Skip to content
Snippets Groups Projects
Commit 70ad5442 authored by Jörg Martin's avatar Jörg Martin
Browse files

NonEiV for energy effiency and concrete strength added

Both reaching similar RMSEs as in MC Dropout paper.
Updated hidden_layers handling in all training files.
parent d48d711b
No related branches found
No related tags found
No related merge requests found
import os
import numpy as np
import torch
import torch.backends.cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from EIVArchitectures import Networks, initialize_weights
from EIVData.energy_efficiency import load_data
from EIVTrainingRoutines import train_and_store, loss_functions
from train_noneiv_energy import p, init_std_y_list, seed_list, unscaled_reg, hidden_layers
train_data, test_data = load_data()
test_dataloader = DataLoader(test_data, batch_size=int(np.max((len(test_data), 800))))
seed = seed_list[0]
init_std_y = init_std_y_list[0]
saved_file = os.path.join('saved_networks',
f'noneiv_energy'\
f'init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\
f'_p_{p:.2f}_seed_{seed}.pkl')
input_dim = train_data[0][0].numel()
output_dim = train_data[0][1].numel()
net = Networks.FNNBer(p=p, init_std_y=init_std_y,
h=[input_dim, *hidden_layers, output_dim])
train_and_store.open_stored_training(saved_file=saved_file,
net=net)
# RMSE
x,y = next(iter(test_dataloader))
out = net(x)[0]
if len(y.shape) <=1:
y = y.view((-1,1))
assert y.shape == out.shape
res = y-out
scale = train_data.dataset.std_labels
scaled_res = res * scale.view((1,-1))
scaled_res = scaled_res.detach().cpu().numpy().flatten()
rmse = np.sqrt(np.mean(scaled_res**2))
print(f'RMSE {rmse:.3f}')
......@@ -27,6 +27,7 @@ lr_update = 20
epoch_offset = 10
init_std_y_list = [0.5]
gamma = 0.5
hidden_layers = [1024, 1024, 1024, 1024]
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# reproducability
......@@ -107,7 +108,7 @@ def train_on_data(init_std_y, seed):
output_dim = train_data[0][1].numel()
net = Networks.FNNBer(p=p,
init_std_y=init_std_y,
h=[input_dim, 1024, 1024, 1024, 1024, output_dim])
h=[input_dim, *hidden_layers, output_dim])
net.apply(initialize_weights.glorot_init)
net = net.to(device)
net.std_y_par.requires_grad = False
......
"""
Train non-EiV model on concrete strength dataset using different seeds
"""
import random
import os
import numpy as np
import torch
import torch.backends.cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from EIVArchitectures import Networks, initialize_weights
from EIVData.concrete_strength import load_data
from EIVTrainingRoutines import train_and_store, loss_functions
# hyperparameters
lr = 1e-3
batch_size = 32
test_batch_size = 800
number_of_epochs = 100
unscaled_reg = 10
report_point = 5
p = 0.2
lr_update = 20
# pretraining = 300
epoch_offset = 10
init_std_y_list = [0.5]
gamma = 0.5
hidden_layers = [1024, 1024, 1024, 1024]
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# reproducability
def set_seeds(seed):
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
seed_list = [0,]
# to store the RMSE
rmse_chain = []
class UpdatedTrainEpoch(train_and_store.TrainEpoch):
def pre_epoch_update(self, net, epoch):
"""
Overwrites the corresponding method
"""
if epoch == 0:
self.lr = self.initial_lr
self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr)
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer, lr_update, gamma)
def post_epoch_update(self, net, epoch):
"""
Overwrites the corresponding method
"""
if epoch >= epoch_offset:
net.std_y_par.requires_grad = True
self.lr_scheduler.step()
def extra_report(self, net, i):
"""
Overwrites the corresponding method
and fed after initialization of this class
"""
rmse = self.rmse(net).item()
rmse_chain.append(rmse)
writer.add_scalar('RMSE', rmse, self.total_count)
writer.add_scalar('train loss', self.last_train_loss, self.total_count)
writer.add_scalar('test loss', self.last_test_loss, self.total_count)
print(f'RMSE {rmse:.3f}')
def rmse(self, net):
"""
Compute the root mean squared error for `net`
"""
net_train_state = net.training
net.eval()
x, y = next(iter(self.test_dataloader))
if len(y.shape) <= 1:
y = y.view((-1,1))
out = net(x.to(device))[0].detach().cpu()
assert out.shape == y.shape
if net_train_state:
net.train()
return torch.sqrt(torch.mean((out-y)**2))
def train_on_data(init_std_y, seed):
"""
Sets `seed`, loads data and trains an Bernoulli Modell, starting with
`init_std_y`.
