ProVerif Code for Verification of the NTS
Specification

Kristof Teichel

Physikalisch-Technische Bundesanstalt,
Bundesalle 100, 38116 Braunschweig, Germany

This document provides some description and clarification for the ProVerif source
code used in the first verification of the NTS specification. There have been dif-
ferent code versions involved in the analysis:

— Code version c030ut: It models protocol version 0.3.0 but has no dedi-
cated type for hostnames.

Code version c030: It models protocol version 0.3.0 and does have a
dedicated hostname type.

Code version c031: It models protocol version 0.3.1.
— Code version c032: It models protocol version 0.3.2.

All of the code below is taken from code version c030, which formed the basis of
the analysis. Presenting the other versions in full would take up a lot of space,
whereas presenting only the differences is difficult. This is because although
the changes between the different code versions are minor, they still include
numerous lines that are spread far apart. Comment lines and some structuring
have been left out for the presentation. Hopefully, these explanations are helpful
in understanding the ProVerif code files in this repository.

Cryptographic Primitives

The first lines of the ProVerif source code form the cryptographic primitives that
are needed.

(x Basics: Keys and Hostnames *)

type key.
type hostname.

(x Symmetric Encryption *)
fun senc(bitstring, key): bitstring.
reduc forall m: bitstring, k: key;
sdec (senc(m,k),k) = m.

(x Asymmetric Encryption x*)
type skey.
type pkey.
fun sk_of (hostname): skey [private].
fun pk(skey): pkey.
letfun pk_of (X: hostname) = pk(sk_of(X)).

2 Kristof Teichel

fun aenc(bitstring, pkey): bitstring.
reduc forall m: bitstring, k: skey;
adec (aenc(m, pk(k)), k) = m.

(x Asymmetric Signatures *)
type sskey.
type spkey.
fun ssk_of (hostname): sskey [private].
fun spk(sskey): spkey.
letfun spk_of (X: hostname) = spk(ssk_of(X)).

fun sign(bitstring, sskey): bitstring.

reduc forall m: bitstring, k: sskey;
getmess (sign(m,k)) = m.

reduc forall m: bitstring, k: sskey;
checksign(sign(m,k), spk(k)) = m.

letfun signed_message(m: bitstring, k: sskey)
= (m, sign(m, k)).

(* Hash and HMAC Functions *)
fun hash(bitstring): bitstring.
fun keyhash(pkey): bitstring.

fun seed_of (hostname): bitstring [private].

fun cookie_gen(bitstring, bitstring): key.
fun hmac(key, bitstring): bitstring.

Global Variables and Constants

Next we have the declarations of channels and other global variables and con-
stants.

(¥ The Channel for All "Network" Protocol Communications x*)
free c: channel.

(* The Channel and Hostname for Communication with the TA *)
free ta: channel.
free TA: hostname.

(* Two Possible Version Identifiers x*)
free version_1: bitstring.
free version_2: bitstring.

Events

The declarations of ProVerif “events” follow that are used for better traceability
of what is happening in what order.

(¥ Server Side Events x)
event serverError ().

event serverHasOwnCert (hostname, pkey, spkey).
event serverRespondsTime (bitstring, bitstring,
bitstring).

ProVerif Code for Verification of the NTS Specification 3

event serverSaysCookie(key, pkey, hostname).
event serverGeneratesCookie(key, hostname).

event serverAcceptsCert (hostname) .
event serverRejectsCert ().

(¥ Client Side Events x)
event clientError ().
event clientHasOwnCert (hostname, pkey, spkey).

event clientAcceptsCookie(key, hostname, hostname).
event clientAcceptsSomeCookie ().

event clientRejectsCookie(key, hostname, hostname) .
event clientRejectsSomeCookie ().

event cookieCompromised (key) .

event clientAcceptsCert (hostname, spkey).
event clientRejectsCert ().

event client_timereq(bitstring).

event clientAcceptsTime(bitstring, bitstring,
bitstring).

event clientDiscards(bitstring).

(* Authority Side Event(s) *)
event authorityGivesCert (hostname, pkey, spkey).

The Trusted Authority Process

The code then moves on to the processes by which the participants are modeled.
We first present the process that models the trusted authority. Its only purpose
is to generate and distribute certificates for server and client type participants.

(* [Process] ::: TRUSTED AUTHORITY ::: [NTS v0.3.0]
|: Issues certificates on request. x*)
let authority() =
let skTA = ssk_of (TA) in

(* The authority receives a certificate request. *)
in(ta, H: hostname);

(x The authority determines the correct public keys
for the requester. *)
let pkH = pk(sk_of (H)) in
let spkH = spk(ssk_of (H)) in

(x From that information, the authority assembles
and signs the appropriate certificate. *)
let certificate = (H, pkH, spkH) in
let signature = sign(certificate, skTA) in
let certificate_sig = (certificate, signature) in

(¥ The authority sends the response back to the

4 Kristof Teichel

requesting participant. x*)
event authorityGivesCert (H, pkH, spkH);
out (ta, certificate_sig).

