
1

Parallel transmission (pTx) medical implant
safety testbed

Software Instructions

2

Revision History

Rev.
Date

(YYYY-MM-DD)
Description of change

Author/

Contributions

1.0 2022-11-14 Initial version

Berk Silemek

Lukas Winter

Frank Seifert

3

About

Please see the software documentation for pTx medical implant safety testbed. You can contact

Lukas Winter (lukas.winter@ptb.de) if you have any questions, suggestions, or errors. It would be

helpful for the project and for the others to reproduce and build upon this work.

This source describes Open Hardware and is licensed under the CERN-OHLW v2

You may redistribute and modify this documentation and make products using it under the terms

of the CERN-OHL-W v2 (https://cern.ch/cern-ohl). This documentation is distributed WITHOUT

ANY EXPRESS OR IMPLIED WARRANTY, INCLUDING OF MERCHANTABILITY,

SATISFACTORY QUALITY AND FITNESS FOR A PARTICULAR PURPOSE. Please see the

CERN-OHL-W v2 for applicable conditions.

Source location https://www.opensourceimaging.org/ pTx-implant-safety-testbed

As per CERN-OHL-W v2 section 4.1, should You produce hardware based on these sources, You

must maintain the Source Location visible on the external case of the pTx medical implant safety

testbed or other product you make using this documentation.

If you find pTx medical implant safety testbed useful in your work, please cite following paper:

Winter L, Silemek B, Petzold J, et al. Parallel transmission medical implant safety testbed: Real-

time mitigation of RF induced tip heating using time-domain E-field sensors. Magnetic

Resonance in Medicine 2020;84:3468–3484 doi: 10.1002/mrm.28379.

(https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28379)

This work was funded by the EMPIR grant 17IND01 MIMAS. The EMPIR initiative is co-funded

by the European Union's Horizon 2020 research and innovation program and the EMPIR

participating states.

This work has received funding from the European Partnership on Metrology, co-financed by the

European Union’s Horizon Europe Research and Innovation Programme and by the Participating

States, under grant number 21NRM05 STASIS.

This work is supported by the Open Source Imaging Initiative (OSI²),

https://www.opensourceimaging.org/ pTx-implant-safety-testbed

Commented [BS1]: Double check.

Todo: Website is going to be updated

mailto:lukas.winter@ptb.de
https://cern.ch/cern-ohl
https://www.opensourceimaging.org/
https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28379
https://www.opensourceimaging.org/

4

Introduction

The document provides the software structure of the pTx medical implant safety testbed.

The detailed description of the whole project can be found in this link:

https://www.opensourceimaging.org/pTx-implant-safety-testbed

Also, the paper describes the system, and the experiments can be found here:

Winter L, Silemek B, Petzold J, et al. Parallel transmission medical implant safety testbed: Real-

time mitigation of RF induced tip heating using time-domain E-field sensors. Magnetic

Resonance in Medicine 2020;84:3468–3484 doi: 10.1002/mrm.28379.

(https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28379)

The system utilizes another open-source hardware project “COSI Measure”. The detailed version

of the COSI Measure system can be found here:

http://www.opensourceimaging.org/project/cosi-measure/

Also in the corresponding paper:

Han H, Moritz R, Oberacker E, Waiczies H, Niendorf T and Winter L, „Open Source 3D

Multipurpose Measurement System with Submillimetre Fidelity and First Application in

Magnetic Resonance“, Scientific Reports, 7:13452, 2017

https://www.opensourceimaging.org/
https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.28379
http://www.opensourceimaging.org/project/cosi-measure/

5

System Overview

Implant safety testbed consists of various hardware components. [1] Hence, there are some code

folders for each module. All scripts can be merged into one folder (except, COSI measure GUI).

They separated into 4 folders inside this repo, named as: ADC, Cosi_measure, keithley and

Transmit.

These folders includes .c codes for the digitizer m4i.4451 [2] and the transmitter m4i.6622 [3] and

Fortran codes implements .c codes as c-routines. The compilation of the codes can be done using

the first line of each Fortran files. Everything is implemented under Cent-OS system. Other Linux

distributions or windows were not checked.

