diff --git a/OpenFOAM_folder_structure.PNG b/OpenFOAM_folder_structure.PNG index f61430c5a83668960c4d1427593e3a14cbc8a89c..cf126265f07c6c43117067b5d4d61b89bf5a681d 100644 Binary files a/OpenFOAM_folder_structure.PNG and b/OpenFOAM_folder_structure.PNG differ diff --git a/README.md b/README.md index 30e946abd28d83091ad225f0abd0b9809ff1de53..53a54cd58e022fdfbb4b9921b0b9599f2a0a8780 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,8 @@ In this repository, a new real gas model for hydrogen based on the Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) v10.0 is provided for the use in the simulation software OpenFOAM v2012. The model is valid in a temperature and pressure range of 150-400 K and 0.1-1000 bar, respectively. Usage beyond this range is not recommended as it may lead to unrealistic results. +Results regarding the new real gas model for hydrogen have been published in the article "Derivation and validation of a reference data-based real gas model for hydrogen" [(DOI)](https://doi.org/10.1016/j.ijhydene.2023.03.073). + *** @@ -15,9 +17,13 @@ The figure below shows the folder structure in OpenFOAM of the relevant files fo For the installation of the new real gas model, the command `wmake libso` needs to be executed consecutively in the following subfolders "/specie", "/basic", and "/field". Individual adaptations of the files "files" and "options" in the respective "/Make" folder may be required. -## Tutorial +Alternatively, a Docker container can be used that will be made available on the [MetHyInfra project website](https://www.methyinfra.ptb.de). The container will already include the OpenFOAM environment with the pre-installed real gas model. Please fill in the contact form on the website if you have any related questions. + +## Tutorials -In a tutorial case of the flow through a critical flow Venturi nozzle, the usage of the new real gas model is shown. +Two tutorial cases of the flow through a critical flow Venturi nozzle are located in the "/Tutorials" folder in order to show the usage of the new real gas model. +The "/Simple_Geometry" subfolder contains a simplified geometry of a toroidal nozzle. +The "/Meas_Cyl" subfolder contains a measured geometry of a cylindrical nozzle (from the MetHyInfra project). For the start of the simulation, do the following steps: 1. run `blockMesh && extrudeMesh` to create the mesh @@ -30,10 +36,15 @@ For the post-processing, you might need to: 3. run `reconstructPar` (if your case was decomposed before) 4. select the file "nozzle.foam" for the visualization in e. g. ParaView -The distribution of the real gas Mach number is displayed in the figure below. +The distribution of the real gas Mach number is displayed in the figure below (from the "Simple_Geometry" tutorial case). <img src="CFVN.PNG" width="800"> +## Workshop + +Within the MetHyInfra project, a CFD workshop was organized in Boras, Sweden on the 15th June 2023. The "/Workshop" folder contains the documents of the third part of this workshop considering a tutorial case of a critical nozzle. +Here, the main file is the Jupyter Notebook "CFD_Workshop_MetHyInfra.ipynb" containing the pre- and post-processing steps of the demonstrated tutorial case (in the folder "/Tutorials/Meas_Cyl"). +The subfolders "/Input" and "/Output" provide the input for and contain the output of the Jupyter Notebook. The "/Presentation" subfolder contains the presentation slides of the workshop. ## Acknowledgments This work was supported through the Joint Research Project “Metrology infrastructure for high-pressure gas and liquified hydrogen flows”. This project (20IND11 MetHyInfra) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. diff --git a/Workshop/CFD_Workshop_MetHyInfra.ipynb b/Workshop/CFD_Workshop_MetHyInfra.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..00802fb11e63b6095963dc202113bee397260533 --- /dev/null +++ b/Workshop/CFD_Workshop_MetHyInfra.ipynb @@ -0,0 +1,753 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "c9f45b6d", + "metadata": {}, + "source": [ + "# MetHyInfra - CFD Workshop \n", + "<font size=\"4\"> **Part 3: Tutorial case of a critical nozzle** </font> <br>\n", + "<font size=\"3\"> \"***FROM A***<em>djusting the mesh</em> ***TO*** <em>visuali</em>***Z***<em>ing the flow field</em> \" </font> <br>\n", + "---\n", + "Sebastian Weiss, PTB Berlin, Germany <br>\n", + "15.06.2023" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "20387b3b", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np; \n", + "import matplotlib.pyplot as plt; plt.close(\"all\")\n", + "import matplotlib.axes as plax;\n" + ] + }, + { + "cell_type": "markdown", + "id": "14eafe53", + "metadata": {}, + "source": [ + "# 1. Geometry creation" + ] + }, + { + "cell_type": "markdown", + "id": "b13fc6ac", + "metadata": {}, + "source": [ + "## 1.1 Functions" + ] + }, + { + "cell_type": "markdown", + "id": "0fd17239", + "metadata": {}, + "source": [ + "### 1.1.1 Ideal toroidal nozzles (*Tor_ideal*)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "60c17583", + "metadata": {}, + "outputs": [], + "source": [ + "################################ -- Ideal toroidal CFVNs -- ###############################################################\n", + "def Tor_ideal(l, al, nz):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + " l : double\n", + " nozzle length (in d)\n", + " al : double \n", + " diffusor angle (in °)\n", + " nz : int\n", + " number of points\n", + " \"\"\"\n", + " zc = np.sqrt(2.0**2 - (2.0-(2.5-1.0)/2)**2);\n", + " zal = 2.0*np.sin(al*np.pi/180.0);\n", + " ze = l;\n", + " ntest = round((nz-5)/4);\n", + " nz = 4*ntest + 5;\n", + " BSz = np.linspace(0.0, ze, nz);\n", + " BSy = np.linspace(0.0, 0.0, nz);\n", + " for i in range(0,nz):\n", + " if BSz[i] < zc + zal:\n", + " BSy[i] = 5/2 - np.sqrt(2.0**2 - (BSz[i]-zc)**2);\n", + " else:\n", + " BSy[i] = 1/2 + (1.0-np.cos(al*np.pi/180.0))*2.0 + np.tan(al*np.pi/180.0)*(BSz[i]-(zc+zal)) ;\n", + " BSd = int(np.round(np.median(np.where(BSy == BSy.min()))));\n", + " return BSz, BSy, BSd\n", + "###########################################################################################################################" + ] + }, + { + "cell_type": "markdown", + "id": "fe8d8498", + "metadata": {}, + "source": [ + "### 1.1.2 Ideal cylindrical nozzles (*Cyl_ideal*)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "0eabb444", + "metadata": {}, + "outputs": [], + "source": [ + "################################ -- Ideal cylindrical CFVNs -- ############################################################\n", + "def Cyl_ideal(l, al, nz):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + " l : double\n", + " nozzle length (in d)\n", + " al : double \n", + " diffusor angle (in °)\n", + " nz : int\n", + " number of points\n", + " \"\"\"\n", + " ze = l;\n", + " ntest = round((nz-5)/4);\n", + " nz = 4*ntest + 5;\n", + " BSz = np.linspace(0.0, ze, nz);\n", + " BSy = np.linspace(0.0, 0.0, nz);\n", + " for i in range(0,nz):\n", + " if BSz[i] < 1.0:\n", + " BSy[i] = 3/2 - np.sqrt(1.0**2 - (BSz[i]-1.0)**2);\n", + " elif BSz[i] > 2.0:\n", + " BSy[i] = 1/2 + np.tan(al*np.pi/180.0)*(BSz[i]-2.0) ;\n", + " else:\n", + " BSy[i] = 1/2;\n", + " BSd = int(np.round(np.median(np.where(BSy == BSy.min())))); \n", + " return BSz, BSy, BSd\n", + "###########################################################################################################################" + ] + }, + { + "cell_type": "markdown", + "id": "e6f7e573", + "metadata": {}, + "source": [ + "### 1.1.3 Measured nozzles (*Meas_CFVN*)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5b571446", + "metadata": {}, + "outputs": [], + "source": [ + "################################ -- Measured CFVNs -- #####################################################################\n", + "def Meas_CFVN(meas_data, NType, l, n_in, n_out):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + " meas_data : str\n", + " file containing measured contour data (list of z and y positions, tab-separated)\n", + " NType : int\n", + " nozzle type (0 if cylindrical, 1 if toroidal)\n", + " l : double\n", + " nozzle length (in d)\n", + " n_in : double \n", + " point index for inlet circle\n", + " n_out : int\n", + " point index for outlet slope\n", + " \"\"\"\n", + " ## Measurement input\n", + " BSSMeas = np.loadtxt(meas_data, delimiter='\\t', skiprows = 1);\n", + " Shift_cyl = 1.5;\n", + " Shift_tor = np.sqrt(39)/4;\n", + " # NType = 0 --> Cyl; NType = 1 --> Tor;\n", + " BSzMeas = BSSMeas[:,0] + (1 - NType) * Shift_cyl + NType * Shift_tor;\n", + " BSyMeas = BSSMeas[:,1];\n", + " BSdMeas = int(np.round(np.median(np.where(BSyMeas == BSyMeas.min()))));\n", + " ze = l;\n", + " nz = len(BSzMeas)*l/(BSzMeas[len(BSzMeas)-1]-BSzMeas[0]); \n", + " ntest = round((nz-5)/4);\n", + " nz = 4*ntest + 5;\n", + "\n", + " ## Inlet extension\n", + " nz1 = round(nz*(BSzMeas[0] - 0.0)/l) + 1;\n", + " BSz1 = np.linspace(0.0, BSzMeas[0], nz1);\n", + " BSy1 = np.linspace(0.0, 0.0, nz1); \n", + " \n", + " zn_in = BSzMeas[0:n_in];\n", + " yn_in = BSyMeas[0:n_in];\n", + " \n", + " ## Solving Linear System (A^T*Ax = A^Tb) on n points\n", + " A = np.ones((3, 3));\n", + " b = np.ones(3);\n", + " \n", + " A[0,0] = sum(zn_in**2); A[0,1] = sum(zn_in*yn_in); A[0,2] = sum(zn_in);\n", + " A[1,0] = sum(zn_in*yn_in); A[1,1] = sum(yn_in**2); A[1,2] = sum(yn_in);\n", + " A[2,0] = sum(zn_in); A[2,1] = sum(yn_in); A[2,2] = n_in;\n", + " \n", + " b[0] = sum(zn_in*(zn_in**2 + yn_in**2));\n", + " b[1] = sum(yn_in*(zn_in**2 + yn_in**2));\n", + " b[2] = sum(zn_in**2 + yn_in**2);\n", + " \n", + " A_T = A.transpose();\n", + " A_new = np.matmul(A_T,A);\n", + " b_new = np.matmul(A_T,b);\n", + " n_opt = np.linalg.solve(A_new,b_new);\n", + "\n", + " pz = n_opt[0]/2;\n", + " py = n_opt[1]/2;\n", + " R = np.sqrt(n_opt[2] + (n_opt[0]**2 + n_opt[1]**2)/4);\n", + " \n", + " BSy1 = py - np.sqrt(R**2 - (BSz1 - pz)**2);\n", + " n_nan = np.count_nonzero(np.isnan(BSy1));\n", + " if (n_nan > 0):\n", + " BSzmax = BSz1[-1];\n", + " BSy1 = BSy1[n_nan:];\n", + " BSz1 = BSz1[0:-n_nan];\n", + " delta = BSzmax - BSz1[-1];\n", + " BSzMeas = BSzMeas - delta;\n", + " nz1 = nz1 - n_nan;\n", + "\n", + " ## Outlet extension\n", + " nz2 = nz - len(BSzMeas) - nz1 + 2;\n", + " BSz2 = np.linspace(BSzMeas[-1], ze, nz2);\n", + " BSy2 = np.linspace(0.0, 0.0, nz2);\n", + " \n", + " m = (BSyMeas[-(n_out+1)] - BSyMeas[-(n_out+2)])/(BSzMeas[-(n_out+1)] - BSzMeas[-(n_out+2)]);\n", + " n = BSyMeas[-1] - m * BSzMeas[-1];\n", + " BSy2 = m * BSz2 + n;\n", + "\n", + " ## Creation of full BS vectors\n", + " BSz = np.concatenate((BSz1[0:-1], BSzMeas, BSz2[1:]), axis=None);\n", + " BSy = np.concatenate((BSy1[0:-1], BSyMeas, BSy2[1:]), axis=None);\n", + " BSd = int(np.round(np.median(np.where(BSy == BSy.min()))));\n", + " return BSz, BSy, BSd, BSzMeas, BSyMeas\n", + "###########################################################################################################################" + ] + }, + { + "cell_type": "markdown", + "id": "9eb31894", + "metadata": {}, + "source": [ + "### 1.1.4 Creation of geometry file (*create_geometry_file*)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8d416aa7", + "metadata": {}, + "outputs": [], + "source": [ + "################################ -- Creation of geometry file -- ##########################################################\n", + "def create_geometry_file(name, BSz, BSy, BSd): \n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + " name : str\n", + " name of output file\n", + " BSz : array \n", + " vector of axial nozzle coordinates\n", + " BSy : array\n", + " vector of radial nozzle coordinates\n", + " BSd : int\n", + " index of throat diameter position\n", + " \"\"\"\n", + " f = open(name, 'w');\n", + " f.write('BSz ( ');\n", + " np.savetxt(f, BSz, fmt='%.6f', newline = ' ');\n", + " f.write(' ); \\n \\nBSy ( ');\n", + " np.savetxt(f, BSy, fmt='%.6f', newline = ' ');\n", + " f.write(' ); \\n \\nBSd ' + str(BSd) + ';');\n", + " f.close();\n", + "######################################################################################################################## " + ] + }, + { + "cell_type": "markdown", + "id": "5602bd17", + "metadata": {}, + "source": [ + "## 1.2 Nozzle contour creation" + ] + }, + { + "cell_type": "markdown", + "id": "ca638d64", + "metadata": {}, + "source": [ + "### 1.2.1 Creation of ideal toroidal nozzle" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "895eca4a", + "metadata": {}, + "outputs": [], + "source": [ + "### Input parameters ###\n", + "l = 9.0; # nozzle length\n", + "al = 4.0; # diffusor angle\n", + "nz = 1000; # number of contour points\n", + "\n", + "### Nozzle contour (Ideal toroidal nozzle) ###\n", + "zTor, yTor, dTor = Tor_ideal(l, al, nz); " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "36893674", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAEDCAYAAAA2gJUGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD9ElEQVR4nO3dfXzN9f/H8efZ9TBjw2xhSM1cX6wYVvrSishF3y+lQlRfQljKRVcq4SekCBFy0YW+uYgo5DK5ZuRipMjE5Go2ho3t/P74dHZ2bGM7Z9vZeNxvt3Nzzufz/nw+r3NuzJ7n/f683yaz2WwWAAAAAMBuLs4uAAAAAACKOoIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQDIV59//rlMJpN27Nhxy7bdu3dX5cqV87We4cOHy2Qy5bh9jx499Oijj0qSmjdvLpPJdMvH8OHD86ze+Ph4lSpVSosXL86zcwIA8p6bswsAAKCwio6O1uzZs7V161ZJ0uTJk5WYmJi+f9myZRoxYoRmzZql6tWrp2+vUKFCntVQunRpDRw4UK+++qpat24tDw+PPDs3ACDvEKwAAMjG6NGjdf/99yssLEySVKNGDZv9Bw8elCTVqlUrvY0jLl++rGLFimXa3qtXL40YMULffvutunTp4vB1AAB5j6GAAACn+PzzzxUSEiJPT0+FhoZqzpw5WbZLSUnRiBEjVL16dXl6eqps2bJ67rnndObMGZt28+fPV2RkpAIDA+Xt7a3Q0FANGTJESUlJdtX3999/a9GiRXr22WdzdVxaWprGjBmTXm+5cuXUtWtX/fXXXzbtmjdvrlq1amnDhg1q0qSJihUrph49emR5zoCAAD388MOaOnWqXe8FAJD/6LECABS4zz//XM8995zatWuncePGKSEhQcOHD1dycrJcXKzf+aWlpaldu3b6+eef9dprr6lJkyY6duyY3n77bTVv3lw7duyQt7e3JOnw4cNq3bq1BgwYoOLFi+vgwYP6v//7P23btk1r1qzJdY0rV67UtWvX9NBDD+XquN69e2vatGnq27ev2rRpoz///FNvvvmm1q1bp127dqlMmTLpbePi4vTMM8/otdde08iRI23e+42aN2+uoUOH6sKFCypVqlSu3w8AIH8RrAAABSotLU2vv/66GjRooEWLFqVPJNGsWTPdc889CgoKSm/7zTff6Mcff9SCBQvUsWPH9O1169bVfffdp88//1y9e/eWJL3xxhvp+81ms5o2barQ0FA9+OCD+vXXX1WnTp1c1bl582Z5e3vb3Dt1KwcPHtS0adP00ksvaeLEienb69evr0aNGunDDz/U+++/n779/Pnz+t///qd//etftzx3gwYNlJaWpi1btqRPpgEAKDwYCggAKFCHDh3SyZMn1aVLF5vZ+YKDg9WkSRObtt9//71KlSqltm3b6vr16+mPevXqqXz58lq3bl162yNHjqhLly4qX768XF1d5e7urgcffFCSFBMTk+s6T548qbJly+ZqBsG1a9dKMmY3zOj+++9XaGioVq9ebbO9dOnSOQpVklSuXDlJ0okTJ3JcDwCg4NBjBQAoUOfOnZMklS9fPtO+8uXL688//0x//ffff+vChQvZzoR39uxZSdKlS5cUEREhLy8vjRgxQvfee6+KFSum48ePq2PHjrpy5Uqu67xy5Yq8vLxydYzlvQUGBmbaFxQUpGPHjtlsy6pddiy12PNeAAD5j2AFAChQ/v7+kqRTp05l2nfjtjJlysjf318//vhjlufy8fGRJK1Zs0YnT57UunXr0nupJOnChQt211mmTBnt2rUrV8dY3ltcXFymKddPnjxpc3+VpFz1hp0/fz69LgBA4cNQQABAgQoJCVFgYKC++uormc3m9O3Hjh3Tpk2bbNq2adNG586dU2pqqsLCwjI9QkJCJFkDiqenp83xn376qd11Vq9eXefOnVNCQkKOj7EM65s3b57N9u3btysmJkYtWrSwu54jR45IyjzlOwCgcCBYAQAKlIuLi9577z3t3LlTHTp00LJly/TFF1+oZcuWmYYHPvnkk2rVqpVat26td999Vz/++KNWr16t2bNnq3v37lq0aJEkqUmTJipdurR69eqlRYsW6fvvv9dTTz2lPXv22F1n8+bNZTab0xcHzomQkBC9+OKLmjhxogYOHKiVK1dq2rRpatOmjSpWrKiBAwfe9Phjx47Jzc1NPXv2zLRvy5Yt8vf3V+3atXP9XgAA+Y9gBQAocD179tRnn32mAwcOqGPHjnr33Xc1bNiwTBM5uLq6asmSJRo2bJgWLlyoDh06qH379ho9erS8vLzSQ4a/v7+WLVumYsWK6ZlnnlGPHj1UokQJzZ8/3+4amzZtqsqVK+u7777L1XFTpkzR6NGjtXz5crVp00avv/66IiMjtWnTpvShgtkxm81KTU1Vampqpu1LlizJNOEHAKDwMJkzjsMAAADpxo0bp/fff18nTpxIXy/LGVavXq3IyEjt378/V9O/AwAKDsEKAIBsXL16VaGhoerTp48GDRrktDoeeughVatWTdOnT3daDQCAm2MoIAAA2fDy8tLcuXMzTYpRkOLj4/Xggw/aLCwMACh8ClWwGjVqlO677z75+PioXLlyat++vQ4dOnTL49avX6+GDRvKy8tLVatW1dSpUwugWgDAnaBZs2bq16+f065funRpDR8+PH2BYABA4VSogtX69evVp08fbdmyRatWrdL169cVGRmppKSkbI85evSoWrdurYiICEVHR2vYsGF6+eWXtWDBggKsHAAAAMCdrFDfY3XmzBmVK1dO69ev1wMPPJBlm8GDB2vJkiWKiYlJ39arVy/t2bNHmzdvLqhSAQAAANzB3JxdwM1YFmX08/PLts3mzZsVGRlps+2RRx7RjBkzdO3aNbm7u9vsS05OVnJycvrrtLQ0nT9/Xv7+/kxhCwAAANzBzGazLl68qKCgILm45G5wX6ENVmazWVFRUWrWrJlq1aqVbbtTp04pICDAZltAQICuX7+us2fPKjAw0GbfqFGj9M477+RLzQAAAACKvuPHj6tChQq5OqbQBqu+ffvq119/1caNG2/Z9saeJsvoxqx6oIYOHaqoqKj01wkJCapUqZKOHz+ukiVLOlg1AAAAgKIqMTFRFStWlI+PT66PLZTBql+/flqyZIk2bNhwy6RYvnx5nTp1ymbb6dOn5ebmluUK956enllOm1uyZEmCFQAAAAC7bhEqVLMCms1m9e3bVwsXLtSaNWtUpUqVWx4THh6uVatW2WxbuXKlwsLCMt1fBQAAAAD5oVAFqz59+mjevHn68ssv5ePjo1OnTunUqVO6cuVKepuhQ4eqa9eu6a979eqlY8eOKSoqSjExMZo5c6ZmzJihQYMGOeMtAAAAALgDFapgNWXKFCUkJKh58+YKDAxMf8yfPz+9TVxcnGJjY9NfV6lSRcuXL9e6detUr149vffee/r444/1xBNPOOMtAAAAALgDFep1rApCYmKifH19lZCQwD1WAAAAwB3MkWxQqHqsAAAAAKAoIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICD3HLTuEmTJqpXr57q1aununXrqk6dOvL29s6v2gAAAACgSMhVsGrXrp327Nmjjz76SL/99pskqVq1aqpbt65N4AoMDMyXYgEAAACgMMrVUMDBgwfryy+/1P79+7VlyxYFBASofv368vT01BdffKHWrVurQoUKCggIsKuYDRs2qG3btgoKCpLJZNLixYtv2n7dunUymUyZHgcPHrTr+gAAAABgj1z1WGX04osv6pNPPlG7du3Sty1fvlwvvviiunfvbtc5k5KSVLduXT333HN64okncnzcoUOHVLJkyfTXZcuWtev6AAAAAGAPu4NVTEyM6tSpY7OtdevWmjx5siZOnGjXOVu1aqVWrVrl+rhy5cqpVKlSdl0TAAAAABxl96yAjRo10tSpUzNtr127tqKjox0qKrfq16+vwMBAtWjRQmvXrr1p2+TkZCUmJto8AAAAAMARdgeryZMna+rUqerevbt+/fVXpaWl6erVqxo7dqyKFy+elzVmKzAwUNOmTdOCBQu0cOFChYSEqEWLFtqwYUO2x4waNUq+vr7pj4oVKxZIrQAAAABuXyaz2Wy29+CDBw+qT58+Wrt2rdzd3ZWWliY3NzfNmDFDXbp0cawwk0mLFi1S+/btc3Vc27ZtZTKZtGTJkiz3JycnKzk5Of11YmKiKlasqISEBJv7tAAAAADcWRITE+Xr62tXNsj1PVbDhg1T+/btdf/996t69epavXq1jh07pj179sjFxUUNGzZ06nTrjRs31rx587Ld7+npKU9PzwKsCAAAAMDtLtfBKi4uTm3atJGrq6vatm2r9u3bq0WLFgoODs6P+nItOjqadbQAAAAAFKhcB6tZs2bJbDZr48aNWrp0qaKionTixAk9/PDDevzxx9WmTRuVKVPGrmIuXbqk33//Pf310aNHtXv3bvn5+alSpUoaOnSoTpw4oTlz5kiSJkyYoMqVK6tmzZpKSUnRvHnztGDBAi1YsMCu6wMAAACAPeyavMJkMikiIkJjxozRwYMHtW3bNjVu3FjTp0/XXXfdpQceeEBjx47ViRMncnXeHTt2qH79+qpfv74kKSoqSvXr19dbb70lyegti42NTW+fkpKiQYMGqU6dOoqIiNDGjRu1bNkydezY0Z63BQAAAAB2cWjyiqycOXNGS5Ys0ZIlSxQREaFBgwbl5enznCM3qAEAAAC4fTiSDewOVsePH78tpionWAEAAACQHMsGdq9jVb16db355ptKSkqy9xQAAAAAcFuwO1itWrVKK1eu1D333KNZs2blZU0AAAAAUKTYHayaNGmirVu3avTo0XrrrbdUv359rVu3Lg9LAwAAAICiwe5gZdG1a1f99ttvatu2rR577DF16NDBZsp0AAAAALjdORysJMlsNisyMlIvvviilixZolq1aumVV17RxYsX8+L0AAAAAFCo5XqBYIupU6dq+/bt2r59u2JiYuTq6qo6deqoT58+qlevnr744gvVqFFDixYtUlhYWF7WDAAAAACFit3TrVesWFGNGzdOf4SFhcnT09OmzciRI/Xll19q3759eVJsfmC6dQAAAACSk9axyom///5bQUFBSk1Nza9LOIxgBQAAAEBy0jpWOVGuXDmtWbMmPy8BAAAAAE6Xr8HKZDLpwQcfzM9LAAAAAIDT5WuwAgAAAIA7AcEKAAAAABxEsPrHL784uwIAAAAARVWeB6uWLVuqatWqeX3afNe5sxQT4+wqAAAAABRFdi8QnJ0OHTro7NmzeX3afHfxotS2rbR1q+Tv7+xqAAAAABQl+bqOVVFgmau+UqUExcaW1EMPSStWSO7uzq4MAAAAQEEqtOtYFSXz50slSkhr10ovvyzd2XETAAAAQG7YHayuXLmiy5cvp78+duyYJkyYoBUrVuRJYQWtRg3pq68kk0maOlUaP97ZFQEAAAAoKuwOVu3atdOcOXMkSRcuXFCjRo00btw4tW/fXlOmTMmzAgtSmzbS2LHG8y++kFJSnFsPAAAAgKLB7mC1a9cuRURESJK+/fZbBQQE6NixY5ozZ44+/vjjPCuwoA0caPRYrVsneXg4uxoAAAAARYHdwery5cvy8fGRJK1cuVIdO3aUi4uLGjdurGPHjuVZgQXNZJL++18p471qiYnOqwcAAABA4Wd3sKpWrZoWL16s48ePa8WKFYqMjJQknT59OtczaBRWZrM0Zoxx/9XRo86uBgAAAEBhZXeweuuttzRo0CBVrlxZ999/v8LDwyUZvVf169fPswKd6coVac4c6cQJqUUL6a+/nF0RAAAAgMLIoXWsTp06pbi4ONWrV08mk0mStG3bNpUsWVLVq1fPsyLz063mqj95UnrgAemPP6SQEGn9eikgwAmFAgAAAMhXjqxj5ebIhb28vLRmzRp98sknMplMCg0NVc+ePeXr6+vIaQuVoCBp9WopIkI6dEh6+GFjYgs/P2dXBgAAAKCwsHso4I4dO3T33Xfrww8/1Pnz53X27Fl9+OGHuvvuu7Vr1668rNHpgoOlNWuk8uWlvXulRx6REhKcXRUAAACAwsLuoYARERGqVq2apk+fLjc3o+Pr+vXrev7553XkyBFt2LAhTwvNL7np7tu/X3rwQencOWMx4SefLKAiAQAAAOQ7R4YC2h2svL29FR0dneleqgMHDigsLEyXL1+257QFLrcfXnS0tGGD1L9/ARQHAAAAoMA4EqzsHgpYsmRJxcbGZtp+/Pjx9PWtbkf169uGqvh46cwZ59UDAAAAwPnsDladO3dWz549NX/+fB0/flx//fWXvv76az3//PN66qmn8rLGQisxUXr0Ual5c+nUKWdXAwAAAMBZ7J4VcOzYsTKZTOratauuX78uSXJ3d1fv3r01evToPCuwMDtzxljj6sQJY0r21aulihWdXRUAAACAgmZ3j5WHh4c++ugjxcfHa/fu3YqOjtb58+f14YcfytPT065zbtiwQW3btlVQUJBMJpMWL158y2PWr1+vhg0bysvLS1WrVtXUqVPturY97r7buN8qOFg6fFgKDzcmuAAAAABwZ7E7WFkUK1ZMtWrVUu3atVWsWDGHzpWUlKS6detq0qRJOWp/9OhRtW7dWhEREYqOjtawYcP08ssva8GCBQ7VkRtVq0o//yyFhho9V82aGa8BAAAAFA5ms7Fc0tGj0s6d0qpV0vz5xp8Z23TpYv817J4VUJJmzJihDz/8UIcPH5Yk3XPPPRowYICef/55+yuyFGYyadGiRWrfvn22bQYPHqwlS5YoJiYmfVuvXr20Z88ebd68OUfXcWTmj4zOn5fatpU2bZI8PaWFC6XWre0+HQAAAIAspKVJv/9u/P6d1ePee6W+fa1ty5c3tqemZj5XZKS0YoX1ta9vohIT7csGdt9j9eabb+rDDz9Uv379FB4eLknavHmzBg4cqD///FMjRoyw99Q5tnnzZkVGRtpse+SRRzRjxgxdu3ZN7u7umY5JTk5WcnJy+uvExMQ8qcXPT/rpJ2Ntqy1bpJCQPDktAAAAcNu5elVKSZEs2eXaNWnuXCMAxcdnDktNm0off2y0NZtv/rt2ZKQ1WLm4GOe2hCpvb+P3dsujbl3bY8eOlV580b73ZHewmjJliqZPn24zA+Djjz+uOnXqqF+/fgUSrE6dOqWAgACbbQEBAbp+/brOnj2rwMDATMeMGjVK77zzTr7U4+0tLVggxcYaQwQtzGbJZMqXSwIAAABOYTZLFy/aBqHSpaUGDYz9V64YASersHTlitS5s/T110ZbFxepZ8/sr+Xvb33u6mrMceDiYoSj0qVtw1KNGrbHbtki+fgY7by9b/6eOnd2QrBKTU1VWFhYpu0NGzZMnyWwIJhuSCyWkY03brcYOnSooqKi0l8nJiaqYh5O5efmZhuqliyRpk+XvvjCmsgBAACAwsJszrqXyPIIDZX+8x+j7cWL0n33WcPSjb/2ZwxLHh7SzJnZXzc+3vrc1VX6978lLy/bkGR5VKhge+yff+b8/RXUSDK7g9UzzzyjKVOmaPz48Tbbp02bpqefftrhwnKifPnyOnXDAlKnT5+Wm5ub/DPG2gw8PT3tnrUwty5flp5/3piWPTxcWrrUNnQBAAAAeSUtzejFkYyhditXWsPRjcHpoYekIUOMthcu2PYI3ahTJ2uwKlZM+u03I4xZeHpaA1BQkHW7q6v0wQdSiRLW/Rl7l3x8bK/zv/85/BE4ld3BSjImr1i5cqUaN24sSdqyZYuOHz+url272vQK3Ri+8kp4eLiWLl1qs23lypUKCwvL8v6qglasmLR8udSunXTggNSokTFU8IEHnF0ZAAAACiOz2fhy3hKAfHysX8wnJEgjR2bfs/Tss5Jl5aErV4zfQbNTqpT1ua+vEciKF886ADVqZG3r6mosN+Tra91/s+F1gwbZ/VEUOXYHq3379qnBPwMo//jjD0lS2bJlVbZsWe3bty+9XXZD8rJy6dIl/f777+mvjx49qt27d8vPz0+VKlXS0KFDdeLECc2ZM0eSMQPgpEmTFBUVpRdeeEGbN2/WjBkz9NVXX9n7tvJcWJi0bZvxF3vnTulf/zKS+4AB3HcFAABwu0pLM4LQjeEnPt4YWvfQQ0a7U6eMIXAZ21y7Zj3Pf/9rDUtpadKYMdlf8/x563NfXyMQ3Xj/keVxzz3Wti4uRg9XTvslmjXLWbs7jUPTree1devW6SHL37IMunXrps8//1zdu3fXn3/+qXXr1qXvW79+vQYOHKj9+/crKChIgwcPVq9evXJ8zbyabv1WLMMCLZmvUyfpyy+N1A8AAIDC7epVadeuzCHJ8vzhh6Xu3Y22R49Kd99tO1wuo4xhKT7eCDo3cnc3tj/5pDRhgrEtLc3oAcoqKPn5SWXKcE+/oxzJBoUqWDlDQQUryfjHNWmSFBUl9elj/UcCAACA/GM2G0Pjzp837gcqW9bYfu6cMblCdkPrevSQ3n7baHvkiBGWspMxLF24YPQUSbbD6yyPhx822ktGWFq0KHObYsUY3eQMjmQDh+6xQu6YTFK/fsY8/LVqWbdfvmz84wEAAED2zGYpMTHrBWHr1zfaHDsm9e+fuY1lGdPBg6XRo43niYnSa69lf72TJ63P/f2Ne52y6y2yXF8yhuGdOmWEKw+Pm78nFxfpiSdy/1mg8CFYOYFlbn/JmKIyMlKqVk2aODHz7CgAAAC3o+RkY8rs7Kb5joyU2rQx2u7bZ9yTFB9vXeg1o8GDrcEmLU367rusr+nmZixKa1GmjDHhQ3ZhKeMU376+0j/TCtySySTdsNQq7gAEKyf7+Wdp82bpl1+Mx9dfSw0bOrsqAACAW7t61ehFsswKd+aMsbxMdlN8//e/1sVX9++/+e88xYpZg1Xx4tLZs7b7Ms5eFxxs3Ve+vPTpp1kvHFuihO3wOh8f6Z850QCHEayc7KGHpHXrpKefln7/3VjvauRIaeBAJrYAAAD5z2yWLl2yDUBVqlin+P79d2PoXFa9SleuGPsGDzbaHj8u9eyZ/bUy9vj4+dlO2X1jCHrwQWvbChWMXitLOy+v7K/h7W0Nb0BBylWwyrg21a3k19pVt6OICGn3bumFF6SFC6VXXzW6sGfNMoYIAgAA3EpqqjFpQlYBKD5eatlSatLEaLt9uzEEzrLv+nXbc2UMS4mJ0owZ2V834xTf5ctLrVvbBqSMgSkkxNq2cmWj3pxwd5dq1sxZW8BZchWsoqOjc9QuN2tXweDnJ337rfGDa+BAaeNGY3r2DDPLAwCAO4DZbB2udvastGlT9rPW9e4tdehgtF23zghP2fH0tAYrV1fp0KHM+/39jd9JMk6GFhwsvf9+9j1LGe8PDwqSli1z+CMAiqRcBau1a9fmVx2Q8UP0+eeNH4q9e0tjxzq7IgAAYA+zWUpKsvYIBQZK5coZ+w4dynqKb8v9SOPHW4ey/fqr1K5d9tdp0cL63LIWko9P1hMx1KljbRsSYgSxjPst90ndyN9fGjbM7o8CuGNwj1UhVLmy9MMPttvef9+44bJPH2NGGwAAkP/S0qSEhKx7ix56SKpRw2j3yy/GtN0ZJ2u4ds16nqlTresWnTghjRmT/TUzDq0LDJTuvz9zSLL0GoWFWdvWqWPMeOfufuv3Vby47T1MABzn8K/oBw4cUGxsrFIyzl0p6fHHH3f01PjH3r3SW28ZP9znzDF+ON93n7OrAgCg6ImPl2Jish9a16uX9MADRtvvvjOG2ZnNWZ9r6lRrsEpONobs3cjd3ejxyXiXxN13S1FRmYfUWQJT+fLWtqGh0tatOXtvrq5MfAU4k93B6siRI+rQoYP27t0rk8kk8z8/dSz3V6VmtcgA7FKzpjR5sjRkiLRrl9SokdFzNWKEMZsOAAB3ArPZmIXu/HmpVCljJIdkDK1bsiT7sPTRR1L79kbbNWukf/87+2s8+KA1WJUsaQ1VxYtnDkEVK1qPq1PHuFf6xjbFitmGKsm4Z2ncuLz4RAAUJnYHq/79+6tKlSr66aefVLVqVW3btk3nzp3TK6+8orHcHJSnXFyM4QPt20uvvCJ98YU0aZK0YIExDrtz58w/tAEAKKzS0oyZ5m5c46hJE2tY2bDBCB83tklONvbPny916mQ837fPGIaXnb//tj4PCDCmEc9uQdjwcGvb8HApLs7oRfL0vPl7KlNGeuKJ3H8WAG4fdgerzZs3a82aNSpbtqxcXFzk4uKiZs2aadSoUXr55ZdzPIMgci4gQJo3T3ruOWNyi8OHjcD18MPGMAMAAApaUpJxz1B2vUUvvCDVrm20/eYb6aWXjLCUlpb5XPPnW4PVmTNGL1RW3NyM61rcc4/UtWv29yHdfbe1bbNmtmsp3YyXl+2wPAC4GbuDVWpqqkr80wdfpkwZnTx5UiEhIQoODtahG+fvRJ5q0cKYJeiDD4z/MDKGqrNnjW/NAADIqStXjLBimfTg8GFj2Y+bDa1r1sxo+9VXRnjKTtOm1mDl5iadO2fdV6yY7X1GGaf4DguTPv006+m9S5SwHalRp440e3befBYAYC+7g1WtWrX066+/qmrVqmrUqJHGjBkjDw8PTZs2TVUtS3Uj33h5SW++abvthx+MceODBxtDBosXd05tAICCZzZLFy/aBqAGDaxTcK9bJ82dm/UU31euSCtXGiMgJGMY3vPPZ3+tEyesz/39jUCU3dC66tWtbf/1L2PYniUseXllf43gYOuU4wBQFNgdrN544w0l/dMPP2LECLVp00YRERHy9/fX/Pnz86xA5Nw330iXL0tvvy198on0xhvGf0q3GhcOACg8UlOlCxeyXt/o/HmpWzcjdEjGPbfvvWfdd+O8UStWSJGRxvM//jDWTspOxp6katWk1q2zDkqlSxuBzaJDB+sCtbdSqpTxAIDbkclszm4S0dw7f/68SpcunT4zYFGQmJgoX19fJSQkqGTGMQhFkNlshKthw6QjR4xtlSoZQatrV9a/AgBnOXrUWDojq2F18fHShx9ap+3+4IObT8SQMSzNmJG5Z8nT0+hF8vOTJkywLiC7d6+0dGn2PUs+PkyEBACOZIM8/VXbzzLeAE5hMhkzBHbsaHwr+d57Umys1LOn8Z/pokXOrhAAihaz2ZgkwRKC7r3XuC9IMobLLVuWfVhau9a65uCCBdKrr2Z/nb/+sgYry3+lPj5ZT8QQEGA9rlUrY4hfxnbe3llfo3Zt671OAIC8l6tgFRUVpffee0/FixdXVFTUTduOHz/eocJgP3d3Y7bArl2lKVOkkSON5xZXrhhTuDNEEMCdIi1NSkjIOgQ9+aR1EqC5c40JEzLuv3bNep5t26xhaft2acyY7K8ZH299XqWKsQZhVgvC+vkZ6xVaPPus8TPbMpHEzQQFGQ8AgPPlKlhFR0fr2j//wzCdeuHn7W2s7P7CC9ZFFCVjDayPPjK+PX3hBeu3rwBQVMTFGUOeb1zjyNJbNGaMdNddRtv33jOGRGc38P2++6zB6vRp6ZdfMrdxdzfaXL1q3Xb//dLAgdkPrcsYeJ54IudrHHl45KwdAKBwydN7rIqi2+keq5wwm41fInbuNF6XKSP16mWsi8W3ngAKgtls9JyfP2+sEWS5//OXX4zHjZM1WB5r1xoLu0rS668bvfHZ2brVCD6SscjsoEHG8xIlMk/f/c471h6jQ4ess9ZlfBQrxv1HAHAncCQb5CpY3Wr4X/pJTSaNGzcuV4U4y50WrCRj1frZs6XRo40bqiXj29hOnaQBA4y1QwDgVsxmKTExcwBq29baEz53rnF/0Y1tkpON/b/9ZizuKhkzmb7/fvbXyxiWpkwxAlNWaxz5+Rk/zyw9VgkJRk9T6dL0BgEAbq7AJq+4cfjfzp07lZqaqpCQEEnSb7/9JldXVzVs2DBXRaBgeXoa07D36CF9950xa9TGjca0vS4u0pw5zq4QQEFLSJBOncp6eu/z56URI6yLtw4fbizpEB+feXpvyTYsHTpk/JzJipubcV2LsDDj3qIbJ2vI6j6k3r2NR074+hoPAADyU66C1dq1a9Ofjx8/Xj4+Ppo9e7ZKly4tSYqPj9dzzz2niIiIvK0S+cLNzTruf8cO476r/v2t+3fvNkLWCy9IoaFOKxNADl29anxxYhmytn179lN8nz8v/fSTdQa6YcOkyZOzP3e/ftZgdf26dPasdV+xYrYhKOM4iMcflypWzPoepBIlbIfXtW9vPAAAKIrsvsfqrrvu0sqVK1Uz41eIkvbt26fIyEidPHkyTwrMb3fiUMCc6tXLmB1Lkpo1M9ZK6djRmAIYQP4wm6WLF217jZo3l1xdjf1ffimtXp314rFXrkhnzhj3TkpSnz43D0sZe5befFOaODH7iRj69jXuh5KkEyeMBWwtvUpeXvn1aQAAULCcso5VYmKi/v7770zB6vTp07p48aK9p0Uh8sQTxtCg7783hgpu3GgMvXn8cenpp6XWra2/7AGwlZpqhI+sAtD580YPkWXShrfflubPt+67cXhdxrC0aZOxTl124uOtbevVM/6dZheWAgOtx737rjF7Xk7cdZf1/iUAAGCwu8eqa9euWr9+vcaNG6fGjRtLkrZs2aJXX31VDzzwgGbPnp2nheYXeqxu7eRJadYs4yb0Q4eMbRUrSn/+adyTJRnfsjNjFm53+/YZU3xnN7Ru2TLr2kNdukhffZX9uU6flsqWNZ737Wvcs5SRp6cxvXfp0tIPPxj/5iTpxx+lXbsyhyTLULySJfm3CACAvQpsVsCMLl++rEGDBmnmzJnpa1u5ubmpZ8+e+uCDD1S8eHF7TlvgCFY5ZzYbv9B98YXxTferrxrbr12TateWIiKM+yNatGBoEAoXs1lKSrL2GtWta933v/8Z9xhmFZTi442HJSw9/bQxFC87WYUlH5+se4tGjLD2LMXEGL1SGe9T8vbOn88CAABkzynByiIpKUl//PGHzGazqlWrVmQClQXBynE//SQ9/LD1dYkSUqtWRsiKjLT+8gg4Ki3NmEXuxgCUmCj997/Wdu+8I61aZdvmn+9/JEkpKfaFpffeM4bGZje0rmNHyfIj8PJl4xqW6wAAgMLPqcGqqCNYOe7aNWn9emnRImnxYmPooIXJJE2fLvXs6bTyUIgdPWr8fcnqHqSkJGMIqkWnTtK339rOOJdRTsKSu7sRgPbvN4bZSdK8eVJ0dNZrIfn5ScHB3EsIAMCdwqnB6sCBA4qNjVVKSorN9scff9yR0xYYglXeSkuTdu40QtbSpcY9KTt2SJalzRYulGbMMGY5a9ZMatDAuJcERY/ZbMxCl5BgOwnC0qXSwYNZD61LTpYOHLC2bd3auH8oOxnD0jPPGMNQJaNX9MYgNGuWdcbKTZuMiVdubFOsGPcfAQCA7DklWB05ckQdOnTQ3r17ZTKZZDmN6Z/fWlKzWjWyECJY5a+TJ40pmi2TXDz3nPT559b9Xl7SffcZIatZM+P+LIJWwUpLM4bSZQxAV65I7dpZ27z/vrRtW+ZFY5OTjZCTcSLQ3ISlXr2MIXvZDa176SXr34e//zb+LF1a8vDI288AAABActJ06/3791eVKlX0008/qWrVqtq2bZvOnTunV155RWPHjrX3tLjNBAXZvh40SKpVyzp9+9mz0s8/Gw/J+GXd8ov0Tz8ZC542aGD0iBRUT0NqWqp+jv1ZcRfjFOgTqIhKEXJ1KRpjwc6dMz7TrIbWpaUZU2pbdOokrVljtElLsz1P8eLSpUvW15s2ScuXZ33N5GRjOKglLLVsadyTdONsdZaHJWRL0tSpOX9vAQE5bwsAAFDQ7O6xKlOmjNasWaM6derI19dX27ZtU0hIiNasWaNXXnlF0dHRdhU0efJkffDBB4qLi1PNmjU1YcIERUREZNl23bp1euihhzJtj4mJUfXq1XN0PXqsnMdsNhYo3bhR+uUXKTbWCFMWLVoYv/hLxgQY1atLoaHWPx99NO/D1sKYher/Y3/9lfhX+rYKJSvoo0c/UsfQjnl7sWykpNj2yKxeLR07lvV6SO7utoEnPFzasiXr894Ylh57zPbYYsVsA9BPP1nvLVq6VIqLy7pXqXhxhtcBAIDbg1N6rFJTU1WiRAlJRsg6efKkQkJCFBwcrEOWxY5yaf78+RowYIAmT56spk2b6tNPP1WrVq104MABVapUKdvjDh06ZPPGy1qm8EKhZjJJISHGI6vJLWrUMIZ/xcQYvTCWXi7JGF4YF2dtGxVlhI3gYONRsaLRw1G2rBHK3HLwN31hzEL9+5t/yyzb7xpOJJ7Qv7/5t77t9G2Ow5XZbAyPswShlBTpn+XeJEljxxrv68ZepfPnjXpjY61t33xT2rw56+vcOAmnv7/k65v1+kZ+frbrjY0fL40ZY21zsyny27bN0dsGAAC4Y9kdrGrVqqVff/1VVatWVaNGjTRmzBh5eHho2rRpqlq1ql3nHD9+vHr27Knnn39ekjRhwgStWLFCU6ZM0ahRo7I9rly5cipVqpRd10ThNXGi8efly8ZkCBkfN36BsGiRsWBxVqpUMRZ1tejXz1gzqEQJ66NY8VSNudY/U6iS9M82k3r+b4AOurfT9WuuSkkxanjtNWu7Tp2Mdb4uXDAeGW8zrFBBOn7c+nrhwuzD0vnztq+bNs1+xrrSpW3D0tKlOe89CgnJWTsAAADcmt3B6o033lBSUpIkacSIEWrTpo0iIiLk7++v+fPn5/p8KSkp2rlzp4YMGWKzPTIyUps2bbrpsfXr19fVq1dVo0YNvfHGG1kOD7RITk5WcnJy+uvExMRc14qCVayYcZ9VgwbZtxk1SvrjD2PI3LFjRog5c8a45+jGdbSWL7cNWpKkyj9L3f9S9sy6YD6u16f9LP3ZXJIRljIGq7/+MmrIyNPT6EW68V6znj2lNm2yD0sZffDBTcq6AUPyAAAAnMPuYPXII4+kP69ataoOHDig8+fPq3Tp0jqZcSGjHDp79qxSU1MVcMMd6gEBATp16lSWxwQGBmratGlq2LChkpOTNXfuXLVo0ULr1q3TAw88kOUxo0aN0jvvvJPr+lC4Pflk1ttTU23vK5KkESOMRV8vXbI+9qTF6eccXOfBx+JU/boRmG7sJP3oI2MSB19fY5+fn+TtnfV5WNcLAADg9mJ3sMpKSkqK+vfvr+nTp+vKlSt2ncN0w1fuZrM50zaLkJAQhWQYzxQeHq7jx49r7Nix2QaroUOHKioqKv11YmKiKlasaFetKPxcXY2gk9FTT2Vut+7PQD00+9bnGz4oUM0rZ73vvvtyXR4AAABuEy63bmLrwoULevrpp1W2bFkFBQXp448/Vlpamt566y1VrVpVmzdv1syZM3NdSJkyZeTq6pqpd+r06dOZerFupnHjxjp8+HC2+z09PVWyZEmbBxBRKUIVSlaQSVmHeJNMqliyoiIqZT1DJQAAAO5suQ5Ww4YN04YNG9StWzf5+flp4MCBatOmjTZu3KgffvhB27dv11NZdQncgoeHhxo2bKhVq1bZbF+1apWaNGmS4/NER0crMDAw19fHnc3VxVUfPfqRJGUKV5bXEx6dUGTWswIAAEDByvVQwGXLlmnWrFlq2bKlXnrpJVWrVk333nuvJkyY4HAxUVFRevbZZxUWFqbw8HBNmzZNsbGx6tWrlyRjGN+JEyc0Z84cScasgZUrV1bNmjWVkpKiefPmacGCBVqwYIHDteDO0zG0o77t9G2W61hNeHRCga1jBQAAgKIn18Hq5MmTqlGjhiRj0govL6/06dEd1blzZ507d07vvvuu4uLiVKtWLS1fvlzBwcGSpLi4OMVmWOAnJSVFgwYN0okTJ+Tt7a2aNWtq2bJlat26dZ7UgztPx9COahfSTj/H/qy4i3EK9AlURKUIeqoAAABwUyaz2Zx54Z6bsNwHZVmE18fHR7/++quqVKmSLwXmN0dWVwYAAABw+3AkG+S6x8psNqt79+7y9PSUJF29elW9evVS8eLFbdotXLgwt6cGAAAAgCIp18GqW7duNq+feeaZPCsGAAAAAIqiXAerWbNm5UcdAAAAAFBk5Xq6dQAAAACALYIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4KBCF6wmT56sKlWqyMvLSw0bNtTPP/980/br169Xw4YN5eXlpapVq2rq1KkFVCkAAAAAGApVsJo/f74GDBig119/XdHR0YqIiFCrVq0UGxubZfujR4+qdevWioiIUHR0tIYNG6aXX35ZCxYsKODKAQAAANzJTGaz2ezsIiwaNWqkBg0aaMqUKenbQkND1b59e40aNSpT+8GDB2vJkiWKiYlJ39arVy/t2bNHmzdvztE1ExMT5evrq4SEBJUsWdLxNwEAAACgSHIkG7jlU025lpKSop07d2rIkCE22yMjI7Vp06Ysj9m8ebMiIyNttj3yyCOaMWOGrl27Jnd390zHJCcnKzk5Of11QkKCJONDBAAAAHDnsmQCe/qeCk2wOnv2rFJTUxUQEGCzPSAgQKdOncrymFOnTmXZ/vr16zp79qwCAwMzHTNq1Ci98847mbZXrFjRgeoBAAAA3C7OnTsnX1/fXB1TaIKVhclksnltNpszbbtV+6y2WwwdOlRRUVHpry9cuKDg4GDFxsbm+sPDzSUmJqpixYo6fvw4wyzzEJ9r/uBzzR98rvmDzzV/8LnmDz7X/MHnmj8SEhJUqVIl+fn55frYQhOsypQpI1dX10y9U6dPn87UK2VRvnz5LNu7ubnJ398/y2M8PT3l6emZabuvry9/KfNJyZIl+WzzAZ9r/uBzzR98rvmDzzV/8LnmDz7X/MHnmj9cXHI/x1+hmRXQw8NDDRs21KpVq2y2r1q1Sk2aNMnymPDw8EztV65cqbCwsCzvrwIAAACA/FBogpUkRUVF6bPPPtPMmTMVExOjgQMHKjY2Vr169ZJkDOPr2rVrevtevXrp2LFjioqKUkxMjGbOnKkZM2Zo0KBBznoLAAAAAO5AhWYooCR17txZ586d07vvvqu4uDjVqlVLy5cvV3BwsCQpLi7OZk2rKlWqaPny5Ro4cKA++eQTBQUF6eOPP9YTTzyR42t6enrq7bffznJ4IBzDZ5s/+FzzB59r/uBzzR98rvmDzzV/8LnmDz7X/OHI51qo1rECAAAAgKKoUA0FBAAAAICiiGAFAAAAAA4iWAEAAACAgwhWAAAAAOCgOz5YTZ48WVWqVJGXl5caNmyon3/+2dklFXkbNmxQ27ZtFRQUJJPJpMWLFzu7pCJv1KhRuu++++Tj46Ny5cqpffv2OnTokLPLKvKmTJmiOnXqpC+uGB4erh9++MHZZd12Ro0aJZPJpAEDBji7lCJv+PDhMplMNo/y5cs7u6zbwokTJ/TMM8/I399fxYoVU7169bRz505nl1WkVa5cOdPfV5PJpD59+ji7tCLt+vXreuONN1SlShV5e3uratWqevfdd5WWlubs0oq8ixcvasCAAQoODpa3t7eaNGmi7du35/j4OzpYzZ8/XwMGDNDrr7+u6OhoRUREqFWrVjZTuiP3kpKSVLduXU2aNMnZpdw21q9frz59+mjLli1atWqVrl+/rsjISCUlJTm7tCKtQoUKGj16tHbs2KEdO3boX//6l9q1a6f9+/c7u7Tbxvbt2zVt2jTVqVPH2aXcNmrWrKm4uLj0x969e51dUpEXHx+vpk2byt3dXT/88IMOHDigcePGqVSpUs4urUjbvn27zd/VVatWSZL+85//OLmyou3//u//NHXqVE2aNEkxMTEaM2aMPvjgA02cONHZpRV5zz//vFatWqW5c+dq7969ioyMVMuWLXXixIkcHX9HT7feqFEjNWjQQFOmTEnfFhoaqvbt22vUqFFOrOz2YTKZtGjRIrVv397ZpdxWzpw5o3Llymn9+vV64IEHnF3ObcXPz08ffPCBevbs6exSirxLly6pQYMGmjx5skaMGKF69eppwoQJzi6rSBs+fLgWL16s3bt3O7uU28qQIUP0yy+/MGolnw0YMEDff/+9Dh8+LJPJ5Oxyiqw2bdooICBAM2bMSN/2xBNPqFixYpo7d64TKyvarly5Ih8fH3333Xd67LHH0rfXq1dPbdq00YgRI255jju2xyolJUU7d+5UZGSkzfbIyEht2rTJSVUBOZOQkCDJCAHIG6mpqfr666+VlJSk8PBwZ5dzW+jTp48ee+wxtWzZ0tml3FYOHz6soKAgValSRU8++aSOHDni7JKKvCVLligsLEz/+c9/VK5cOdWvX1/Tp093dlm3lZSUFM2bN089evQgVDmoWbNmWr16tX777TdJ0p49e7Rx40a1bt3ayZUVbdevX1dqaqq8vLxstnt7e2vjxo05OodbfhRWFJw9e1apqakKCAiw2R4QEKBTp045qSrg1sxms6KiotSsWTPVqlXL2eUUeXv37lV4eLiuXr2qEiVKaNGiRapRo4azyyryvv76a+3cuVM7duxwdim3lUaNGmnOnDm699579ffff2vEiBFq0qSJ9u/fL39/f2eXV2QdOXJEU6ZMUVRUlIYNG6Zt27bp5Zdflqenp7p27ers8m4Lixcv1oULF9S9e3dnl1LkDR48WAkJCapevbpcXV2Vmpqq999/X0899ZSzSyvSfHx8FB4ervfee0+hoaEKCAjQV199pa1bt+qee+7J0Tnu2GBlceO3JmazmW9SUKj17dtXv/76a46/PcHNhYSEaPfu3bpw4YIWLFigbt26af369YQrBxw/flz9+/fXypUrM33zB8e0atUq/Xnt2rUVHh6uu+++W7Nnz1ZUVJQTKyva0tLSFBYWppEjR0qS6tevr/3792vKlCkEqzwyY8YMtWrVSkFBQc4upcibP3++5s2bpy+//FI1a9bU7t27NWDAAAUFBalbt27OLq9Imzt3rnr06KG77rpLrq6uatCggbp06aJdu3bl6Pg7NliVKVNGrq6umXqnTp8+nakXCygs+vXrpyVLlmjDhg2qUKGCs8u5LXh4eKhatWqSpLCwMG3fvl0fffSRPv30UydXVnTt3LlTp0+fVsOGDdO3paamasOGDZo0aZKSk5Pl6urqxApvH8WLF1ft2rV1+PBhZ5dSpAUGBmb6MiU0NFQLFixwUkW3l2PHjumnn37SwoULnV3KbeHVV1/VkCFD9OSTT0oyvmQ5duyYRo0aRbBy0N13363169crKSlJiYmJCgwMVOfOnVWlSpUcHX/H3mPl4eGhhg0bps9QY7Fq1So1adLESVUBWTObzerbt68WLlyoNWvW5PgfOHLPbDYrOTnZ2WUUaS1atNDevXu1e/fu9EdYWJiefvpp7d69m1CVh5KTkxUTE6PAwEBnl1KkNW3aNNMSFr/99puCg4OdVNHtZdasWSpXrpzNhACw3+XLl+XiYvsrvKurK9Ot56HixYsrMDBQ8fHxWrFihdq1a5ej4+7YHitJioqK0rPPPquwsDCFh4dr2rRpio2NVa9evZxdWpF26dIl/f777+mvjx49qt27d8vPz0+VKlVyYmVFV58+ffTll1/qu+++k4+PT3pPq6+vr7y9vZ1cXdE1bNgwtWrVShUrVtTFixf19ddfa926dfrxxx+dXVqR5uPjk+n+v+LFi8vf35/7Ah00aNAgtW3bVpUqVdLp06c1YsQIJSYm8i21gwYOHKgmTZpo5MiR6tSpk7Zt26Zp06Zp2rRpzi6tyEtLS9OsWbPUrVs3ubnd0b925pm2bdvq/fffV6VKlVSzZk1FR0dr/Pjx6tGjh7NLK/JWrFghs9mskJAQ/f7773r11VcVEhKi5557LmcnMN/hPvnkE3NwcLDZw8PD3KBBA/P69eudXVKRt3btWrOkTI9u3bo5u7QiK6vPU5J51qxZzi6tSOvRo0f6v/+yZcuaW7RoYV65cqWzy7otPfjgg+b+/fs7u4wir3PnzubAwECzu7u7OSgoyNyxY0fz/v37nV3WbWHp0qXmWrVqmT09Pc3Vq1c3T5s2zdkl3RZWrFhhlmQ+dOiQs0u5bSQmJpr79+9vrlSpktnLy8tctWpV8+uvv25OTk52dmlF3vz5881Vq1Y1e3h4mMuXL2/u06eP+cKFCzk+/o5exwoAAAAA8sIde48VAAAAAOQVghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADiJYAQAAAICDCFYAAAAA4CCCFQAAAAA4iGAFACi0mjdvrgEDBuT7MUXV6NGjFR4e7uwyAAAiWAEA8tmmTZvk6uqqRx99NNfHLly4UO+9914+VFU0dO/eXUOGDMl2/549e1S3bt0CrAgAkB2CFQAgX82cOVP9+vXTxo0bFRsbm6tj/fz85OPjk0+VFW5paWlatmyZ2rVrl22bPXv2qF69egVXFAAgWwQrAEC+SUpK0jfffKPevXurTZs2+vzzz9P3nTlzRuXLl9fIkSPTt23dulUeHh5auXKlpMzD+n788Uc1a9ZMpUqVkr+/v9q0aaM//vgjVzU1b95cffv2Vd++fdPP88Ybb8hsNqe3SU5O1ssvv6xy5crJy8tLzZo10/bt29P3f/vtt6pdu7a8vb3l7++vli1bKikpKcc1jBw5UiaTKdNj/Pjx6W1++eUXubi4qFGjRpKkmJgYNW/eXN7e3qpfv7527Nih3377jR4rACgkCFYAgHwzf/58hYSEKCQkRM8884xmzZqVHmDKli2rmTNnavjw4dqxY4cuXbqkZ555Ri+99JIiIyOzPF9SUpKioqK0fft2rV69Wi4uLurQoYPS0tJyVdfs2bPl5uamrVu36uOPP9aHH36ozz77LH3/a6+9pgULFmj27NnatWuXqlWrpkceeUTnz59XXFycnnrqKfXo0UMxMTFat26dOnbsaBPMbqVfv36Ki4tLf/Tu3VvBwcHq1KlTepslS5aobdu2cnFx0cGDB9WoUSOFhYVp3759euutt9SuXTuZzWbVqVMnV+8dAJA/TObc/E8AAEAuNG3aVJ06dVL//v11/fp1BQYG6quvvlLLli3T2/Tp00c//fST7rvvPu3Zs0fbt2+Xl5eXJKN3qV69epowYUKW5z9z5ozKlSunvXv3qlatWjk6pnnz5jp9+rT2798vk8kkSRoyZIiWLFmiAwcOKCkpSaVLl9bnn3+uLl26SJKuXbumypUra8CAAWrRooUaNmyoP//8U8HBwQ5/Ru+8845mzZql9evX25wvJCREY8eOVdu2bdWiRQsFBQVp7ty56fufeuop7dq1S4cOHXK4BgCA4+ixAgDki0OHDmnbtm168sknJUlubm7q3LmzZs6cadNu7Nixun79ur755ht98cUX6aEqK3/88Ye6dOmiqlWrqmTJkqpSpYok5frercaNG6eHKkkKDw/X4cOHlZqaqj/++EPXrl1T06ZN0/e7u7vr/vvvV0xMjOrWrasWLVqodu3a+s9//qPp06crPj4+V9e3yC5UxcTE6K+//lLLli117NgxrVmzRlFRUTbHuru7MwwQAAoRghUAIF/MmDFD169f11133SU3Nze5ublpypQpWrhwoU0QOXLkiE6ePKm0tDQdO3bspuds27atzp07p+nTp2vr1q3aunWrJCklJSXP6rYM5MgYvCzbTSaTXF1dtWrVKv3www+qUaOGJk6cqJCQEB09ejRX18kuVEnGMMCHH35Y3t7e2r17t9zc3FS7dm2bNrt27WLiCgAoRAhWAIA8d/36dc2ZM0fjxo3T7t270x979uxRcHCwvvjiC0lGIHr66afVuXNnjRgxQj179tTff/+d5TnPnTunmJgYvfHGG2rRooVCQ0Pt7inasmVLptf33HOPXF1dVa1aNXl4eGjjxo3p+69du6YdO3YoNDRUkhG6mjZtqnfeeUfR0dHy8PDQokWLcnz9m4UqSfruu+/0+OOPS5JcXFyUlpZmEx6XL1+u/fv3E6wAoBBxc3YBAIDbz/fff6/4+Hj17NlTvr6+Nvv+/e9/a8aMGerbt69ef/11JSQk6OOPP1aJEiX0ww8/qGfPnvr+++8znbN06dLy9/fXtGnTFBgYqNjY2Juu8XQzx48fV1RUlP773/9q165dmjhxosaNGydJKl68uHr37q1XX31Vfn5+qlSpksaMGaPLly+rZ8+e2rp1q1avXq3IyEiVK1dOW7du1ZkzZ9JD16RJk7Ro0SKtXr06y2uPGDFCkyZN0vfffy9PT0+dOnUq/f15enrq9OnT2r59uxYvXixJatiwodzd3TVo0CANGjRI+/btU+/evSWJoYAAUIgQrAAAeW7GjBlq2bJlplAlSU888YRGjhyp8ePHa8KECVq7dq1KliwpSZo7d67q1KmjKVOmpIcHCxcXF3399dd6+eWXVatWLYWEhOjjjz9W8+bNc11f165ddeXKFd1///1ydXVVv3799OKLL6bvHz16tNLS0vTss8/q4sWLCgsL04oVK1S6dGmVLFlSGzZs0IQJE5SYmKjg4GCNGzdOrVq1kiSdPXs22yngzWazPvjgAyUmJqpx48Y2+7Zs2aJGjRpp6dKlatSokcqVKydJCgoK0meffaahQ4fq66+/Vv369dWtWzdNnz5dd911V67fOwAgfzArIADgjnKrWQOd7fHHH1ezZs302muvObsUAEAucI8VAACFSLNmzfTUU085uwwAQC4xFBAAgEKEnioAKJoYCggAAAAADmIoIAAAAAA4iGAFAAAAAA4iWAEAAACAgwhWAAAAAOAgghUAAAAAOIhgBQAAAAAOIlgBAAAAgIMIVgAAAADgIIIVAAAAADiIYAUAAAAADvp/Sygy8eo14y4AAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1000x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Visualization ###\n", + "plt.figure().set_figwidth(10);\n", + "plt.plot(zTor, yTor,'b--'); # Plot of ideal contour (tor. type)\n", + "plt.plot(zTor[dTor], yTor[dTor],'go');\n", + "ax = plt.gca();\n", + "ax.set_aspect('equal', adjustable='box');\n", + "plt.xlim([0, l]);\n", + "plt.ylim([0, 2]);\n", + "plt.xlabel('Axial pos. $z/d$');\n", + "plt.ylabel('Radial pos. $y/d$');\n", + "plt.title('Ideal (Tor.)');\n", + "plt.savefig('./Output/1-2-1_Ideal_Tor.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a42c378c", + "metadata": {}, + "outputs": [], + "source": [ + "### Creation of geometry file ###\n", + "create_geometry_file('./Output/Ideal_Tor.out', zTor, yTor, dTor);" + ] + }, + { + "cell_type": "markdown", + "id": "3e059690", + "metadata": {}, + "source": [ + "### 1.2.2 Creation of ideal cylindrical nozzle" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "265b467e", + "metadata": {}, + "outputs": [], + "source": [ + "### Input parameters ###\n", + "l = 9.0; # nozzle length\n", + "al = 4.0; # diffusor angle\n", + "nz = 1000; # number of contour points\n", + "\n", + "### Nozzle contour (Ideal cylindrical nozzle) ###\n", + "zCyl, yCyl, dCyl = Cyl_ideal(l, al, nz); " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "eb5be96f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAEDCAYAAAA2gJUGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9M0lEQVR4nO3deViVZf7H8c9hRwUUFIRUlHSQXBFSUTFndDAdUbTFtFzSprFcIys1f02ZhVNumalpaG6VXbmkWSZlbmWuuJOZmZi7gqCoIHB+f5yBicDiLHg4+H5d13PJec6zfM8Zu8YP9/18b4PRaDQKAAAAAGAxJ3sXAAAAAACOjmAFAAAAAFYiWAEAAACAlQhWAAAAAGAlghUAAAAAWIlgBQAAAABWIlgBAAAAgJUIVgAAAABgJYIVAAAAAFiJYAUAKDPvv/++DAaDdu3a9afHDhw4UHXr1i3Tel5++WUZDIZSHz9o0CDdf//9xfafO3dOY8aMUZMmTVSlShV5eHioQYMGGjlypI4ePWp2XaX97P369VNcXJzZ1wcAlD0XexcAAEB5lJycrIULF2r79u1F9u/YsUPdunWT0WjUsGHDFBUVJTc3Nx05ckRLlixRy5YtlZ6eXiY1vfzyy2rYsKE2bNigv/3tb2VyDwCAZQhWAACUYNKkSWrZsqUiIyML92VmZqpHjx7y8PDQd999p1q1ahW+16FDB/3rX//SJ598UmY13X333br//vs1adIkghUAlDNMBQQA3Hbvv/++QkND5e7urrCwMC1atKjE43JycjRx4kQ1bNhQ7u7uqlGjhh5//HFduHChyHHLli1TTEyMAgMD5enpqbCwMI0ZM0ZZWVkW1Xfu3DmtXLlS/fr1K7J/3rx5Onv2rN54440ioeq3HnzwQUnS4sWLZTAYtG3btmLHTJgwQa6urjp9+rTZtfXr109fffWVjh07Zva5AICyQ7ACANxW77//vh5//HGFhYVp+fLlGj9+vF599VVt2LChyHH5+fnq0aOHJk2apL59+2rt2rWaNGmSkpKS1KFDB12/fr3w2KNHj6pr165KTEzUunXrNGrUKH388ceKjY21qMb169fr5s2b+utf/1psv7Ozc6mu27t3b9WsWVPvvPNOkf25ubl699131bNnTwUFBZldW4cOHWQ0GvX555+bfS4AoOwwFRAAcNvk5+frxRdfVIsWLbRy5crCRhLt2rVTgwYNigSNjz/+WOvWrdPy5cvVq1evwv3NmjXTvffeq/fff19PPfWUJGn8+PGF7xuNRrVt21ZhYWG67777tH//fjVt2tSsOrdt2yZPT081bNiwyP7U1FTVqFFDlStX/tNruLm56V//+pcSEhI0depU+fv7S5JWrFih06dPa9iwYWbVVMDf31933XWXvv32Ww0fPtyiawAAbI8RKwDAbXPkyBGdPn1affv2LdKdLzg4WG3atCly7GeffaaqVasqNjZWubm5hVvz5s1Vs2ZNbdy4sfDYn3/+WX379lXNmjXl7OwsV1dX3XfffZKklJQUs+s8ffq0atSoYVYHwZIUBL958+YV7ps5c6aaNGmi9u3bW3xdf39/nTp1yqraAAC2RbACANw2ly5dkiTVrFmz2Hu/33fu3DldvnxZbm5ucnV1LbKdPXtWFy9elCRdvXpV0dHR2r59uyZOnKiNGzdq586dWrFihSQVmTJYWtevX5eHh0ex/XXq1NGFCxdK/exWQECAevfurXfffVd5eXnav3+/tmzZYvFoVQEPDw+LPhcAoOwwFRAAcNv4+flJks6ePVvsvd/vq169uvz8/LRu3boSr+Xl5SVJ2rBhg06fPq2NGzcWjlJJ0uXLly2us3r16tqzZ0+x/Z07d9b69eu1Zs0aPfLII6W61siRI7V48WJ9+umnWrdunapWrapHH33U4tokKS0trczX/AIAmIcRKwDAbRMaGqrAwEB9+OGHMhqNhftPnDih7777rsix3bp106VLl5SXl6fIyMhiW2hoqCQVTtdzd3cvcv67775rcZ0NGzbUpUuXlJGRUWT/4MGDVbNmTT3//PO3nIpXMFJWICIiQm3atNF//vMfLV26VAMHDizVM1q3kpubq5MnT+qee+6x+BoAANsjWAEAbhsnJye9+uqr2r17t3r27Km1a9dq6dKl6tSpU7GpgI888oi6dOmirl27asKECVq3bp2+/vprLVy4UAMHDtTKlSslSW3atFG1atU0ZMgQrVy5Up999pn69Omjffv2WVxnQee93y8O7OPjo08//VQ3btxQeHi4JkyYoKSkJG3atEnvvfeeOnTooMGDBxe73siRI7Vjxw5dv35dTz/9dKlq6Nixo1xcik8s2b9/v65du1asYyEAwL4IVgCA22rw4MF67733dPjwYfXq1UsTJkzQuHHjii146+zsrNWrV2vcuHFasWKFevbsqbi4OE2aNEkeHh5q0qSJJNP0wrVr16pSpUp67LHHNGjQIFWpUkXLli2zuMa2bduqbt26+vTTT4u917JlSx04cECDBg3Sxx9/rLi4OHXu3Fn/+c9/1LBhQ23ZsqXYOXFxcXJ3d1fnzp3VoEGDUtWQl5envLy8YvtXrVql6tWrKyYmxvwPBgAoMwbjb+diAAAASdKUKVP02muv6dSpU/L09LTqWmvWrFH37t21du1ade3a1eLr5OXlqX79+urbt69ee+01q2oCANgWwQoAgBLcuHFDYWFhGjp0qEaPHm3RNQ4fPqwTJ05o5MiRqly5svbs2WNVC/eFCxdq9OjROnr0qKpWrWrxdQAAtsdUQAAASuDh4aHFixcXa4phjqefflrdu3dXtWrV9OGHH1q9LlZ+fr6WLl1KqAKAcogRKwAAAACwUrkasUpISNC9994rLy8v+fv7Ky4uTkeOHPnT8zZt2qSIiAh5eHgoJCREc+bMuQ3VAgAAAIBJuQpWmzZt0tChQ/X9998rKSlJubm5iomJ+cMV7o8fP66uXbsqOjpaycnJGjdunEaMGKHly5ffxsoBAAAA3MnK9VTACxcuyN/fX5s2bVL79u1LPOaFF17Q6tWrlZKSUrhvyJAh2rdvn7Zt23a7SgUAAABwByu+8mA5UrDiva+v7y2P2bZtW7G1PDp37qzExETdvHlTrq6uRd7Lzs5WdnZ24ev8/HylpaXJz8/P6oeKAQAAADguo9GoK1euKCgoSE5O5k3uK7fBymg0Kj4+Xu3atVPjxo1vedzZs2cVEBBQZF9AQIByc3N18eJFBQYGFnkvISFBr7zySpnUDAAAAMDxnTx5UrVq1TLrnHIbrIYNG6b9+/dr69atf3rs70eaCmY3ljQCNXbsWMXHxxe+zsjIUJ06dXTy5El5e3tbWTUAAAAAR5WZmanatWvLy8vL7HPLZbAaPny4Vq9erc2bN/9pUqxZs6bOnj1bZN/58+fl4uIiPz+/Yse7u7uXuCaJt7c3wQoAAACARY8IlauugEajUcOGDdOKFSu0YcMG1atX70/PiYqKUlJSUpF969evV2RkZLHnqwAAAACgLJSrYDV06FAtWbJEH3zwgby8vHT27FmdPXtW169fLzxm7Nix6t+/f+HrIUOG6MSJE4qPj1dKSormz5+vxMREjR492h4fAQAAAMAdqFwFq9mzZysjI0MdOnRQYGBg4bZs2bLCY86cOaPU1NTC1/Xq1dPnn3+ujRs3qnnz5nr11Vc1Y8YMPfDAA/b4CAAAAADuQOV6HavbITMzUz4+PsrIyOAZKwAAAOAOZk02KFcjVgAAAADgiAhWAAAAAGAlghUAAAAAWIlgBQAAAABWIlgBAAAAgJUIVgAAAABgJYIVAAAAAFiJYAUAAAAAViJYAQAAAICVCFYAAAAAYCWCFQAAAABYiWAFAAAAAFYiWAEAAACAlQhWAAAAAGAlghUAAAAAWIlgBQAAAABWIlgBAAAAgJUIVgAAAABgJYIVAAAAAFiJYAUAAAAAViJYAQAAAICVCFYAAAAAYCWCFQAAAABYiWAFAAAAAFYiWAEAAACAlQhWAAAAAGAlghUAAAAAWIlgBQAAAABWIlgBAAAAgJUIVgAAAABgJRdzDm7Tpo2aN2+u5s2bq1mzZmratKk8PT3LqjYAAAAAcAhmBasePXpo3759euutt/Tjjz9KkurXr69mzZoVCVyBgYFlUiwAAAAAlEdmTQV84YUX9MEHH+jQoUP6/vvvFRAQoPDwcLm7u2vp0qXq2rWratWqpYCAAIuK2bx5s2JjYxUUFCSDwaBVq1b94fEbN26UwWAotv3www8W3R8AAAAALGHWiNVvPfnkk3rnnXfUo0ePwn2ff/65nnzySQ0cONCia2ZlZalZs2Z6/PHH9cADD5T6vCNHjsjb27vwdY0aNSy6PwAAAABYwuJglZKSoqZNmxbZ17VrV82aNUtvv/22Rdfs0qWLunTpYvZ5/v7+qlq1qkX3LLBrl/S3v1l1CQAAAAB3KIu7ArZq1Upz5swptr9JkyZKTk62qihzhYeHKzAwUB07dtQ333zzh8dmZ2crMzOzyCZJ27ffjkoBAAAAVEQWB6tZs2Zpzpw5GjhwoPbv36/8/HzduHFDkydPVuXKlW1Z4y0FBgZq7ty5Wr58uVasWKHQ0FB17NhRmzdvvuU5CQkJ8vHxKdxq164tSbp8+baUDAAAAKACMhiNRqOlJ//www8aOnSovvnmG7m6uio/P18uLi5KTExU3759rSvMYNDKlSsVFxdn1nmxsbEyGAxavXp1ie9nZ2crOzu78HVmZqZq166tf/4zQ3Pnepd4DgAAAICKLzMzUz4+PsrIyCjSw6E0zH7Gaty4cYqLi1PLli3VsGFDff311zpx4oT27dsnJycnRURE2LXdeuvWrbVkyZJbvu/u7i53d/di+xmxAgAAAGAps4PVmTNn1K1bNzk7Oys2NlZxcXHq2LGjgoODy6I+syUnJ1sU7NLTy6AYAAAAAHcEs4PVggULZDQatXXrVq1Zs0bx8fE6deqU/v73v6t79+7q1q2bqlevblExV69e1U8//VT4+vjx49q7d698fX1Vp04djR07VqdOndKiRYskSdOnT1fdunXVqFEj5eTkaMmSJVq+fLmWL19u9r0ZsQIAAABgKYuaVxgMBkVHR+uNN97QDz/8oB07dqh169aaN2+e7rrrLrVv316TJ0/WqVOnzLrurl27FB4ervDwcElSfHy8wsPD9dJLL0kyjZalpqYWHp+Tk6PRo0eradOmio6O1tatW7V27Vr16tXL7M/EiBUAAAAAS1nVvKIkFy5c0OrVq7V69WpFR0dr9OjRtry8zRU8oObnl6GLF2leAQAAANyprGleYXGwOnnyZGGrckdW8OU5O2fo5k1vGQz2rggAAACAPVgTrCxex6phw4b6v//7P2VlZVl6iXIlL0+qIB8FAAAAwG1mcbBKSkrS+vXr1aBBAy1YsMCWNdlNWpq9KwAAAADgiCwOVm3atNH27ds1adIkvfTSSwoPD9fGjRttWNrtRwMLAAAAAJawOFgV6N+/v3788UfFxsbqH//4h3r27FmkZboj+U3DQQAAAAAoNauDlSQZjUbFxMToySef1OrVq9W4cWM9++yzunLlii0uf9scPmzvCgAAAAA4IrMXCC4wZ84c7dy5Uzt37lRKSoqcnZ3VtGlTDR06VM2bN9fSpUt1zz33aOXKlYqMjLRlzWWGYAUAAADAEha3W69du7Zat25duEVGRsrd3b3IMa+//ro++OADHTx40CbFloWClopShiIjvbVzp70rAgAAAGAPdlnHqjTOnTunoKAg5eXlldUtrPbbYFW5srcyMyUnm0yQBAAAAOBI7LKOVWn4+/trw4YNZXkLm/H0NK1j9cMP9q4EAAAAgKMp02BlMBh03333leUtbCY83PTn9u32rQMAAACA42HS239FRJj+3LHDvnUAAAAAcDwEq/+6917Tn1u22LcOAAAAAI6HYPVf0dGSwSAdOiSdPm3vagAAAAA4EpsHq06dOikkJMTWly1zvr5SwXJbSUn2rQUAAACAY7F5sOrZs6cGDBhg68veFjExpj/Xr7dvHQAAAAAcS5muY+UIfturfu9eb913n1SjhnT2LOtZAQAAAHeScruOlaNp3VqqUkW6cEHau9fe1QAAAABwFBYHq+vXr+vatWuFr0+cOKHp06fryy+/tElh9uDmJnXqZPp5xQr71gIAAADAcVgcrHr06KFFixZJki5fvqxWrVppypQpiouL0+zZs21W4O328MOmP5ctk+7sSZIAAAAASsviYLVnzx5FR0dLkj755BMFBAToxIkTWrRokWbMmGGzAm+32FjJ01P66Sdpzx57VwMAAADAEVgcrK5duyYvLy9J0vr169WrVy85OTmpdevWOnHihM0KvN2qVJG6dTP9vGyZfWsBAAAA4BgsDlb169fXqlWrdPLkSX355ZeK+W+v8vPnz5vdQaO8eeQR058ffijl5dm3FgAAAADln8XB6qWXXtLo0aNVt25dtWzZUlFRUZJMo1fh4eE2K9AeunaV/PykX3+V1q2zdzUAAAAAyjuLg9WDDz6o1NRU7dq1S+t/s6Jux44dNW3aNJsUZy8eHlLBGsfvvmvfWgAAAACUf1YtEHz58mUlJiYqJSVFBoNBYWFhGjx4sHx8fGxZY5m61SJgP/wghYWZFgk+cUKqVcuORQIAAAAoc3ZZIHjXrl26++67NW3aNKWlpenixYuaNm2a7r77bu2pAO30GjaU7rtPys+XHLh7PAAAAIDbwOIRq+joaNWvX1/z5s2Ti4uLJCk3N1dPPPGEfv75Z23evNmmhZaVP0qlK1dKvXpJ1apJqammjoEAAAAAKia7jVi98MILhaFKklxcXPT8889r165dll62XOneXapfX0pPlxYssHc1AAAAAMori4OVt7e3UlNTi+0/efJk4fpWjs7ZWXr2WdPPU6ZIOTn2rQcAAABA+WRxsOrdu7cGDx6sZcuW6eTJk/r111/10Ucf6YknnlCfPn1sWaNdDRgg1axpamDBqBUAAACAkrj8+SElmzx5sgwGg/r376/c3FxJkqurq5566ilNmjTJZgXam6enNG6cNGKE9OqrpqDl4WHvqgAAAACUJxaPWLm5uemtt95Senq69u7dq+TkZKWlpWnatGlyd3e36JqbN29WbGysgoKCZDAYtGrVqj89Z9OmTYqIiJCHh4dCQkI0Z84ci+79R558UqpdWzp1ig6BAAAAAIqzOFgVqFSpkho3bqwmTZqoUqVKVl0rKytLzZo108yZM0t1/PHjx9W1a1dFR0crOTlZ48aN04gRI7R8+XKr6vg9d3fppZdMPyckSFev2vTyAAAAABycVcEqMTFRjRs3loeHhzw8PNS4cWO99957Fl+vS5cumjhxonr16lWq4+fMmaM6depo+vTpCgsL0xNPPKFBgwZp8uTJFtdwKwMGmDoEXrhgClcAAAAAUMDiZ6z+7//+T9OmTdPw4cMVFRUlSdq2bZueeeYZ/fLLL5o4caLNiryVbdu2KSYmpsi+zp07KzExUTdv3pSrq2uxc7Kzs5WdnV34OjMzs1T3cnWVJk+W4uJMfz7+uCloAQAAAHAcRqOUlSWlpRXfTp+2/LoWB6vZs2dr3rx5RToAdu/eXU2bNtXw4cNvS7A6e/asAgICiuwLCAhQbm6uLl68qMDAwGLnJCQk6JVXXrHoft27S507S19+KY0aJX32mUWXAQAAAGClvDwpI8MUiNLTSw5Kv98Kjrt50/b1WBys8vLyFBkZWWx/REREYZfA28FgMBR5bTQaS9xfYOzYsYqPjy98nZmZqdq1a5fyXtJbb0lNmkhr10pr1kixsRYWDgAAAEA5ObcORn8UmC5fNo0+WcrVVfLzk3x9/7dVrix9+KFl17M4WD322GOaPXu2pk6dWmT/3Llz9eijj1p6WbPUrFlTZ8+eLbLv/PnzcnFxkZ+fX4nnuLu7W9y1UJJCQ6VnnpHeeEN6+mmpfXvJx8fiywEAAAAOz2iUrl83b9SoYLO2MVzlykXD0a22atWKvq5UyTRw8luZmXYIVpKpecX69evVunVrSdL333+vkydPqn///kVGhX4fvmwlKipKa9asKbJv/fr1ioyMLPH5Klt56SVp+XLp2DHpueekuXPL7FYAAADAbZOfbwoXpR01+u2Wk2P5fQ0GqWrVW4egPwpLbm42+/hWsThYHTx4UC1atJAkHTt2TJJUo0YN1ahRQwcPHiw87lZT8kpy9epV/fTTT4Wvjx8/rr1798rX11d16tTR2LFjderUKS1atEiSNGTIEM2cOVPx8fH65z//qW3btikxMVEfWhozS6lyZSkxUerQQZo3T3r4YalTpzK9JQAAAFBqubl/HohKej893RSuLOXiYt6oUcHm4yM5O9vu89uDwWi0ZmaibW3cuFF//etfi+0fMGCA3n//fQ0cOFC//PKLNm7cWPjepk2b9Mwzz+jQoUMKCgrSCy+8oCFDhpT6npmZmfLx8VFGRoa8vb3NqnfYMOmdd0yLB+/bZ/qLAgAAANjKb6fXmdOgoZSNr2+pUiXzR458faUqVYpPr3Mk1mSDchWs7MGaL+/qVal5c9OUwF69pE8+cey/SAAAALA9o1G6csW8kaOC7cYN6+7t42PeyFHBex4etvnsjsaabGDVM1Z3uipVpI8+ktq0kVaskN59VzJjsAwAAAAOJDfX1InO3NbeaWmm1uCWcnY2f+TI19f0zJIL/9q/bfiqrRQZKU2aJD37rGltq1atpPBwe1cFAACAW8nONn/kKC3NtGaSNdzdi7f3Lk1g8vJiVpQjIFjZwKhR0oYNprWtevSQdu2S/P3tXRUAAEDFZTRKWVmWtfe+ds26e3t5md/a29dX8vS0zWdH+USwsgEnJ2nJEqllS+noUenBB6Wvvio/rR8BAADKq7w800iQJe29c3Mtv6+T0//CjznT7KpVMy0sC/yeWcHqt2tT/ZmyWruqvKpaVVq92jQVcMsWacQIac4ce1cFAABwe+TkWNbe+/Jl0+iTpdzczG/t7esreXubwhVgK2YFq+Tk5FIdZ87aVRVJw4bSBx9IsbGmRhZ/+YtkRhYFAACwK6PRNE3OnFGjgmOvXrXu3lWqWNagoVIlnj9C+UC7dStaKt7Km29Kzz9v+nnRIqlfP5tcFgAAoFTy803rGFnSoCEnx/L7GgymWTzmjBwVvM8jFCgPaLdezoweLZ05I02bJg0aJFWvLnXpYu+qAACAo7l50zRVztwGDenppnBlKRcX80eOfH1NayY5O9vs4wMOxepgdfjwYaWmpirnd7/e6N69u7WXdlgGgzR5snThgqmpxQMPSOvXS+3a2bsyAABgD9evmz9ylJZmWlTWGpUqmdfWu2CrXJnpdYC5LA5WP//8s3r27KkDBw7IYDCoYEZhwfNVedasglYBODlJ8+dLly5JX3wh3X+/6c/oaHtXBgAALGE0moKOua2909KkGzesu7ePj/kNGqpVkzw8bPPZAfw5i4PVyJEjVa9ePX311VcKCQnRjh07dOnSJT377LOaPHmyLWt0WK6u0iefmNa2+uor03TAtWul++6zd2UAANy5cnOLTq8rbZOG9HRTa3BLOTubN2pUcGzVqqapeQDKN4v/M922bZs2bNigGjVqyMnJSU5OTmrXrp0SEhI0YsSIUncQrOgqVTK1YY+LM00H7NLF9LpTJ3tXBgCAY8vONn/kKC3NtGaSNdzdJT8/85oz+PqaFpVleh1QcVkcrPLy8lSlShVJUvXq1XX69GmFhoYqODhYR44csVmBFYGnp/Tpp1LPntK6dVLXrtLChVKfPvauDAAA+zIaTW26zRk1Kvj52jXr7u3lZX5zBl9f0/+vA8DvWRysGjdurP379yskJEStWrXSG2+8ITc3N82dO1chISG2rLFC8PCQVq2S+veXPv5Y6tvX1DmQda4AABVBXp5pJMiSBg25uZbf18mpaPgp7VS7qlVNU/YBwFYsDlbjx49XVlaWJGnixInq1q2boqOj5efnp2XLltmswIrE3V368EMpMFB66y3p2WelX36Rpk5l7jQAoHzIySldGPr9MZcvm0afLOXmZv7Ika+v5O1tClcAYG82XSA4LS1N1apVK+wM6AjKYoHgP2M0mtqxFywi/Le/mUax/Pxuy+0BABWc0WiaJmfJ6NF/f2dqsSpVzBs5KjiuUiWePwJgf+VmgWBfX19bXq7CMhik556T6teX+vWTNmyQ7r3XNFWwaVN7VwcAKC/y86XMTMsaNPxueUmzGAymqXLmjBwVvOfmZrOPDwAOxaxgFR8fr1dffVWVK1dW/J88HDR16lSrCrsT9Owpbdtmasd+/LjUqpU0fbr05JP81g4AKpKbN/8XgMxp0pCebgpXlnJxMW/UqGDz8TG1BgcAlJ5ZwSo5OVk3b94s/BnWa9JE2rnTNHL1xRfSkCFSUpI0b57p/+gAAOXH9evmjxylpZkWlbVGpUrmt/b29ZUqV+YXdQBwu9j0GStHZI9nrEqSny9NmyaNHWv6zWadOtLixVL79nYrCQAqJKPRNL3OkvbeN25Yd28fH/MbNFSrZuosCwAoe9ZkA7OC1Z9N/yu8qMGgKVOmmFWIvZSXYFVg1y7pkUekY8dMr59+Wpo0ybTWBgDgf3JzTZ3ozG3QkJ5uag1uKWdn80eOqlUzPbNEB1gAKN9uW/OK30//2717t/Ly8hQaGipJ+vHHH+Xs7KyIiAizisD/REZKe/aYWrG/9540a5a0Zo00d650//32rg4AbO/GDcvae2dkWHdfd3dTN1ZzGzR4eTG9DgBQnFnB6ptvvin8eerUqfLy8tLChQtV7b8PA6Wnp+vxxx9XdHS0bau8w3h7m56xeuQR6Z//NDW26NJFeugh6c03peBge1cIAEUZjdLVq+a19S7Yrl+37t7e3ua39vb1lTw9bfPZAQCQrHjG6q677tL69evVqFGjIvsPHjyomJgYnT592iYFlrXyNhXw97KypPHjpRkzTM9heXiY1r96/nnTQ8kAYEt5eaaRIEsaNOTmWn5fJ6fi4ag0YalqVcnV1WYfHwBwh7PLOlaZmZk6d+5csWB1/vx5XbG2/REKVa5samoxcKA0apS0caM0YYI0f7700kum/fyjAsDv5eSY39o7Lc30zJI1LY3c3Mxv7e3raxp1cnKy2ccHAOC2s3jEqn///tq0aZOmTJmi1q1bS5K+//57Pffcc2rfvr0WLlxo00LLSnkfsfoto1FaudL0/NUvv5j2hYRI//639OijrDkCVDRGo3TtmvkjR2lpptFua1SpYlmDhkqVeP4IAOC4bltXwN+6du2aRo8erfnz5xeubeXi4qLBgwfrzTffVGUHmafmSMGqwI0b0rvvSq+/Lp0/b9r3l79Io0eb1sOiLS9QvuTnm9p7m9vaOy3NNPJkKYPBNFXOnJGjgv1ubjb7+AAAOAy7BKsCWVlZOnbsmIxGo+rXr+8wgaqAIwarAllZ0jvvSG+8IV26ZNpXo4Y0dKipTXuNGvatD6hobt4sHnxKM9Xu8mVTuLKUi4upe525DRp8fBjJBgDAHHYNVo7OkYNVgStXpMRE07NYqammfW5uUq9epq6CHTrw7ALwW9evmz9ylJZm+m/NGpUqmd/a29fX9Kwl0+sAACh7dg1Whw8fVmpqqnJ+N1+le/fu1lz2tqkIwapAbq60fLk0ebJpoeECd99tanLRu7fUoIHdygNsymgsOr3OnCYNN25Yd28fH/Nbe1erxjRdAADKO7sEq59//lk9e/bUgQMHZDAYVHAZw39/rZpnzbL2t1FFCla/tWePaS2spUuL/pY9PFx6+GHTaFaDBvwWHPaXm2uaKmdue+/0dFNrcEs5O5vf2rtgep2Lxf1UAQBAeWaXYBUbGytnZ2fNmzdPISEh2rFjhy5duqRnn31WkydPdphFgitqsCqQlSV98on04YfSV18V/YdoSIjUtatp8eH27U1dwO5Eefl52pK6RWeunFGgV6Ci60TL2YkHU8x144Zl7b0zMqy7r7u76fkjcxs0eHnxiwUAAFCUXYJV9erVtWHDBjVt2lQ+Pj7asWOHQkNDtWHDBj377LNKTk625LKaNWuW3nzzTZ05c0aNGjXS9OnTbxnSNm7cqL/+9a/F9qekpKhhw4alul9FD1a/dfGiqV37xx9LmzaZHsQv4OwsNW8utW0rtWsntWkjBQVV/H94rkhZoZHrRurXzF8L99XyrqW37n9LvcJ62bEy+zAapatXLWvvff26dff29ja/OYOvr+TpaZvPDgAAYJcFgvPy8lTlv0Mc1atX1+nTpxUaGqrg4GAdOXLEomsuW7ZMo0aN0qxZs9S2bVu9++676tKliw4fPqw6derc8rwjR44U+eA1aIdXourVTc0s/vlP0/TAr7+WvvhCWrfO1PRi927TNmOG6Xg/P6lJk/9tDRtKwcGmwFURpkKtSFmhBz9+UEYV/d3CqcxTevDjB/XJw584bLjKyzONBFnSoCE31/L7OjmVHI7+LDBVrcpC1wAAwLFZPGIVHR2tZ599VnFxcerbt6/S09M1fvx4zZ07V7t379bBgwfNvmarVq3UokULzZ49u3BfWFiY4uLilJCQUOz4ghGr9PR0Va1a1ZKPcUeNWP2R1FTp22//t+3ff+v20E5O0l13mUJW9eqmfzRXrWravL1NocvZ2bS5uBQd9frt37bf/82z9Xt/dFxefp7+fbmuLuf/qpIZVNVQS//2OS6D/jct0Bb3ttVn+6POdhkZxa9lDjc380eOfH1N//vTgRIAADgqu4xYjR8/XllZWZKkiRMnqlu3boqOjpafn5+WLVtm9vVycnK0e/dujRkzpsj+mJgYfffdd394bnh4uG7cuKF77rlH48ePL3F6YIHs7GxlZ2cXvs7MzDS71oqoTh3T1qeP6fX169Lhw9LBg9KBA6btp5+kkydNUwhPnjRtDqvuFmngrUKVJBl12XhSz0zfIv3S4XZVZXNVqljWoMHTs+JPAwUAALAli4NV586dC38OCQnR4cOHlZaWpmrVqun06dNmX+/ixYvKy8tTQEBAkf0BAQE6e/ZsiecEBgZq7ty5ioiIUHZ2thYvXqyOHTtq48aNat++fYnnJCQk6JVXXjG7vjuNp6cUEWHafis/Xzp3TjpxwjTKVbD46eXLpmllV66YppLl5Zm2kqaV/f4f7L99bel75l4n1fuMthcvrZiov59R8G+6Ktqj1lu95+Hxv6YNt5p+5+ZW8ucCAACAbdn0SZmcnByNHDlS8+bN03ULn2Q3/O5fkkajsdi+AqGhoQoNDS18HRUVpZMnT2ry5Mm3DFZjx45VfHx84evMzEzVrl3bolrvRE5OUmCgaWvd2t7VWG7jL4H668I/P+71cYHqULfMywEAAICDM/tpiMuXL+vRRx9VjRo1FBQUpBkzZig/P18vvfSSQkJCtG3bNs2fP9/sQqpXry5nZ+dio1Pnz58vNor1R1q3bq2jR4/e8n13d3d5e3sX2XDnia4TrVretWRQyaHdIINqe9dWdB3HWDYAAAAA9mV2sBo3bpw2b96sAQMGyNfXV88884y6deumrVu36osvvtDOnTvVp+BBHTO4ubkpIiJCSUlJRfYnJSWpTZs2pb5OcnKyAgMDzb4/7izOTs566/63JKlYuCp4Pf3+6axnBQAAgFIxeyrg2rVrtWDBAnXq1ElPP/206tevr7/85S+aPn261cXEx8erX79+ioyMVFRUlObOnavU1FQNGTJEkmka36lTp7Ro0SJJ0vTp01W3bl01atRIOTk5WrJkiZYvX67ly5dbXQsqvl5hvfTJw5+UuI7V9PunO2yrdQAAANx+Zger06dP65577pFkalrh4eGhJ554wibF9O7dW5cuXdKECRN05swZNW7cWJ9//rmCg4MlSWfOnFFqamrh8Tk5ORo9erROnTolT09PNWrUSGvXrlXXrl1tUg8qvl5hvdQjtIe2pG7RmStnFOgVqOg60YxUAQAAwCxmr2NV8BxUwSK8Xl5e2r9/v+rVq1cmBZY11rECAAAAIN3mdayMRqMGDhwod3d3SdKNGzc0ZMgQVa5cuchxK1asMPfSAAAAAOCQzA5WAwYMKPL6scces1kxAAAAAOCIzA5WCxYsKIs6AAAAAMBhmd1uHQAAAABQFMEKAAAAAKxEsAIAAAAAKxGsAAAAAMBKBCsAAAAAsBLBCgAAAACsRLACAAAAACsRrAAAAADASgQrAAAAALASwQoAAAAArESwAgAAAAArEawAAAAAwEoEKwAAAACwEsEKAAAAAKxEsAIAAAAAKxGsAAAAAMBKBCsAAAAAsBLBCgAAAACsRLACAAAAACsRrAAAAADASgQrAAAAALASwQoAAAAArESwAgAAAAArEawAAAAAwEoEKwAAAACwEsEKAAAAAKxEsAIAAAAAKxGsAAAAAMBKBCsAAAAAsFK5C1azZs1SvXr15OHhoYiICG3ZsuUPj9+0aZMiIiLk4eGhkJAQzZkz5zZVCgAAAAAm5SpYLVu2TKNGjdKLL76o5ORkRUdHq0uXLkpNTS3x+OPHj6tr166Kjo5WcnKyxo0bpxEjRmj58uW3uXIAAAAAdzKD0Wg02ruIAq1atVKLFi00e/bswn1hYWGKi4tTQkJCseNfeOEFrV69WikpKYX7hgwZon379mnbtm2lumdmZqZ8fHyUkZEhb29v6z8EAAAAAIdkTTZwKaOazJaTk6Pdu3drzJgxRfbHxMTou+++K/Gcbdu2KSYmpsi+zp07KzExUTdv3pSrq2uxc7Kzs5WdnV34OiMjQ5LpSwQAAABw5yrIBJaMPZWbYHXx4kXl5eUpICCgyP6AgACdPXu2xHPOnj1b4vG5ubm6ePGiAgMDi52TkJCgV155pdj+2rVrW1E9AAAAgIri0qVL8vHxMeucchOsChgMhiKvjUZjsX1/dnxJ+wuMHTtW8fHxha8vX76s4OBgpaammv3l4Y9lZmaqdu3aOnnyJNMsbYjvtWzwvZYNvteywfdaNvheywbfa9ngey0bGRkZqlOnjnx9fc0+t9wEq+rVq8vZ2bnY6NT58+eLjUoVqFmzZonHu7i4yM/Pr8Rz3N3d5e7uXmy/j48PfynLiLe3N99tGeB7LRt8r2WD77Vs8L2WDb7XssH3Wjb4XsuGk5P5Pf7KTVdANzc3RUREKCkpqcj+pKQktWnTpsRzoqKiih2/fv16RUZGlvh8FQAAAACUhXITrCQpPj5e7733nubPn6+UlBQ988wzSk1N1ZAhQySZpvH179+/8PghQ4boxIkTio+PV0pKiubPn6/ExESNHj3aXh8BAAAAwB2o3EwFlKTevXvr0qVLmjBhgs6cOaPGjRvr888/V3BwsCTpzJkzRda0qlevnj7//HM988wzeueddxQUFKQZM2bogQceKPU93d3d9e9//7vE6YGwDt9t2eB7LRt8r2WD77Vs8L2WDb7XssH3Wjb4XsuGNd9ruVrHCgAAAAAcUbmaCggAAAAAjohgBQAAAABWIlgBAAAAgJUIVgAAAABgpTs+WM2aNUv16tWTh4eHIiIitGXLFnuX5PA2b96s2NhYBQUFyWAwaNWqVfYuyeElJCTo3nvvlZeXl/z9/RUXF6cjR47YuyyHN3v2bDVt2rRwccWoqCh98cUX9i6rwklISJDBYNCoUaPsXYrDe/nll2UwGIpsNWvWtHdZFcKpU6f02GOPyc/PT5UqVVLz5s21e/due5fl0OrWrVvs76vBYNDQoUPtXZpDy83N1fjx41WvXj15enoqJCREEyZMUH5+vr1Lc3hXrlzRqFGjFBwcLE9PT7Vp00Y7d+4s9fl3dLBatmyZRo0apRdffFHJycmKjo5Wly5dirR0h/mysrLUrFkzzZw5096lVBibNm3S0KFD9f333yspKUm5ubmKiYlRVlaWvUtzaLVq1dKkSZO0a9cu7dq1S3/729/Uo0cPHTp0yN6lVRg7d+7U3Llz1bRpU3uXUmE0atRIZ86cKdwOHDhg75IcXnp6utq2bStXV1d98cUXOnz4sKZMmaKqVavauzSHtnPnziJ/V5OSkiRJDz30kJ0rc2z/+c9/NGfOHM2cOVMpKSl644039Oabb+rtt9+2d2kO74knnlBSUpIWL16sAwcOKCYmRp06ddKpU6dKdf4d3W69VatWatGihWbPnl24LywsTHFxcUpISLBjZRWHwWDQypUrFRcXZ+9SKpQLFy7I399fmzZtUvv27e1dToXi6+urN998U4MHD7Z3KQ7v6tWratGihWbNmqWJEyeqefPmmj59ur3Lcmgvv/yyVq1apb1799q7lAplzJgx+vbbb5m1UsZGjRqlzz77TEePHpXBYLB3OQ6rW7duCggIUGJiYuG+Bx54QJUqVdLixYvtWJlju379ury8vPTpp5/qH//4R+H+5s2bq1u3bpo4ceKfXuOOHbHKycnR7t27FRMTU2R/TEyMvvvuOztVBZRORkaGJFMIgG3k5eXpo48+UlZWlqKiouxdToUwdOhQ/eMf/1CnTp3sXUqFcvToUQUFBalevXp65JFH9PPPP9u7JIe3evVqRUZG6qGHHpK/v7/Cw8M1b948e5dVoeTk5GjJkiUaNGgQocpK7dq109dff60ff/xRkrRv3z5t3bpVXbt2tXNlji03N1d5eXny8PAost/T01Nbt24t1TVcyqIwR3Dx4kXl5eUpICCgyP6AgACdPXvWTlUBf85oNCo+Pl7t2rVT48aN7V2Owztw4ICioqJ048YNValSRStXrtQ999xj77Ic3kcffaTdu3dr165d9i6lQmnVqpUWLVqkv/zlLzp37pwmTpyoNm3a6NChQ/Lz87N3eQ7r559/1uzZsxUfH69x48Zpx44dGjFihNzd3dW/f397l1chrFq1SpcvX9bAgQPtXYrDe+GFF5SRkaGGDRvK2dlZeXl5eu2119SnTx97l+bQvLy8FBUVpVdffVVhYWEKCAjQhx9+qO3bt6tBgwalusYdG6wK/P63Jkajkd+koFwbNmyY9u/fX+rfnuCPhYaGau/evbp8+bKWL1+uAQMGaNOmTYQrK5w8eVIjR47U+vXri/3mD9bp0qVL4c9NmjRRVFSU7r77bi1cuFDx8fF2rMyx5efnKzIyUq+//rokKTw8XIcOHdLs2bMJVjaSmJioLl26KCgoyN6lOLxly5ZpyZIl+uCDD9SoUSPt3btXo0aNUlBQkAYMGGDv8hza4sWLNWjQIN11111ydnZWixYt1LdvX+3Zs6dU59+xwap69epydnYuNjp1/vz5YqNYQHkxfPhwrV69Wps3b1atWrXsXU6F4Obmpvr160uSIiMjtXPnTr311lt699137VyZ49q9e7fOnz+viIiIwn15eXnavHmzZs6cqezsbDk7O9uxwoqjcuXKatKkiY4ePWrvUhxaYGBgsV+mhIWFafny5XaqqGI5ceKEvvrqK61YscLepVQIzz33nMaMGaNHHnlEkumXLCdOnFBCQgLBykp33323Nm3apKysLGVmZiowMFC9e/dWvXr1SnX+HfuMlZubmyIiIgo71BRISkpSmzZt7FQVUDKj0ahhw4ZpxYoV2rBhQ6n/A4f5jEajsrOz7V2GQ+vYsaMOHDigvXv3Fm6RkZF69NFHtXfvXkKVDWVnZyslJUWBgYH2LsWhtW3bttgSFj/++KOCg4PtVFHFsmDBAvn7+xdpCADLXbt2TU5ORf8J7+zsTLt1G6pcubICAwOVnp6uL7/8Uj169CjVeXfsiJUkxcfHq1+/foqMjFRUVJTmzp2r1NRUDRkyxN6lObSrV6/qp59+Knx9/Phx7d27V76+vqpTp44dK3NcQ4cO1QcffKBPP/1UXl5ehSOtPj4+8vT0tHN1jmvcuHHq0qWLateurStXruijjz7Sxo0btW7dOnuX5tC8vLyKPf9XuXJl+fn58VyglUaPHq3Y2FjVqVNH58+f18SJE5WZmclvqa30zDPPqE2bNnr99df18MMPa8eOHZo7d67mzp1r79IcXn5+vhYsWKABAwbIxeWO/menzcTGxuq1115TnTp11KhRIyUnJ2vq1KkaNGiQvUtzeF9++aWMRqNCQ0P1008/6bnnnlNoaKgef/zx0l3AeId75513jMHBwUY3NzdjixYtjJs2bbJ3SQ7vm2++MUoqtg0YMMDepTmskr5PScYFCxbYuzSHNmjQoML//mvUqGHs2LGjcf369fYuq0K67777jCNHjrR3GQ6vd+/exsDAQKOrq6sxKCjI2KtXL+OhQ4fsXVaFsGbNGmPjxo2N7u7uxoYNGxrnzp1r75IqhC+//NIoyXjkyBF7l1JhZGZmGkeOHGmsU6eO0cPDwxgSEmJ88cUXjdnZ2fYuzeEtW7bMGBISYnRzczPWrFnTOHToUOPly5dLff4dvY4VAAAAANjCHfuMFQAAAADYCsEKAAAAAKxEsAIAAAAAKxGsAAAAAMBKBCsAAAAAsBLBCgAAAACsRLACAAAAACsRrAAAAADASgQrAAAAALASwQoAAAAArESwAgCUWx06dNCoUaPK/BxHNWnSJEVFRdm7DACACFYAgDL23XffydnZWffff7/Z565YsUKvvvpqGVTlGAYOHKgxY8bc8v19+/apWbNmt7EiAMCtEKwAAGVq/vz5Gj58uLZu3arU1FSzzvX19ZWXl1cZVVa+5efna+3aterRo8ctj9m3b5+aN29++4oCANwSwQoAUGaysrL08ccf66mnnlK3bt30/vvvF7534cIF1axZU6+//nrhvu3bt8vNzU3r16+XVHxa37p169SuXTtVrVpVfn5+6tatm44dO2ZWTR06dNCwYcM0bNiwwuuMHz9eRqOx8Jjs7GyNGDFC/v7+8vDwULt27bRz587C9z/55BM1adJEnp6e8vPzU6dOnZSVlVXqGl5//XUZDIZi29SpUwuP+fbbb+Xk5KRWrVpJklJSUtShQwd5enoqPDxcu3bt0o8//siIFQCUEwQrAECZWbZsmUJDQxUaGqrHHntMCxYsKAwwNWrU0Pz58/Xyyy9r165dunr1qh577DE9/fTTiomJKfF6WVlZio+P186dO/X111/LyclJPXv2VH5+vll1LVy4UC4uLtq+fbtmzJihadOm6b333it8//nnn9fy5cu1cOFC7dmzR/Xr11fnzp2VlpamM2fOqE+fPho0aJBSUlK0ceNG9erVq0gw+zPDhw/XmTNnCrennnpKwcHBevjhhwuPWb16tWJjY+Xk5KQffvhBrVq1UmRkpA4ePKiXXnpJPXr0kNFoVNOmTc367ACAsmEwmvP/BAAAmKFt27Z6+OGHNXLkSOXm5iowMFAffvihOnXqVHjM0KFD9dVXX+nee+/Vvn37tHPnTnl4eEgyjS41b95c06dPL/H6Fy5ckL+/vw4cOKDGjRuX6pwOHTro/PnzOnTokAwGgyRpzJgxWr16tQ4fPqysrCxVq1ZN77//vvr27StJunnzpurWratRo0apY8eOioiI0C+//KLg4GCrv6NXXnlFCxYs0KZNm4pcLzQ0VJMnT1ZsbKw6duyooKAgLV68uPD9Pn36aM+ePTpy5IjVNQAArMeIFQCgTBw5ckQ7duzQI488IklycXFR7969NX/+/CLHTZ48Wbm5ufr444+1dOnSwlBVkmPHjqlv374KCQmRt7e36tWrJ0lmP7vVunXrwlAlSVFRUTp69Kjy8vJ07Ngx3bx5U23bti1839XVVS1btlRKSoqaNWumjh07qkmTJnrooYc0b948paenm3X/ArcKVSkpKfr111/VqVMnnThxQhs2bFB8fHyRc11dXZkGCADlCMEKAFAmEhMTlZubq7vuuksuLi5ycXHR7NmztWLFiiJB5Oeff9bp06eVn5+vEydO/OE1Y2NjdenSJc2bN0/bt2/X9u3bJUk5OTk2q7tgIsdvg1fBfoPBIGdnZyUlJemLL77QPffco7fffluhoaE6fvy4Wfe5VaiSTNMA//73v8vT01N79+6Vi4uLmjRpUuSYPXv20LgCAMoRghUAwOZyc3O1aNEiTZkyRXv37i3c9u3bp+DgYC1dulSSKRA9+uij6t27tyZOnKjBgwfr3LlzJV7z0qVLSklJ0fjx49WxY0eFhYVZPFL0/fffF3vdoEEDOTs7q379+nJzc9PWrVsL379586Z27dqlsLAwSabQ1bZtW73yyitKTk6Wm5ubVq5cWer7/1GokqRPP/1U3bt3lyQ5OTkpPz+/SHj8/PPPdejQIYIVAJQjLvYuAABQ8Xz22WdKT0/X4MGD5ePjU+S9Bx98UImJiRo2bJhefPFFZWRkaMaMGapSpYq++OILDR48WJ999lmxa1arVk1+fn6aO3euAgMDlZqa+odrPP2RkydPKj4+Xv/617+0Z88evf3225oyZYokqXLlynrqqaf03HPPydfXV3Xq1NEbb7yha9euafDgwdq+fbu+/vprxcTEyN/fX9u3b9eFCxcKQ9fMmTO1cuVKff311yXee+LEiZo5c6Y+++wzubu76+zZs4Wfz93dXefPn9fOnTu1atUqSVJERIRcXV01evRojR49WgcPHtRTTz0lSUwFBIByhGAFALC5xMREderUqViokqQHHnhAr7/+uqZOnarp06frm2++kbe3tyRp8eLFatq0qWbPnl0YHgo4OTnpo48+0ogRI9S4cWOFhoZqxowZ6tChg9n19e/fX9evX1fLli3l7Oys4cOH68knnyx8f9KkScrPz1e/fv105coVRUZG6ssvv1S1atXk7e2tzZs3a/r06crMzFRwcLCmTJmiLl26SJIuXrx4yxbwRqNRb775pjIzM9W6desi733//fdq1aqV1qxZo1atWsnf31+SFBQUpPfee09jx47VRx99pPDwcA0YMEDz5s3TXXfdZfZnBwCUDboCAgDuKH/WNdDeunfvrnbt2un555+3dykAADPwjBUAAOVIu3bt1KdPH3uXAQAwE1MBAQAoRxipAgDHxFRAAAAAALASUwEBAAAAwEoEKwAAAACwEsEKAAAAAKxEsAIAAAAAKxGsAAAAAMBKBCsAAAAAsBLBCgAAAACsRLACAAAAACsRrAAAAADASgQrAAAAALDS/wPz7ipe4WRMBQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1000x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Visualization ###\n", + "plt.figure().set_figwidth(10);\n", + "plt.plot(zCyl, yCyl,'b'); # Plot of ideal contour (cyl. type)\n", + "plt.plot(zCyl[dCyl], yCyl[dCyl],'go');\n", + "ax = plt.gca();\n", + "ax.set_aspect('equal', adjustable='box');\n", + "plt.xlim([0, l]);\n", + "plt.ylim([0, 2]);\n", + "plt.xlabel('Axial pos. $z/d$');\n", + "plt.ylabel('Radial pos. $y/d$');\n", + "plt.title('Ideal (Cyl.)');\n", + "plt.savefig('./Output/1-2-2_Ideal_Cyl.