"""
# set seed
set_seeds(seed)
# load Datasets
train_data, test_data = load_data(seed=seed, splitting_part=0.8,
normalize=True)
# make dataloaders
train_dataloader = DataLoader(train_data, batch_size=batch_size,
shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=test_batch_size,
shuffle=True)
# create a net
input_dim = train_data[0][0].numel()
output_dim = train_data[0][1].numel()
net = Networks.FNNBer(p=p,
init_std_y=init_std_y,
h=[input_dim, *hidden_layers, output_dim])
net.apply(initialize_weights.glorot_init)
net = net.to(device)
net.std_y_par.requires_grad = False
std_x_map = lambda: 0.0
std_y_map = lambda: net.get_std_y().detach().cpu().item()
# regularization
reg = unscaled_reg/len(train_data)
# create epoch_map
criterion = loss_functions.nll_reg_loss
epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map,
lr=lr, reg=reg, report_point=report_point, device=device)
# run and save
save_file = os.path.join('saved_networks',
f'noneiv_concrete'\
f'init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\
f'_p_{p:.2f}_seed_{seed}.pkl')
train_and_store.train_and_store(net=net,
epoch_map=epoch_map,
number_of_epochs=number_of_epochs,
save_file=save_file)
if __name__ == '__main__':
for seed in seed_list:
# Tensorboard monitoring
writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\
f'run_noneiv_concrete_lr_{lr:.4f}_seed'\
f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}')
print(f'>>>>SEED: {seed}')
for init_std_y in init_std_y_list:
print(f'Using init_std_y={init_std_y:.3f}')
train_on_data(init_std_y, seed)
"""
Train non-EiV model on energy efficiency dataset using different seeds
"""
import random
import os
import numpy as np
import torch
import torch.backends.cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard.writer import SummaryWriter
from EIVArchitectures import Networks, initialize_weights
from EIVData.energy_efficiency import load_data
from EIVTrainingRoutines import train_and_store, loss_functions
# hyperparameters
lr = 1e-3
batch_size = 32
test_batch_size = 600
number_of_epochs = 300
unscaled_reg = 10
report_point = 5
p = 0.2
lr_update = 50
# pretraining = 300
epoch_offset = 50
init_std_y_list = [0.5]
gamma = 0.5
hidden_layers = [1024, 1024, 1024, 1024]
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# reproducability
def set_seeds(seed):
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
seed_list = [0,]
# to store the RMSE
rmse_chain = []
class UpdatedTrainEpoch(train_and_store.TrainEpoch):
def pre_epoch_update(self, net, epoch):
"""
Overwrites the corresponding method
"""
if epoch == 0:
self.lr = self.initial_lr
self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr)
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(
self.optimizer, lr_update, gamma)
def post_epoch_update(self, net, epoch):
"""
Overwrites the corresponding method
"""
if epoch >= epoch_offset:
net.std_y_par.requires_grad = True
self.lr_scheduler.step()
def extra_report(self, net, i):
"""
Overwrites the corresponding method
and fed after initialization of this class
"""
rmse = self.rmse(net).item()
rmse_chain.append(rmse)
writer.add_scalar('RMSE', rmse, self.total_count)
writer.add_scalar('train loss', self.last_train_loss, self.total_count)
writer.add_scalar('test loss', self.last_test_loss, self.total_count)
print(f'RMSE {rmse:.3f}')
def rmse(self, net):
"""
Compute the root mean squared error for `net`
"""
net_train_state = net.training
net.eval()
x, y = next(iter(self.test_dataloader))
if len(y.shape) <= 1:
y = y.view((-1,1))
out = net(x.to(device))[0].detach().cpu()
assert out.shape == y.shape
if net_train_state:
net.train()
return torch.sqrt(torch.mean((out-y)**2))
def train_on_data(init_std_y, seed):
"""
Sets `seed`, loads data and trains an Bernoulli Modell, starting with
`init_std_y`.
"""
# set seed
set_seeds(seed)
# load Datasets
train_data, test_data = load_data(seed=seed, splitting_part=0.8,
normalize=True)
# make dataloaders
train_dataloader = DataLoader(train_data, batch_size=batch_size,
shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=test_batch_size,
shuffle=True)
# create a net
input_dim = train_data[0][0].numel()
output_dim = train_data[0][1].numel()
net = Networks.FNNBer(p=p,
init_std_y=init_std_y,
h=[input_dim, *hidden_layers, output_dim])
net.apply(initialize_weights.glorot_init)
net = net.to(device)
net.std_y_par.requires_grad = False
std_x_map = lambda: 0.0
std_y_map = lambda: net.get_std_y().detach().cpu().item()
# regularization
reg = unscaled_reg/len(train_data)
# create epoch_map
criterion = loss_functions.nll_reg_loss
epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map,
lr=lr, reg=reg, report_point=report_point, device=device)
# run and save
save_file = os.path.join('saved_networks',
f'noneiv_energy'\
f'init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\
f'_p_{p:.2f}_seed_{seed}.pkl')
train_and_store.train_and_store(net=net,
epoch_map=epoch_map,
number_of_epochs=number_of_epochs,
save_file=save_file)
if __name__ == '__main__':
for seed in seed_list:
# Tensorboard monitoring
writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\
f'run_noneiv_energy_lr_{lr:.4f}_seed'\
f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}')
print(f'>>>>SEED: {seed}')
for init_std_y in init_std_y_list:
print(f'Using init_std_y={init_std_y:.3f}')
train_on_data(init_std_y, seed)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment