Newer
Older
import torch
import sys
from torch.utils.data import TensorDataset, random_split
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
y_noise_strength = 0.1
def get_normalization(*args):
"""
Returns the mean and standard deviations (in tuples) of the tensors in *args.
"""
normalization_collection = []
for t in args:
t_mean = torch.mean(t, dim=0, keepdim=True)
t_std = torch.std(t, dim=0, keepdim=True)
normalization_collection.append((t_mean, t_std))
return tuple(normalization_collection)
def load_data(seed=0, splitting_part=0.8, normalize=True,
return_ground_truth=False):
"""
Loads one-dimensional data
:param seed: Seed for drawing and splitting the data.
:param splitting_part: Which fraction of the data to use as training
data. Defaults to 0.8.
:param normalize: Whether to normalize the data, defaults to True.
:param return_ground_truth: Boolean. If True, the unnoisy ground truth will
also be returned. Defaults to False.
:returns: linear_trainset, linear_testset if return_ground_truth is False,
else linear_trainset, linear_testset, (true_x, true_y)
"""
random_generator = torch.Generator().manual_seed(seed)
# draw different seeds for noise and splitting
seeds = torch.randint(0,sys.maxsize,(4,), generator=random_generator)
# create new generators from tensor seeds
create_generator = lambda tensor_seed:\
torch.Generator().manual_seed(tensor_seed.item())
true_x = input_range[0] + (input_range[1]-input_range[0])\
* torch.rand((total_number_of_datapoints,1),
generator=create_generator(seeds[0]))
true_y = slope * true_x + intercept
noisy_x = true_x + x_noise_strength * \
torch.randn((total_number_of_datapoints,1),
generator=create_generator(seeds[1]))
noisy_y = true_y + y_noise_strength * \
torch.randn((total_number_of_datapoints,1),
generator=create_generator(seeds[2]))
if normalize:
normalization_x, normalization_y = get_normalization(noisy_x, noisy_y)
noisy_x = (noisy_x-normalization_x[0])/normalization_x[1]
true_x = (true_x-normalization_x[0])/normalization_x[1]
noisy_y = (noisy_y-normalization_y[0])/normalization_y[1]
true_y = (true_y-normalization_y[0])/normalization_y[1]
linear_dataset = TensorDataset(noisy_x, noisy_y)
dataset_len = len(linear_dataset)
train_len = int(dataset_len*splitting_part)
test_len = dataset_len - train_len
linear_trainset, linear_testset = random_split(linear_dataset,
lengths=[train_len, test_len],
generator=create_generator(seeds[3]))
if not return_ground_truth:
return linear_trainset, linear_testset
else:
return linear_trainset, linear_testset, (true_x, true_y)