sampling data
:param seed: Seed for the used noise
:param splitting_part: Which fraction of the data to use as training
data. Defaults to 0.8.
:param normalize: Whether to normalize the data, defaults to True.
:param return_ground_truth: Boolean. If True, the unnoisy ground truth will
also be returned. Defaults to False.
:param return_normalized_func: Boolean (default False). If True, the
normalized version of the used function is returned as a last element.
:returns: trainset, testset, (, normalized_func) if
return_ground_truth is False,
else trainset, testset, true_trainset,
true_testset, (, normalized_func). The
"
true
"
datasets each return
**four tensors**: The true x,y and their noisy counterparts.
"""
full_noisy_x
=
torch
.
concat
((
true_trainset
.
tensors
[
2
],
full_noisy_x
=
torch
.
concat
((
true_trainset
.
tensors
[
2
],
true_testset
.
tensors
[
2
]),
dim
=
0
)
true_testset
.
tensors
[
2
]),
dim
=
0
)
full_noisy_y
=
torch
.
concat
((
true_trainset
.
tensors
[
3
],
full_noisy_y
=
torch
.
concat
((
true_trainset
.
tensors
[
3
],
...
@@ -46,23 +65,41 @@ class repeated_sampling():
...
@@ -46,23 +65,41 @@ class repeated_sampling():
# draw different seeds for noise and splitting
# draw different seeds for noise and splitting
seeds
=
[
int
(
t
)
for
t
in
torch
.
randint
(
0
,
sys
.
maxsize
,(
2
,),
\
seeds
=
[
int
(
t
)
for
t
in
torch
.
randint
(
0
,
sys
.
maxsize
,(
2
,),
\
generator
=
random_generator
)]
generator
=
random_generator
)]
(
noisy_train_x
,
noisy_train_y
),
(
true_train_x
,
true_train_y
)
=
\
# use same normalization for train and test
add_noise
((
true_train_x
,
true_train_y
),
(
noisy_train_x
,
noisy_train_y
),
(
true_train_x
,
true_train_y
),
\
normalization_list
=
add_noise
((
true_train_x
,
true_train_y
),
(
self
.
x_noise_strength
,
self
.
y_noise_strength
),
seeds
,
(
self
.
x_noise_strength
,
self
.
y_noise_strength
),
seeds
,
normalize
=
normalize
,
normalize
=
normalize
,
normalization_list
=
[
full_noisy_x
,
full_noisy_y
])
normalization_list
=
[
full_noisy_x
,
full_noisy_y
],
return_normalization
=
True
)
(
noisy_test_x
,
noisy_test_y
),
(
true_test_x
,
true_test_y
)
=
\
(
noisy_test_x
,
noisy_test_y
),
(
true_test_x
,
true_test_y
)
=
\
add_noise
((
true_test_x
,
true_test_y
),
add_noise
((
true_test_x
,
true_test_y
),
(
self
.
x_noise_strength
,
self
.
y_noise_strength
),
seeds
,
(
self
.
x_noise_strength
,
self
.
y_noise_strength
),
seeds
,
normalize
=
normalize
,
normalize
=
normalize
,
normalization_list
=
[
full_noisy_x
,
full_noisy_y
])
normalization_list
=
[
full_noisy_x
,
full_noisy_y
],
return_normalization
=
False
)
# same normalization
def
normalized_func
(
x
):
unnormalized_x
=
unnormalize_tensor
(
x
,
normalization_list
[
0
])
y
=
self
.
func
(
unnormalized_x
)
normalized_y
=
normalize_tensor
(
y
,
normalization_list
[
1
])
return
normalized_y
trainset
=
TensorDataset
(
noisy_train_x
,
noisy_train_y
)
trainset
=
TensorDataset
(
noisy_train_x
,
noisy_train_y
)
testset
=
TensorDataset
(
noisy_test_x
,
noisy_test_y
)
testset
=
TensorDataset
(
noisy_test_x
,
noisy_test_y
)
true_trainset
=
TensorDataset
(
true_train_x
,
true_train_y
,
true_trainset
=
TensorDataset
(
true_train_x
,
true_train_y
,
noisy_train_x
,
noisy_train_y
)
noisy_train_x
,
noisy_train_y
)
true_testset
=
TensorDataset
(
true_test_x
,
true_test_y
,
true_testset
=
TensorDataset
(
true_test_x
,
true_test_y
,
noisy_test_x
,
noisy_test_y
)
noisy_test_x
,
noisy_test_y
)
# return different objects, depending on Booleans
if
not
return_ground_truth
:
if
not
return_ground_truth
:
return
trainset
,
testset
if
not
return_normalized_func
:
return
trainset
,
testset
else
:
return
trainset
,
testset
,
normalized_func
else
:
else
:
return
trainset
,
testset
,
true_trainset
,
true_testset
if
not
return_normalized_func
:
return
trainset
,
testset
,
true_trainset
,
\
true_testset
else
:
return
trainset
,
testset
,
true_trainset
,
\
true_testset
,
normalized_func
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment