Newer
Older
from EIVData.csv_dataset import CSVData
from torch.utils.data import random_split
def load_data(seed=0, splitting_part=0.8, normalize=True):
"""
:param seed: Seed for splitting and shuffling the data.
Defaults to 0.
:param splitting_part: Which fraction of the data to use as training
data. Defaults to 0.8.
:normalize: Whether to normalize the data, defaults to True.
power_dataset = CSVData('~/SharedData/AI/datasets/combined_cycle_power_plant/Folds5x2_pp_single_sheet.csv',
class_name="PE",
shuffle_seed=seed,
normalize=normalize,
delimiter=",")
train_len = int(dataset_len*splitting_part)
test_len = dataset_len - train_len
power_trainset, power_testset = random_split(power_dataset,
lengths=[train_len, test_len],
generator=torch.Generator().manual_seed(seed))