It is also possible to use other software platforms for the digitizer and transmit cards supporting

various environments such as MATLAB and Python. The function names to control the cards are

the same throughout different environments. Hence, mitigation to other software platforms is

straightforward, but should be checked. For more information, please see the documentation and

examples from the manufacturer’s website. [3] In addition, please follow the manufacturer’s

website to install corresponding libraries because they differ by the OS.

ADC

This file contains the functions for the ADC card setup and receiver operation. The .c file

(m4iset_extrig_rms.c) implements the functions for the m4i card. The routine uses 3 arguments:

*pvData ------> 16-bit data pointer for the received data

*lMemsize ---> 32-bit memory length for the received data

*posttr -------->32-bit post trigger pointer to adjust the time window of the ADC. Please see

manufacturer’s documentation for more about post trigger.

The other two Fortran codes (rec_m4i_fifo_tdfilter.f and rec_m4i_tdfilter_rms.f) implements the

c routine. They need to be compiled with a Fortran complier. The first line in these files can be

taken as an example i.e. copy and paste into the OS terminal using the working folder.

6

Transmit

Transmit folder contains similar architecture as the ADC implementation. The .c files programs

the transmit cards. The script implements the functions for the m4i.6622 transmit functions. The

‘m4iset_8ch.c’ file initiates the card for 8-channel transmit operation using 400 MHz sampling

frequency (297MHz output, please see the paper for the reasoning about transmit frequency

selection [1]). For 123 MHz (3T). The sampling frequency can be changed to 625MHz. The main

function is named ‘m4iset’ takes three arguments as follows:

*pvData -----------> 16-bit data pointer for the first transmit card (each card has 4 transmitter)

*pvData1 ----------> 16-bit data pointer for the second transmit card

* lMemsize -------->32-bit memory length for the transmit data

The Fortran codes implements the .c code and generates the transmit data. In this case the transmit

pulse is a 297 MHz sinusoidal signal with a 100 % duty cycle. The Fortran implementation takes

two arguments its operation.

mode-----------> This determines the mode of operation. This can be either 0 or 1 as integer. The

mode 0 prepares and transmits a composite pulse. The composite pulse is composed of 1

millisecond long signals. The 1 millisecond signals are subsequently transmitted for each channel.

The second mode transmits a parallel transmit pulse that is generated based on a mode. The total

power is normalized. The length of the pulse is approximately 1 ms.

att--------------->This parameter adjusts the attenuation level for the output. It can take floating

values between [0,1].

Keithley for thermistor measurements

This folder contains two Python scripts. The script Keithley_Interface_25Hz.py reads resistance

value from Keithley2000 multimeter and save it to a text file with system timestamps. The

calculated temperature value is saved as well. Note that this temperature calculation is thermistor

specific. Please revisit thermistor parameters for a different product.

You can run the script via a terminal or with ide. The measurement parameters of the multimeter

were adjusted manually. Therefore, the device must be taken to the resistance measurement

7

manually. The filter and averaging in the device were also set to off to enable fast operations. The

LCD is turned off from the script. You can enable it later.

The serial connection is adjusted to 19200 baudrate. The multimeter should also be adjusted to the

same baudrate. In addition, the serial connection port is not automatically adjusted. One should

determine the USB port manually and change it in script.

The timing settings are about the limits of the Keithley2000 in this NPLC settings. The device may

give errors, beeps, and sends some incorrect data. Not all of them are handled. You can decrease

the reading rate by changing the ‘rate’ parameter. About 13-15Hz is usually ok, when LCD is open

and NPLC is in default mode.

The other script plots the data for every 3 seconds. The matplotlib backend is adjusted to Tkagg

for Linux compatibility. It should also work in Windows. Other backends like Qt can be realized

as well.

COSI Measure modifications

This folder has two python scripts for the automated mapping. One script has some wraparound

of the previous implementation from Han et al. [4] The other one works under the server computer

that prepares and sends the coordinates. An ethernet cable is needed between host (robot computer)

and server (m4i computer).