The Server Side Processes

Inner Server Processes

Next are those processes that make up the model of the server. The first process
represents the server module which deals with the certification message exchange.

(kmmm e e +
|--- Server Side Processes ---|
B et *)
(* [Process] ::: SERVER CERTIFIER MODULE ::: [NTS v0.3.0]

|: Replies to a client_cert message with a server_cert
|: message as specified. *)
let server_certifier(B: hostname, pkB: spkey,

skB: sskey) =

(* The server acquires the TA’s public key. x*)
let pkTA = spk(ssk_of (TA)) in

(* The server receives a client’s certification
request. *)
in(c, X_client_cert: bitstring);

(¥ The server extracts the necessary information. *)
let (version_x: bitstring, A_x: hostname)
= X_client_cert in

(x The server requests its certificate chain from the
trusted authority and performs a validity check on
the response that it receives. *)
out (ta, B);
in(ta, Z_certificate: bitstring);
let (=B, some_key: pkey, =pkB,

Z_cert_signature: bitstring)
= Z_certificate in
if (B, some_key, pkB)
<> checksign(Z_cert_signature, pkTA)
then event serverError ()
else event serverHasOwnCert (B, some_key, pkB);

(¥ The server creates a server_cert response
as specified. *)
let msg_server_cert = (A_x, Z_certificate) in
let msg_server_cert_sign
= (msg_server_cert,
sign(msg_server_cert, skB))
in

(* The server sends the composed response to the
requesting client. *)
out (c, msg_server_cert_sign).

The next process involves the server module whose purpose it is to execute the
cookie message exchange as well as the required calculations.

ProVerif Code for Verification of the NTS Specification 5

(* [Process] ::: SERVER COOKIE MODULE ::: [NTS v0.3.0]
|: Takes a client_cook request, generates the
| : appropriate cookie and replies with a server_cook
|: message as specified. *)
let server_cookie(B: hostname, pkB: spkey, skB: sskey,
seed: bitstring) =

(¥ The server acquires the TA’s public key. x*)
let pkTA = spk(ssk_of (TA)) in

(* The server receives a client’s cookie request. x*)
in(c, X_cook: bitstring);

(¥ The server matches it to the specified message
pattern and extracts the necessary information. *)
let (n_x: bitstring, pkA_x: pkey) = X_cook in

(* The server builds the cookie for the received client
(identified via its public [encryption] key pkA. *)
let cookie = cookie_gen(keyhash(pkA_x), seed) in

(x It builds the appropriate response *)
let response = (cookie, n_x) in

(x It constructs its signature and attaches it to
the response. *)
let signature = sign(response, skB) in
let response_sig = (response, signature) in

(x It encrypts it. *)
let response_sig_enc = aenc(response_sig, pkA_x) in

(* It sends it back to the client. *)
event serverGeneratesCookie (cookie, B);
event serverSaysCookie (cookie, pkA_x, B);
out (c, response_sig_enc).

Then the server module follows that takes care of the time synchronization mes-
sage exchange.

(x [Process] ::: SERVER TIMESYNC MODULE ::: [NTS vO0.3]
|: replies to a time_request message with a
|: time_response message as specified in NTS v0.3. *)
let server_time_response(B: hostname, pkB: spkey,
skB: sskey, seed: bitstring) =

(* The server receives a time_request message
from a client. *)
in(c, Y: bitstring);

(x It extracts the necessary data. *)
let (t1_y: bitstring, n_y: bitstring,
pkA_hash_y: bitstring) = Y in

(x It creates the appropriate time sync data for
its response. *)
new t2: bitstring;

(¥ It re-computes the cookie. *)
let cookie = cookie_gen(pkA_hash_y, seed) in

(¥ It composes its response. *)
let response = (n_y, tl_y, t2,
hmac (cookie, (n_y, ti_y, t2)))
in

6 Kristof Teichel

(x It sends its response back to the requesting
client. *)
event serverRespondsTime(n_y, til_y, t2);
out (c, response).

Outer Server Process

We then see the “outer” server process whose purpose is simply to execute itera-
tions of all the “inner” processes (the modules listed above in Subsubsection 1).

(x [Process] ::: SERVER GLOBAL PROCESS ::: [NTS v0.3.0]
|: executes all server modules at once, running
|: arbitrarily many instantiations of each of them
|: in parallel. *)
let server(B: hostname) =

(x Before running any modules, the server generates an
unpredictable seed value and remembers its own
key pair. x)
let seed = seed_of(B) in
let skB = ssk_of(B) in
let pkB = spk(skB) in

(¥ The server then runs all modules. x)
!'server_certifier (B, pkB, skB)
| !server_cookie (B, pkB, skB, seed)
| !server_time_response (B, pkB, skB, seed).

The Client Side Processes

Inner Client Process

Moving on to the client side processes, there is first the “inner” process which
takes care of the time synchronization message exchange, including the necessary
checks on the MAC.

(kmmmm e - +
|--- Client Side Processes ---|
B e *)
(* [Process] ::: CLIENT TIMESYNC MODULE ::: [NTS v0.3.0]

|: Generates time_request messages as specified in
|: NTS v0.3 and sends them to a time server. It then
|: awaits a time_response message on which it performs
|: the necessary checks as specified. *)
let client_time_request(A: hostname, pkA: pkey,

B: hostname, cookie: key) =

(x The client generates time data and a nonce. %)
new tl: bitstring;
new nl: bitstring;

event client_timereq(tl);

(* The client constructs its time_request message and

ProVerif Code for Verification of the NTS Specification 7

sends it. *)
let request = (t1, nl, keyhash(pkA)) in
out (c, request);

(x It receives a time_response message and
extracts the necessary information. *)
in(c, X: bitstring);
let (=n1, =t1, t2x: bitstring, hmacx: bitstring)
= X in

(* Depending on the result of validity checks, it
either accepts the response as authentic or
discards it. *)
if hmacx = hmac(cookie, (n1, ti1, t2x))

then event clientAcceptsTime(ni, t1, t2x)
else event clientDiscards(X).

Outer Client Process

The “outer” client side process follows, which performs the initial message ex-
changes (server certification and cookie exchange) and then executes instantia-
tions of the inner process.

(* [Process] ::: CLIENT GLOBAL PROCESS ::: [NTS v0.3.0]
| : Executes the steps for association, certification
|: and cookie exchange, one of each and sequentially.
|: Then it executes arbitrarily many instances of
|: the client timesync module in parallel. *)
let client(A: hostname, B: hostname) =

let skA sk_of (A) in
let pkA = pk(skA) in

let pkTA = spk(ssk_of (TA)) in
(x CERTIFICATE PHASE —------=—--—=————mm—m oo — o %)

(* The client sends a client_cert message,
as specified in NTS v0.3. *)
let msg_client_cert = (version_1, A) in
out (c, msg_client_cert);

(* The client receives a response of type
server_cert. *)
in(c, X_server_cert: bitstring);

(* The client extracts data from the response. *)
let (=A, certificate_x: bitstring,
signature_x: bitstring)
= X_server_cert in

(* The client reads the certificate. *)
let (=B, other_key: pkey, spkB_x: spkey,
cert_signature: bitstring)
= certificate_x in

(x The client performs the necessary test.
On failure, it exits with an error.
On success, the client accepts the key
given in the certificate as B’s public key. *)
event check();
if ((B, other_key, spkB_x)

8 Kristof Teichel

<> checksign(cert_signature, pkTA))
|l ((A, certificate_x)
<> checksign(signature_x, spkB_x))
then event clientRejectsCert ()

else event clientAcceptsCert (B, spkB_x);

(* COOKIE PHASE —--—---————————————————— *)
let pkB = spkB_x in

(* The client sends a client_cook
message as specified. *)
new n_cook: bitstring;
let msg_client_cook = (n_cook, pkA)
in
out (c, msg_client_cook);

(* The client receives a response
of type server_cook. *)
in(c, X_server_cook: bitstring);

(* It decodes the response and extracts
the data from it. *)

let X_dec = adec(X_server_cook, skA)
in
let ((cookie_x: key, =n_cook),
signature_x: bitstring) = X_dec
in

(¥ It performs the necessary checks as
specified. On success, it starts sending
out time_request messages as specified.x)
if (cookie_x, n_cook)

= checksign(signature_x, pkB)
then event
clientAcceptsCookie (cookie_x, A, B)
(N TIMESYINCRPHASEN = === o= o *)
| !client_time_request (A, pkA,
B, cookie_x)
| (in(c, =cookie_x);
event cookieCompromised(cookie_x)

else event
clientRejectsCookie (cookie_x, A, B)).

Note that the first else-branch includes all the code below it. Note also the
dedicated listener process given by

| (in(c, =cookie_x);
event cookieCompromised (cookie_x)

which is started when the client accepts a cookie and does not really represent
client behavior according to the protocol, but only listens for the cookie on an
open channel. This enables us to check for the loss of a cookie by querying
whether the event cookieCompromised () is ever executed at all (see Subsubsec-
tion 1).

ProVerif Code for Verification of the NTS Specification 9

The Environment Process

The ProVerif queries, which make up the next part of the code, are actually not
a fixed part of it. In fact, it is most practical to have only one query in the code
at any given time. But here we want to present a set of different queries that
were used during the verification process and talk about them in more detail.

For this reason the queries are presented last, in subsection 1. Here, we present
instead the global ProVerif process which takes care of instantiating all par-
ticipants, although this process actually needs to be at the very end of any
ProVerif code.

o m e - *)
(* [Process] MAIN OVERALL PROCESS ::: [NTS v0.3.0]
|: Runs everything that needs to be run. *)
process

(* More strongly typed version with hostnames,
would otherwise be "bitstring" type variables *)
new B: hostname;
new A: hostname;

(* There are arbitrarily many clients running,
but only one server. This is for simplification
in the earlier phase of this document. *)
!'server(B) | !client(A, B) | !authority()
| out(c, A) | out(c, B))

ProVerif Queries

Now we present the ProVerif queries. We first consider those queries that concern
the cookie exchange.

Sanity — Cookie Exchange

This query makes sure that there is some cookie x which is accepted by the
honest client A as coming from the honest server B, i.e. the cookie exchange
can be completed successfully.

query x: key;
event (clientAcceptsCookie(x, new A, new B)).

This query holds for all four code versions.

10 Kristof Teichel

Weak Authenticity — Cookie

This query ensures that if the honest client A accepts a cookie x for communi-
cation with the honest server B, then B has in fact generated = and released
it into the network (note that this gives no guarantee that B intended z for
communication with A in particular).

query x: key;
event (clientAcceptsCookie(x, new A, new B))
==> event (serverGeneratesCookie(x, new B)).

Applying this query to the different ProVerif code versions yields the following
results:

— It does not hold for code version c030ut. The attack that ProVerif discovers
is the one described in Subsection ?77.

— It holds for the code versions c¢030, c031and c032.

Authenticity — Cookie

This query strengthens the guarantee acquired with the previous query: it en-
sures that if the honest client A accepts a cookie x for communication with the
honest server B, then B has in fact issued z based on A’s public key, and has
also encrypted the appropriate message with said public key.

query x: key;
event (clientAcceptsCookie(x, new A, new B))
==> event (serverSaysCookie(x, pk(sk_of(new A)), new B)).

The results for this query are as follows:

— It does not hold for code version c030ut. Authenticity for the cookie would
require weak authenticity for it, which is not given (see above). Also, the
Man-in-the-Middle attack described in Subsection ??7 works on this version
as well as for code version c030 (see below).

— It does not hold for code version c030. The corresponding attack is the
Man-in-the-Middle attack described in Subsection 77.

— It holds for the code versions c031 and c032

Secrecy — Cookie

This query asserts that if the honest client A accepts a cookie x, then the attacker
does not know x. This is realized via the event cookieCompromised() from the
dedicated listener process as described in Subsection 1.

ProVerif Code for Verification of the NTS Specification 11

query x: key;
event (cookieCompromised (x)) .

This query does not hold for code version c030ut and neither does it hold
for c030: Both of the possible attacks enable Mallory to make Alice accept a
cookie that Mallory knows. In the case of the Blind-signature attack he man-
ufactures said cookie himself; in the case of the Man-in-the-Middle attack he
maliciously re-distributes a valid key, signed by Bob.

— This query holds for the code versions c031and c032.

Next, we take a look at some queries that concern the time synchronization
message exchange.

Sanity — Time Synchronization

This query checks whether it is possible for the protocol to be run such that the
honest client A successfully accepts a timesync response as valid and authentic
from the honest server B.

query nonce: bitstring, x: bitstring, y: bitstring;
event (clientAcceptsTime (new A, new B, nonce, x, y)).

This query holds for all four code versions.

Authenticity — Time Synchronization

This query ensures that if a timesync message t is accepted by the honest client A
as authentic from an honest server B, then B has actually issued a message with
the exact time data as in ¢ and secured it with the cookie which is generated
based on A’s public key.

query nonce: bitstring, x: bitstring, y: bitstring;
event (clientAcceptsTime (new A, new B, nonce, x, y))
==> event (serverRespondsTime (keyhash (pk(sk_of (new A4))),
new B, nonce, x, y)).

As might be expected due to the lack of cookie secrecy, this query also does not
hold for code version c030ut and neither does it hold for c030. Since for these
code versions Mallory can gain access to cookies that Alice accepts as valid, he
can use those cookies to generate time synchronization packets with maliciously
manufactured synchronization information that Alice will accept.

— This query holds for the code versions c031land c032.