The cosi_gui_testbed.py script is an improved version [4] but not significantly different. There is

an individual homing option for each axis and each direction. If wanted, the buttons (x+, x- ,y+ ,y-

,z+ ,z-) can be used individually. Compared to previous implementation, the probe measurement

is disabled. That is: when robot goes to a coordinate, it does not perform a measurement. The

measurement part is mitigated to server part that is implemented in another python script

(server_GUI.py).

The ethernet connection parameters are given in the script. A TCP/IP protocol is used for the

ethernet communication. The robot computer’s ethernet settings can be configured before the

connection. For security, a button is placed into Cosi_GUI application and labelled as ‘Connect

external PC’. When it is clicked, Cosi_GUI is deactivated and awaits for the incoming connection

and data. After the connection is established, the robot waits for custom commands for the

operation. Three keywords are “MOV”, “OK” and “CLOSECONN”.

8

The MOV command is for the movement to absolute coordinate. The command structure can be

in these two forms: MOVXXXxxYYYyyZZZzz or MOVXXXYYYZZZ. The first one is for

submillimeter precision is 2, first 3 digits are the coordinates in mm for xyz. The second one is in

millimeter. Please pad with zeros. i.e. 58.23 is 05823 or 058 for the host part. When the robot

finishes its operation (i.e. moving to desired coordinate), it acknowledges the movement and sends

back a “MOVOK” command to a host.

“CLOSECONN” terminates the connection. This activates Cosi_GUI application again. If the

connection is terminated unexpectedly, it can be killed using another terminal. Otherwise, the

application must be restarted. (Please see the screenshots for how to kill an open TCP/IP process

without restarting the whole Cosi_GUI application)

“OK” command can be sent for a connection check. The robot will respond this command with an

“ok” message.

Server_GUI is the part implements the mapping. Currently cartesian mapping is supported by the

GUI, which follows the path like a snake game. For each position, it transmits a composite pulse

and calculates a worst-case vector [1]. Next, a circularly polarized, orthogonal projection and worst

case transmit pulses are sent and the corresponding files are saved into a Measurements1 folder.

For each position the files are saved into a folder according to the measurement number. The means

of each measurement are also displayed in the GUI. Currently, creating different measurement

folders was not implemented. Therefore, please check if there is an empty “Measurements1” folder

in the directory.

An arbitrary path file can also be used with the GUI. For this, a path file using the same structure

from Han et al. [4] should be prepared and named as ‘PathFile.txt’. And the default coordinate

values from the GUI must be kept the same.

Please note that there is no limitation about the numbers that you can enter to the GUI. Therefore,

make sure that COSI measure is in the physical spatial boundaries of the robot. A coordinate that

is outside of the physical coordinates may damage the robot components. The physical dimensions

of the device under test should also be considered. It is highly encouraged to determine the

customized spatial boundaries of the mapping area before any operation with COSI Measure.

9

References

[1] L. Winter et al., “Parallel transmission medical implant safety testbed: Real-time mitigation

of RF induced tip heating using time-domain E-field sensors,” Magn. Reson. Med., vol. 84,

no. 6, pp. 3468–3484, 2020, doi: https://doi.org/10.1002/mrm.28379.

[2] “M4i.4451-x8 | Spectrum.” https://spectrum-instrumentation.com/de/m4i4451-x8 (accessed

Jan. 26, 2021).

[3] “M4i.6622-x8 | Spectrum.” https://spectrum-instrumentation.com/de/m4i6622-x8 (accessed

Jan. 26, 2021).

[4] H. Han, R. Moritz, E. Oberacker, H. Waiczies, T. Niendorf, and L. Winter, “Open Source 3D

Multipurpose Measurement System with Submillimetre Fidelity and First Application in

Magnetic Resonance,” Sci. Rep., vol. 7, no. 1, p. 13452, Dec. 2017, doi: 10.1038/s41598-017-

13824-z.