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "61ebad13", + "metadata": {}, + "outputs": [], + "source": [ + "### Creation of geometry file ###\n", + "create_geometry_file('./Output/Ideal_Cyl.out', zCyl, yCyl, dCyl);" + ] + }, + { + "cell_type": "markdown", + "id": "07a9b9e3", + "metadata": {}, + "source": [ + "### 1.2.3 Creation of meas. cylindrical nozzle" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c2018946", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\weiss08\\AppData\\Local\\Temp\\ipykernel_5600\\1793825738.py:45: RuntimeWarning: invalid value encountered in sqrt\n", + " BSy1 = py - np.sqrt(R**2 - (BSz1 - pz)**2);\n" + ] + } + ], + "source": [ + "### Input parameters ###\n", + "meas_data = './Input/Cyl_D1_meas.txt'; # measured contour data\n", + "NType = 0; # nozzle type (Cyl. type = 0, Tor. type = 1)\n", + "l = 9.0; # nozzle length\n", + "n_in = 40; # point index of inlet circle\n", + "n_out = 25; # point index of outlet slope\n", + "\n", + "### Nozzle contour (Meas. cylindrical nozzle) ###\n", + "zMeas, yMeas, dMeas, zMeasRaw, yMeasRaw = Meas_CFVN(meas_data, NType, l, n_in, n_out); " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "ebde1641", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAEDCAYAAAA2gJUGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBsUlEQVR4nO3deVxUdf///+cwrCK7guCCkoW7Iph7WXphmqSZZVmpZZ8uu0wztFyyvi2WXqVlZWkammaplUumpZImZrmLS0ZquWAu4YKgoGwzvz+8mJ+EGjMDDIOP++12bjrvOef9fp3z8frEk/c572Mwm81mAQAAAABs5uLoAgAAAADA2RGsAAAAAMBOBCsAAAAAsBPBCgAAAADsRLACAAAAADsRrAAAAADATgQrAAAAALATwQoAAAAA7ESwAgAAAAA7EawAAKXmk08+kcFgkMFg0Lp164p9bzabVb9+fRkMBnXq1Knc67PX3LlzVb16dZ0/f75Ie05OjqZOnaoOHTooICBA7u7uqlmzph544AElJSVZPU7hdTx8+PB190tISFDNmjWVlZVl9RgAgNJFsAIAlDofHx8lJCQUa09KStIff/whHx8fB1Rln+zsbI0dO1ajRo0qUv/p06fVvn17xcfHq0mTJvrkk0+0Zs0aTZ48WUajUZ07d9auXbvKpKYBAwbI29tbb775Zpn0DwAoOYIVAKDU9e3bV4sWLVJmZmaR9oSEBLVt21Z16tRxUGW2mzNnjs6cOaMnnniiSHv//v21a9curVy5UtOnT1fPnj3VsWNHPfjgg5o/f742btyogICAMqnJ1dVV//73v/Xuu+8qOzu7TMYAAJQMwQoAUOoeeughSdL8+fMtbRkZGVq0aJEef/zxqx6Tm5ur8ePHq0GDBvLw8FD16tX12GOP6dSpU0X2W7hwoWJjYxUaGiovLy81bNhQo0ePLnY73MGDB/Xggw8qLCxMHh4eCgkJUefOnbVz506bzmnatGmKi4uTv7+/pW379u367rvvNGjQIN15551XPa5Vq1aqU6eODh8+LFdXV02YMKHYPuvXr5fBYNCXX35pdV0PP/ywMjMztWDBAquPBQCUHoIVAKDU+fr6qk+fPpo1a5albf78+XJxcVHfvn2L7W8ymdSzZ09NnDhR/fr104oVKzRx4kQlJiaqU6dOunjxomXfAwcOqHv37kpISNDKlSs1fPhwffHFF4qLiyvSZ/fu3bV9+3a9+eabSkxM1LRp0xQVFaVz585ZfT5//vmn9uzZozvuuKNI++rVqyVJvXr1+sc+6tatq3vuuUfTp09XQUFBke+mTp2qsLAw3XvvvVbXVqNGDTVo0EArVqyw+lgAQOlxdXQBAIDK6fHHH9cdd9yhvXv3qnHjxpo1a5buv//+qz5f9cUXX2jlypVatGiRevfubWlv3ry5WrVqpU8++URPPfWUJGncuHGW781ms9q3b6+GDRvq9ttv1+7du9WsWTOdOXNG+/bt05QpU/TII49Y9r+yb2v8/PPPkqSWLVsWaU9NTZUk1atXr0T9DBs2THfccYe++eYbSxg7fvy4lixZohdffFGurrb9Z7lly5b6/vvvbToWAFA6mLECAJSJ22+/XTfddJNmzZqlPXv2aOvWrde8DXD58uXy9/dXXFyc8vPzLVuLFi1Uo0aNIisMHjx4UP369VONGjVkNBrl5uam22+/XZKUkpIiSQoMDNRNN92kt956S2+//baSk5NlMplsPpfjx49LkoKDg23uQ5I6deqk5s2b64MPPrC0TZ8+XQaDQU8++aTN/QYHBystLU35+fl21QcAsB3BCgBQJgwGgx577DHNmzdP06dP1y233KKOHTtedd+//vpL586dk7u7u9zc3IpsJ0+e1OnTpyVJFy5cUMeOHbV582aNHz9e69at09atW7V48WJJstwyaDAYtGbNGnXt2lVvvvmmWrZsqerVq2vYsGHFlkovicJ+PT09i7QXLsJx6NChEvc1bNgwrVmzRvv27VNeXp5mzpypPn36qEaNGlbXVcjT01Nms1mXLl2yuQ8AgH24FRAAUGYGDhyol156SdOnT9frr79+zf2qVaumoKAgrVy58qrfF94+uHbtWh0/flzr1q2zzFJJuupzU+Hh4ZYl3/fv368vvvhCL7/8snJzczV9+nSrzqNatWqSpLNnzyo0NNTS3rVrV40dO1ZLly7VXXfdVaK++vXrp1GjRumDDz5QmzZtdPLkSQ0ZMsSqev7u7Nmz8vDwUNWqVe3qBwBgO4IVAKDM1KxZU88995x+++03DRgw4Jr79ejRQwsWLFBBQYFat259zf0MBoMkycPDo0j7Rx99dN06brnlFo0bN06LFi3Sjh07rDiDyxo0aCBJ+uOPP9S4cWNLe8uWLdWtWzclJCTogQceuOrKgNu2bVNwcLBldsvT01NPPvmkpk6dqp9//lktWrRQ+/btra7pSgcPHlSjRo3s6gMAYB9uBQQAlKmJEydq6dKlRWZ6/u7BBx9Ut27d1L17d7366qtauXKl1qxZozlz5mjgwIFasmSJJKldu3YKCAjQ4MGDtWTJEi1fvlwPPfRQsRfw7t69W7fddpvef/99rVy5UmvXrtW4ceO0e/du/etf/7LsN2jQILm6uurIkSPXPYfWrVvLy8tLmzZtKvbd3Llz1bx5c3Xr1k1PPfWUli1bph9//FFffPGFHn30UbVp00bp6elFjvnPf/6j7Oxsbd++XU8//fQ/XkNJevXVV+Xq6qqkpKQi7SaTSVu2bCm2YiEAoHwxYwUAcDij0ahly5bp3Xff1aeffqoJEybI1dVVtWrV0u23366mTZtKkoKCgrRixQqNGDFCjzzyiLy9vdWzZ08tXLiwyIp9NWrU0E033aQPP/xQR48elcFgUEREhCZPnqyhQ4da9isoKFBBQYHMZvN163N3d1efPn309ddf64033ijyXbVq1bRhwwbNnDlT8+fP1+eff67s7GwFBwerTZs2WrZsmZo3b17kmJo1a6pDhw7avXu3+vXrV6JrZDKZrlrrunXrlJGRoYcffrhE/QAAyobB/E//NQEAANq2bZtatWqlTZs2Xfd2xZJIS0tTeHi4hg4dqjfffNOuvh599FEdPHhQP/30k139AADsQ7ACAKCE+vbtq6ysLC1fvtym4//8808dPHhQb731ltauXav9+/erZs2aNtfzxx9/qGHDhlq7dq06dOhgcz8AAPvxjBUAACU0efJktWrVyqYl2yXp448/VqdOnbR371599tlndoUq6fILiqdOnUqoAoAKgBkrAAAAALBThZqxmjBhglq1aiUfHx8FBwerV69e2rdv3z8el5SUpOjoaHl6eioiIsLq95MAAAAAgD0qVLBKSkrSkCFDtGnTJiUmJio/P1+xsbHKysq65jGHDh1S9+7d1bFjRyUnJ2vs2LEaNmyYFi1aVI6VAwAAALiRVehbAU+dOqXg4GAlJSXptttuu+o+o0aN0rJly5SSkmJpGzx4sHbt2qWNGzeWV6kAAAAAbmAV+j1WGRkZkqTAwMBr7rNx40bFxsYWaevatasSEhKUl5cnNze3It/l5OQoJyfH8tlkMuns2bMKCgqSwWAoxeoBAAAAOBOz2azz588rLCxMLi7W3dxXYYOV2WxWfHy8OnTooCZNmlxzv5MnTyokJKRIW0hIiPLz83X69GmFhoYW+W7ChAl65ZVXyqRmAAAAAM7v6NGjqlWrllXHVNhg9fTTT2v37t3asGHDP+7795mmwrsbrzYDNWbMGMXHx1s+Z2RkqE6dOjp69Kh8fX3trBoAAACAs8rMzFTt2rXl4+Nj9bEVMlgNHTpUy5Yt0/r16/8xKdaoUUMnT54s0paWliZXV1cFBQUV29/Dw0MeHh7F2n19fQlWAAAAAGx6RKhCrQpoNpv19NNPa/HixVq7dq3q1av3j8e0bdtWiYmJRdpWr16tmJiYYs9XAQAAAEBZqFDBasiQIZo3b54+//xz+fj46OTJkzp58qQuXrxo2WfMmDHq37+/5fPgwYN15MgRxcfHKyUlRbNmzVJCQoJGjhzpiFMAAAAAcAOqUMFq2rRpysjIUKdOnRQaGmrZFi5caNnnxIkTSk1NtXyuV6+evv32W61bt04tWrTQa6+9pvfee0/33XefI04BAAAAwA2oQr/HqjxkZmbKz89PGRkZPGMFAAAA3MDsyQYVasYKAAAAAJwRwQoAAAAA7ESwAgAAAAA7EawAAAAAwE4EKwAAAACwE8EKAAAAAOxEsAIAAAAAOxGsAAAAAMBOBCsAAAAAsBPBCgAAAADsRLACAAAAADsRrAAAAADATgQrAAAAALATwQoAAAAA7ESwAgAAAAA7EawAAAAAwE4EKwAAAACwE8EKAAAAAOxEsAIAAAAAOxGsAAAAAMBOBCsAAAAAsBPBCgAAAADsRLACAAAAADsRrAAAAADATgQrAAAAALATwQoAAAAA7ESwAgAAAAA7EawAAAAAwE4EKwAAAACwE8EKAAAAAOzkas3O7dq1U4sWLdSiRQs1b95czZo1k5eXV1nVBgAAAABOwapg1bNnT+3atUvvvvuu9u/fL0mqX7++mjdvXiRwhYaGlkmxAAAAAFARWXUr4KhRo/T5559r79692rRpk0JCQhQVFSUPDw999tln6t69u2rVqqWQkBCbilm/fr3i4uIUFhYmg8GgpUuXXnf/devWyWAwFNt+++03m8YHAAAAAFtYNWN1pSeffFIffPCBevbsaWn79ttv9eSTT2rgwIE29ZmVlaXmzZvrscce03333Vfi4/bt2ydfX1/L5+rVq9s0PgAAAADYwuZglZKSombNmhVp6969uz788EO9//77NvXZrVs3devWzerjgoOD5e/vb9OYAAAAAGAvm1cFbN26taZPn16svWnTpkpOTrarKGtFRUUpNDRUnTt31g8//HDdfXNycpSZmVlkAwAAAAB72BysPvzwQ02fPl0DBw7U7t27ZTKZdOnSJU2aNEne3t6lWeM1hYaGasaMGVq0aJEWL16syMhIde7cWevXr7/mMRMmTJCfn59lq127drnUCgAAAKDyMpjNZrOtB//2228aMmSIfvjhB7m5uclkMsnV1VUJCQnq16+ffYUZDFqyZIl69epl1XFxcXEyGAxatmzZVb/PyclRTk6O5XNmZqZq166tjIyMIs9pAQAAALixZGZmys/Pz6ZsYPUzVmPHjlWvXr106623qkGDBlqzZo2OHDmiXbt2ycXFRdHR0Q5dbr1NmzaaN2/eNb/38PCQh4dHOVYEAAAAoLKzOlidOHFCPXr0kNFoVFxcnHr16qXOnTsrPDy8LOqzWnJyMu/RAgAAAFCurA5Ws2fPltls1oYNG/TNN98oPj5ex44d07/+9S/dc8896tGjh6pVq2ZTMRcuXNDvv/9u+Xzo0CHt3LlTgYGBqlOnjsaMGaNjx45p7ty5kqQpU6aobt26aty4sXJzczVv3jwtWrRIixYtsml8AAAAALCFTYtXGAwGdezYUW+++aZ+++03bdmyRW3atNHMmTNVs2ZN3XbbbZo0aZKOHTtmVb/btm1TVFSUoqKiJEnx8fGKiorSSy+9JOnybFlqaqpl/9zcXI0cOVLNmjVTx44dtWHDBq1YsUK9e/e25bQAAAAAwCZ2LV5xNadOndKyZcu0bNkydezYUSNHjizN7kudPQ+oAQAAAKg87MkGNgero0ePVoqlyglWAAAAACT7soHN77Fq0KCBXnzxRWVlZdnaBQAAAABUCjYHq8TERK1evVo333yzZs+eXZo1AQAAAIBTsTlYtWvXTps3b9bEiRP10ksvKSoqSuvWrSvF0gAAAADAOdgcrAr1799f+/fvV1xcnO6++27de++9RZZMBwAAAIDKzu5gJUlms1mxsbF68skntWzZMjVp0kQjRozQ+fPnS6N7AAAAAKjQrH5BcKHp06dr69at2rp1q1JSUmQ0GtWsWTMNGTJELVq00GeffaZGjRppyZIliomJKc2aAQAAAKBCsXm59dq1a6tNmzaWLSYmRh4eHkX2eeONN/T555/rl19+KZViywLLrQMAAACQHPQeq5L466+/FBYWpoKCgrIawm6FF2/x4sW69957HV0OAAAAAAdxyHusSiI4OFhr164tyyFKza5duxxdAgAAAAAnVabBymAw6Pbbby/LIUrNwYMHHV0CAAAAACdVpsHKmRCsAAAAANiKYPU/BCsAAAAAtiJY/c+JEyeUnZ3t6DIAAAAAOKFSD1ZdunRRREREaXdbLn7//XdHlwAAAADACdn8guBruffee3X69OnS7rZc7Ny5U82aNXN0GQAAAACcTKkHqyFDhpR2l+Vm27Zt6t+/v6PLAAAAAOBkeMbqCtu2bXN0CQAAAACckM3B6uLFi0UWezhy5IimTJmiVatWlUphjrBjxw5dunTJ0WUAAAAAcDI2B6uePXtq7ty5kqRz586pdevWmjx5snr16qVp06aVWoHlJSQkRDk5Ofrpp58cXQoAAAAAJ2NzsNqxY4c6duwoSfrqq68UEhKiI0eOaO7cuXrvvfdKrcDy0qlTJ0lSYmKiYwsBAAAA4HRsDlbZ2dny8fGRJK1evVq9e/eWi4uL2rRpoyNHjpRageXlzjvvlESwAgAAAGA9m4NV/fr1tXTpUh09elSrVq1SbGysJCktLU2+vr6lVmB5KZyxSk5Odtrl4gEAAAA4hs3B6qWXXtLIkSNVt25d3XrrrWrbtq2ky7NXUVFRpVZgealRo4aaNGkis9msNWvWOLocAAAAAE7E5mDVp08fpaamatu2bVq9erWlvXPnznrnnXdKpbjydtddd0mSli5d6thCAAAAADgVg9lsNtt68Llz55SQkKCUlBQZDAY1bNhQgwYNkp+fX2nWWKYyMzPl5+enjIwM7du3T7feequqVKmitLQ0eXt7O7o8AAAAAOXkymxg7eNNNs9Ybdu2TTfddJPeeecdnT17VqdPn9Y777yjm266STt27LC1W4eKiYlRRESEsrOztXz5ckeXAwAAAMBJ2Bysnn32Wd1zzz06fPiwFi9erCVLlujQoUPq0aOHhg8fXoollh+DwaAHH3xQkrRgwQIHVwMAAADAWdh8K6CXl5eSk5PVoEGDIu2//vqrYmJilJ2dXSoFlrW/T/ft2bNHzZo1k7u7u44dO6Zq1ao5ukQAAAAA5cAhtwL6+voqNTW1WPvRo0ct77dyRk2bNlV0dLRyc3M1e/ZsR5cDAAAAwAnYHKz69u2rQYMGaeHChTp69Kj+/PNPLViwQE888YQeeuih0qyx3D311FOSpI8++kgmk8nB1QAAAACo6Gy+FTA3N1fPPfecpk+frvz8fEmSm5ubnnrqKU2cOFEeHh6lWmhZudp0X1ZWlmrWrKmMjAytXLlSXbt2dXCVAAAAAMqaQ24FdHd317vvvqv09HTt3LlTycnJOnv2rN555x2bQ9X69esVFxensLAwGQyGEr1PKikpSdHR0fL09FRERISmT59u09hX8vb21oABAyTJad/JBQAAAKA4s9msCxcu6MiRI9qxY4cSExO1YMECffDBB/rvf/9rc7+u9hZWpUoVNWnSRNLlVfXskZWVpebNm+uxxx7Tfffd94/7Hzp0SN27d9f//d//ad68efrpp5/0n//8R9WrVy/R8dczfPhwffDBB1q1apWSk5MVFRVlV38AAAAASld+fr7Onj2rM2fOXHf7+z65ubmlXotdLwhOSEjQO++8owMHDkiSbr75Zg0fPlxPPPGE/YUZDFqyZIl69ep1zX1GjRqlZcuWKSUlxdI2ePBg7dq1Sxs3bizRONeb7uvXr5/mz5+vvn37svw6AAAAUEbMZrPOnz9fopB0ZVjKyMiweUx3d3cFBQUV2Xx8fDRnzhybbgW0ecbqxRdf1DvvvKOhQ4eqbdu2kqSNGzfq2Wef1eHDhzV+/Hhbuy6xjRs3KjY2tkhb165dlZCQoLy8PLm5uRU7JicnRzk5OZbPmZmZ1+x/1KhRmj9/vr788ku9+OKLaty4cekVDwAAAFRCeXl5/zhjdLXv8/LybB7T39+/WEi62hYYGGj5u7e3d7E77jIzMzVnzhybarA5WE2bNk0zZ84ssgLgPffco2bNmmno0KHlEqxOnjypkJCQIm0hISHKz8/X6dOnFRoaWuyYCRMm6JVXXilR/82bN9e9996rJUuW6IUXXijRM18AAABAZWA2m5WZmVni2+sKt/Pnz9s8pqenZ7EA9E+bv7+/XF3tfsLJbjZXUFBQoJiYmGLt0dHRllUCy8PfU2bhnY3Xet5rzJgxio+Pt3zOzMxU7dq1r9n/66+/rq+//lpff/21fvrpJ7Vv374UqgYAAADKT25urlW32BX+aevP9QaDQQEBAdedMbraVqVKlVI+8/Jjc7B65JFHNG3aNL399ttF2mfMmKGHH37Y7sJKokaNGjp58mSRtrS0NLm6uiooKOiqx3h4eFi1amHDhg31+OOP6+OPP9bo0aO1fv16uxfpAAAAAGxhMpmUkZFRotvrrtyysrJsHtPLy6vEt9ddOYtkNBpL8cwrPrvmzBISErR69Wq1adNGkrRp0yYdPXpU/fv3LzIr9PfwVVratm2rb775pkjb6tWrFRMTc9Xnq2z18ssva968edqwYYOWLFmi3r17l1rfAAAAuDFdunTJ6meR0tPTVVBQYNN4Li4uV51F+qfA5OXlVcpnXjnZvCrgHXfcUbIBDAatXbu2RPteuHBBv//+uyQpKipKb7/9tu644w4FBgaqTp06GjNmjI4dO6a5c+dKurzcepMmTfTvf/9b//d//6eNGzdq8ODBmj9/fomXWy/pS8DGjRun119/XbVq1VJKSoqqVq1aov4BAABQuZlMJp07d87qZ5Gys7NtHtPb27vEt9cVbn5+fnJxsfk1tjcEe14QbNdy66Vt3bp1Vw1sAwYM0CeffKKBAwfq8OHDWrduneW7pKQkPfvss9q7d6/CwsI0atQoDR48uMRjlvTiZWdnq0mTJjp06JBGjBihSZMmWXVuAAAAqPguXrxo9bNI6enpMplMNo1nNBqvGYyu1+7p6VnKZw6pEgUrR7Dm4n377be6++67ZTQatX37djVv3rycqgQAAIA1CgoKlJ6ebvWzSJcuXbJ5zKpVq1q13HdQUJB8fX2ZRapACFZ2sPbi3X///frqq68UFRWlTZs2yd3dvRyqBAAAuDGZzWZlZ2db/SzSuXPnZOuPuYULoVlzm11gYCA/F1YCBCs7WHvxTpw4oaZNm+rMmTMaO3asXn/99XKoEgAAwPnl5+dbZpGseRYpJyfH5jF9fX2tXvLbx8eHVaBvUAQrO9hy8RYtWqQ+ffrIxcVF69ev591WAADghmI2m5WVlWXVc0iFs0i2cnNzs3rJ78DAwFJdKRqVH8HKDrZevP79++vTTz9V3bp1tWPHDgUEBJRhlQAAAGUjLy+vyAthSxqWcnNzbR7Tz8/P6iW/q1atyiwSyly5Basr3031T8rq3VWlzdaLl5GRoaioKB06dEg9evTQ119/zYOHAADAYcxms86fP2/1s0iZmZk2j+nh4WHVLXZBQUEKCAiQq6tdr1IFyow9wcqqf9XJyckl2u9G+G2Cn5+fvvrqK7Vr107Lly/XxIkTNXbsWEeXBQAAKoHc3Nx/DER///7s2bPKy8uzaTyDwSB/f3+rlvwOCgpSlSpVboif+4CS4FZAO1KpJCUkJOiJJ56Qi4uLli5dqri4uDKoEgAAOCOz2azMzEyr34t0/vx5m8f09PS0esnvgIAAGY3GUjxzwDnxjJUd7A1WkvTvf/9bM2bMUJUqVfTjjz+qZcuWpVwlAABwtJycHKtusSvcp6CgwKbxDAaDAgMDS7zcd2FgqlKlSimfOXDjKLdbAa/m119/VWpqarEHGO+55x57u3YaU6dO1aFDh5SYmKgePXpo8+bNql27tqPLAgAAV2EymZSRkWHVct9nzpxRVlaWzWNWqVLF6iW//f39eX4bcCI2B6uDBw/q3nvv1Z49e2QwGCwvYCu8z9bW3844Izc3N3355Zfq0KGDfvnlF919991av369/P39HV0aAACV2qVLl6xa7rvws8lksmk8FxeX6waia33n6elZymcOoKKxOVg988wzqlevnr7//ntFRERoy5YtOnPmjEaMGKFJkyaVZo1Owc/PTytWrFDr1q21Z88ede3aVYmJiTbfXggAwI3EZDLp3LlzVj+LlJ2dbfOY3t7eVi33HRQUJD8/P2aRAFyVzc9YVatWTWvXrlWzZs3k5+enLVu2KDIyUmvXrtWIESNKvIKgo5XGM1ZX2rNnjzp16qSzZ8+qffv2WrlypapWrVoKlQIA4Byys7OtfhYpPT1dtj72bTQarV7yOzAwUB4eHqV85gCcnUOesSooKLAEhmrVqun48eOKjIxUeHi49u3bZ2u3Tq9p06ZKTExU586d9dNPPykuLk7Lly+Xt7e3o0sDAMAqBQUFSk9Pt/pZpEuXLtk8po+Pj9VLfvv6+rLkNwCHszlYNWnSRLt371ZERIRat26tN998U+7u7poxY4YiIiJKs0an07JlS61atUpdunTRunXr1KVLF61YsUKBgYGOLg0AcAMym83FZpFKEpbOnTtn8yySq6ur1Ut+BwYGyt3dvZTPHgDKh823Aq5atUpZWVnq3bu3Dh48qB49eui3335TUFCQFi5cqDvvvLO0ay0TpX0r4JU2bdqk7t27Kz09XY0aNdLq1atVs2bNUh0DAHBjyc/Pv+Ys0vXCUk5Ojs1j+vn5Wb3kt4+PD7NIAJxOhXmP1dmzZxUQEOBU/4+0LIOVJO3du1exsbE6fvy4wsPDtWLFCjVu3LjUxwEAOBez2awLFy5Y9RzSmTNnlJGRYfOY7u7uVi/5HRAQIDc3t1I8cwCouCpMsHJGZR2sJOnw4cOKjY3VgQMH5OPjo88//1w9evQok7EAAOUvLy/vmsHoeu1/fwekNfz9/a1e8tvb29upfvkJAOWt3IJVfHy8XnvtNXl7eys+Pv66+7799ttWFeIo5RGsJOn06dPq06ePkpKSZDAY9N///lcjR47kP3AAUIGYzWadP3/e6meRMjMzbR7Tw8PD6iW/AwIC5Opq82PSAIBrKLdVAZOTk5WXl2f5O0quWrVqWr16tYYOHaoZM2bo+eef1+bNm/Xxxx/zImEAKAO5ublW3WJXuG9+fr5N4xkMBgUEBJR4ue/CzcvLi1+yAUAlwK2A5TRjVchsNuuDDz5QfHy88vLyVK9ePS1cuFCtWrUq87EBwBmZzWZlZGRY/V6kCxcu2Dyml5eX1Ut++/v7y2g0luKZAwDKW7neCliiTg0GTZ482apCHKW8g1WhLVu2qG/fvjp8+LDc3Nz08ssv6/nnn+fWDgCVWk5OTolvr7uyvaCgwKbxXFxcLLNI1jyP5OXlVcpnDgBwBuUWrO64444in7dv366CggJFRkZKkvbv3y+j0ajo6GitXbvWqkIcxVHBSpLOnTunJ554QosWLZIkRUdHa/bs2WratGm51gEA1jKZTMVmkUoSmLKysmwe09vbu8S32BXu5+/vLxcXl1I8cwBAZVZuz1j98MMPlr+//fbb8vHx0Zw5cxQQECBJSk9P12OPPaaOHTtaVcSNyt/fX19++aU+++wzDRs2TNu3b1d0dLRefPFFPf/88/Lw8HB0iQBuABcvXrT6WaT09HSZTCabxjMajVd9Mew/BSVPT89SPnMAAEqPzc9Y1axZU6tXry72TqZffvnF8t4mZ+DIGasrnThxQoMHD9ayZcskSTfffLPeffdddevWzWE1AXAuBQUFOnfunNXPIl28eNHmMatWrWr1kt++vr7MIgEAKqRym7H6+6B//fVXsWCVlpam8+fP29rtDSs0NFRLly7VggULFB8frwMHDqh79+4a36qVHpk0SeG33eboEgGUo+zsbKufRUpPT5et6xG5urpafZtdYGAgM+sAAPyPzTNW/fv3V1JSkiZPnqw2bdpIkjZt2qTnnntOt912m+bMmVOqhZaVijJjdaXMzEy9+uqrmjtliv4oKJCnpI233KK6H32kOp06Obo8AFYoKChQenq61e9FunTpks1j+vr6Wr3kt4+PD0t+AwBueOW2eMWVsrOzNXLkSM2aNcvybitXV1cNGjRIb731lry9vW3pttxVxGBV6PdVq5TZr59anj0rScqXtLF+fdWaOlX1unZ1bHHADcZsNisrK8vqZ5HOnTtn85hubm5WL/kdGBgoNze30jtxAABuIA4JVoWysrL0xx9/yGw2q379+k4TqApV5GBVaPf06codN04xZ85IkkyStoaEyGP0aDUfNkwGnlUArJKfn18sHJUkLOXm5to8pp+fn9VLfletWpVZJAAAypFDg5Wzc4ZgVeiXhARlvfCCWv/1l6XtNy8vpfXureavvy6/8HAHVgeUP7PZrAsXLlj9LFJGRobNY7q7u5f49rrCwBQYGMg76gAAcAIODVa//vqrUlNTi/0m95577rGn23LjTMGq0MHvvtOfzz2nmL17VeV/bZckJdeqJePAgYoaM0ZuVapcrwugwsnLyyvxLXZX7ld4K7ItrnxxbEmfR6pSpQqzSAAAVFIOCVYHDx7Uvffeqz179shgMFhWoir8gaOgoMCWbsudMwarQmcPHNDuZ59Vze+/1805OZb2UwaDUho1kkfPnmo0ZIh8wsIcWCVuNGazWZmZmVY/i2TPaqKenp5WL/kdEBAgo9FYimcOAACcnUOCVVxcnIxGo2bOnKmIiAht2bJFZ86c0YgRIzRp0iSneUmwMwerQmaTSfu//FIn3npLjZKTFXzFSztzJe3191dGmzYKHThQt9x/P89klbMCU4F+TP1RJ86fUKhPqDrW6Siji3P8QJ+bm2vVLXaF3+Xn59s0nsFgKDKLVNKwVIUZWgAAUAocEqyqVaumtWvXqlmzZvLz89OWLVsUGRmptWvXasSIEUpOTralW3344Yd66623dOLECTVu3FhTpky5Zkhbt26d7rjjjmLtKSkpatCgQYnGqwzB6kr5ly5p56RJylq4UHV/+03hf/sB9y8XF/1Rs6ZymzaVb6dOqte7twJuuslB1VZ+i1MW65mVz+jPzD8tbbV8a+ndu95V74a9y62OgtxcZRw5oszDh5X155+6eOyYcv/6S3l//SVDWpoOeXpqdVCQTp8+rTNnzlj+vHDhgs1jVqlSxeolv/38/JhFAgAADuOQFwQXFBSoatWqki6HrOPHjysyMlLh4eHat2+fTX0uXLhQw4cP14cffqj27dvro48+Urdu3fTrr7+qTp061zxu3759RU68evXqNo1fGbh6eipm3Dhp3DhJ0pE1a3R4+nR5rV+vxmlpCjGZFHL0qHT0qPTtt9LzzyvNxUVpXl7KDAxUbs2acqlbV67BwfKoUUOeNWrIu1YteQYFyd3HR+4+PvLw9ZWrpyczX/9gccpi9fmij8wq+ruLY5nH1OeLPvrqga+sCldmk0kXTp5UxqFDupCaquw//1TOiRPKS0uT6cwZKT1dLhkZcrtwQe7Z2apy8aK88/Lkl58vP0mB/9uuJk3S59f4zsXF5arh6J8Ck6enZ4nPDQAAwNnZPGPVsWNHjRgxQr169VK/fv2Unp6ucePGacaMGdq+fbt++eUXq/ts3bq1WrZsqWnTplnaGjZsqF69emnChAnF9i+csUpPT5e/v78tp1HpZqyuJyczU7/OnKmM1avlsXevwv76q9iMVkmZdPk2wxxJuQaD8g0G5bm4yGQwqMBgkOmKzWwwyMVsltFkuvyn2SzD3/7Zmf+2GMD1/lFeua9ZKjJWgYuLzAaDTC4uMl3xd7OLi0xGo8wGg8z/+1y4yWCQ2Wi8/KeLi+TiYvkso9HSJhcXyWj8xz8NRqMKXAx6sMF3OuV6UbraOgdmqXquh+ZvbCNjbp6UmyvDpUsyZmfL9dIluebkyD03Vx55efLMz1eVggL5mc1yt+n/Wv+/85IyjEZlubkp29NTOVWqKMfPT6ciIpR6552qVq2aqlWrVmwWyYUQDQAAbgAOmbEaN26csrKyJEnjx49Xjx491LFjRwUFBWnhwoVW95ebm6vt27dr9OjRRdpjY2P1888/X/fYqKgoXbp0SY0aNdK4ceOuentgoZycHOVcsdBDZmam1bU6Kw9fX0WNGCGNGGFpyzhyRMc3bFDGrl26tG+fDIcOyeP0aXlmZ8srJ0feeXnyKSiQt4r+Y3GR5Pm/TWbz5e2KZ7tudOvqSqeaXmcHg3TKI0fGw0nqdNi6vnMkpbu46Lybm7I9PHSpShXleXurwNdXZn9/GQID5Vq9utxr1JBnaKi8a9eWT5068q9XTz5VqsjH9tMCAADANdgcrLp27Wr5e0REhH799VedPXtWAQEBOn78uNX9nT59WgUFBQoJCSnSHhISopMnT171mNDQUM2YMUPR0dHKycnRp59+qs6dO2vdunW67bbbrnrMhAkT9Morr1hdX2XlFx5++f1XDz/8j/sW5OYq98IF5Z4/b9nyLlxQ3oULys/OVsHFizLl5cmUmytzfr5Mubky5eVJJpMMbm5ycXe/vLm5yXDFczTmvweyK2azrvedJJkLCmTKy7OMZ87PL/Z38/++N+fnS4V/FhRIJtPlv5tMl7f/tV3zT5NJhsLPZrMMf/+z8HuzWUnh5yWd/cdrujaypgx+1WR2dZWqVJGqVpXB11dGX1+5BgTILSBA7oGB8ggKkk+dOvKrV09egYGq4eKiGv/YOwAAAMpLqb6xMjc3V88884xmzpypixcv2tTH398PYzabr/nOmMjISEVGRlo+t23bVkePHtWkSZOuGazGjBmj+Ph4y+fMzEzVrl3bplpvNEZ3d3kFBsor8FpP6qBQ3uF10pxrz5wWunP6PN1et1OZ1wMAAICyZfWDE+fOndPDDz+s6tWrKywsTO+9955MJpNeeuklRUREaOPGjZo1a5bVhVSrVk1Go7HY7FRaWlqxWazradOmjQ4cOHDN7z08POTr61tkA0pbxzodVcu3lgxXfcBKMsig2r611bGOc7yWAAAAANdndbAaO3as1q9frwEDBigwMFDPPvusevTooQ0bNui7777T1q1b9dBDD1ldiLu7u6Kjo5WYmFikPTExUe3atStxP8nJyQoNDbV6fKA0GV2MeveudyWpWLgq/DzlrilO8z4rAAAAXJ/VtwKuWLFCs2fPVpcuXfSf//xH9evX1y233KIpU6bYXUx8fLweffRRxcTEqG3btpoxY4ZSU1M1ePBgSZdv4zt27Jjmzp0rSZoyZYrq1q2rxo0bKzc3V/PmzdOiRYu0aNEiu2sB7NW7YW999cBXV32P1ZS7ppTre6wAAABQtqwOVsePH1ejRo0kXV60wtPTU0888USpFNO3b1+dOXNGr776qk6cOKEmTZro22+/VXh4uCTpxIkTSk1Nteyfm5urkSNH6tixY/Ly8lLjxo21YsUKde/evVTqAezVu2Fv9YzsqR9Tf9SJ8ycU6hOqjnU6MlMFAABQyVj9HqvC56AKX8Lr4+Oj3bt3q169emVSYFm7kd5jBQAAAODayvU9VmazWQMHDpSHh4ck6dKlSxo8eLC8vb2L7Ld48WJruwYAAAAAp2R1sBowYECRz4888kipFQMAAAAAzsjqYDV79uyyqAMAAAAAnJbVy60DAAAAAIoiWAEAAACAnQhWAAAAAGAnghUAAAAA2IlgBQAAAAB2IlgBAAAAgJ0IVgAAAABgJ4IVAAAAANiJYAUAAAAAdiJYAQAAAICdCFYAAAAAYCeCFQAAAADYiWAFAAAAAHYiWAEAAACAnQhWAAAAAGAnghUAAAAA2IlgBQAAAAB2IlgBAAAAgJ0IVgAAAABgJ4IVAAAAANiJYAUAAAAAdiJYAQAAAICdCFYAAAAAYCeCFQAAAADYiWAFAAAAAHYiWAEAAACAnQhWAAAAAGAnghUAAAAA2IlgBQAAAAB2qnDB6sMPP1S9evXk6emp6Oho/fjjj9fdPykpSdHR0fL09FRERISmT59eTpUCAAAAwGUVKlgtXLhQw4cP1wsvvKDk5GR17NhR3bp1U2pq6lX3P3TokLp3766OHTsqOTlZY8eO1bBhw7Ro0aJyrhwAAADAjcxgNpvNji6iUOvWrdWyZUtNmzbN0tawYUP16tVLEyZMKLb/qFGjtGzZMqWkpFjaBg8erF27dmnjxo0lGjMzM1N+fn7KyMiQr6+v/ScBAAAAwCnZkw1cy6gmq+Xm5mr79u0aPXp0kfbY2Fj9/PPPVz1m48aNio2NLdLWtWtXJSQkKC8vT25ubsWOycnJUU5OjuVzRkaGpMsXEQAAAMCNqzAT2DL3VGGC1enTp1VQUKCQkJAi7SEhITp58uRVjzl58uRV98/Pz9fp06cVGhpa7JgJEybolVdeKdZeu3ZtO6oHAAAAUFmcOXNGfn5+Vh1TYYJVIYPBUOSz2Wwu1vZP+1+tvdCYMWMUHx9v+Xzu3DmFh4crNTXV6ouH68vMzFTt2rV19OhRbrMsRVzXssF1LRtc17LBdS0bXNeywXUtG1zXspGRkaE6deooMDDQ6mMrTLCqVq2ajEZjsdmptLS0YrNShWrUqHHV/V1dXRUUFHTVYzw8POTh4VGs3c/Pj3+UZcTX15drWwa4rmWD61o2uK5lg+taNriuZYPrWja4rmXDxcX6Nf4qzKqA7u7uio6OVmJiYpH2xMREtWvX7qrHtG3bttj+q1evVkxMzFWfrwIAAACAslBhgpUkxcfH6+OPP9asWbOUkpKiZ599VqmpqRo8eLCky7fx9e/f37L/4MGDdeTIEcXHxyslJUWzZs1SQkKCRo4c6ahTAAAAAHADqjC3AkpS3759debMGb366qs6ceKEmjRpom+//Vbh4eGSpBMnThR5p1W9evX07bff6tlnn9UHH3ygsLAwvffee7rvvvtKPKaHh4f+3//7f1e9PRD24dqWDa5r2eC6lg2ua9ngupYNrmvZ4LqWDa5r2bDnulao91gBAAAAgDOqULcCAgAAAIAzIlgBAAAAgJ0IVgAAAABgJ4IVAAAAANjphg9WH374oerVqydPT09FR0frxx9/dHRJTm/9+vWKi4tTWFiYDAaDli5d6uiSnN6ECRPUqlUr+fj4KDg4WL169dK+ffscXZbTmzZtmpo1a2Z5uWLbtm313XffObqsSmfChAkyGAwaPny4o0txei+//LIMBkORrUaNGo4uq1I4duyYHnnkEQUFBalKlSpq0aKFtm/f7uiynFrdunWL/Xs1GAwaMmSIo0tzavn5+Ro3bpzq1asnLy8vRURE6NVXX5XJZHJ0aU7v/PnzGj58uMLDw+Xl5aV27dpp69atJT7+hg5WCxcu1PDhw/XCCy8oOTlZHTt2VLdu3Yos6Q7rZWVlqXnz5po6daqjS6k0kpKSNGTIEG3atEmJiYnKz89XbGyssrKyHF2aU6tVq5YmTpyobdu2adu2bbrzzjvVs2dP7d2719GlVRpbt27VjBkz1KxZM0eXUmk0btxYJ06csGx79uxxdElOLz09Xe3bt5ebm5u+++47/frrr5o8ebL8/f0dXZpT27p1a5F/q4mJiZKk+++/38GVObf//ve/mj59uqZOnaqUlBS9+eabeuutt/T+++87ujSn98QTTygxMVGffvqp9uzZo9jYWHXp0kXHjh0r0fE39HLrrVu3VsuWLTVt2jRLW8OGDdWrVy9NmDDBgZVVHgaDQUuWLFGvXr0cXUqlcurUKQUHByspKUm33Xabo8upVAIDA/XWW29p0KBBji7F6V24cEEtW7bUhx9+qPHjx6tFixaaMmWKo8tyai+//LKWLl2qnTt3OrqUSmX06NH66aefuGuljA0fPlzLly/XgQMHZDAYHF2O0+rRo4dCQkKUkJBgabvvvvtUpUoVffrppw6szLldvHhRPj4++vrrr3X33Xdb2lu0aKEePXpo/Pjx/9jHDTtjlZubq+3btys2NrZIe2xsrH7++WcHVQWUTEZGhqTLIQClo6CgQAsWLFBWVpbatm3r6HIqhSFDhujuu+9Wly5dHF1KpXLgwAGFhYWpXr16evDBB3Xw4EFHl+T0li1bppiYGN1///0KDg5WVFSUZs6c6eiyKpXc3FzNmzdPjz/+OKHKTh06dNCaNWu0f/9+SdKuXbu0YcMGde/e3cGVObf8/HwVFBTI09OzSLuXl5c2bNhQoj5cy6IwZ3D69GkVFBQoJCSkSHtISIhOnjzpoKqAf2Y2mxUfH68OHTqoSZMmji7H6e3Zs0dt27bVpUuXVLVqVS1ZskSNGjVydFlOb8GCBdq+fbu2bdvm6FIqldatW2vu3Lm65ZZb9Ndff2n8+PFq166d9u7dq6CgIEeX57QOHjyoadOmKT4+XmPHjtWWLVs0bNgweXh4qH///o4ur1JYunSpzp07p4EDBzq6FKc3atQoZWRkqEGDBjIajSooKNDrr7+uhx56yNGlOTUfHx+1bdtWr732mho2bKiQkBDNnz9fmzdv1s0331yiPm7YYFXo7781MZvN/CYFFdrTTz+t3bt3l/i3J7i+yMhI7dy5U+fOndOiRYs0YMAAJSUlEa7scPToUT3zzDNavXp1sd/8wT7dunWz/L1p06Zq27atbrrpJs2ZM0fx8fEOrMy5mUwmxcTE6I033pAkRUVFae/evZo2bRrBqpQkJCSoW7duCgsLc3QpTm/hwoWaN2+ePv/8czVu3Fg7d+7U8OHDFRYWpgEDBji6PKf26aef6vHHH1fNmjVlNBrVsmVL9evXTzt27CjR8TdssKpWrZqMRmOx2am0tLRis1hARTF06FAtW7ZM69evV61atRxdTqXg7u6u+vXrS5JiYmK0detWvfvuu/roo48cXJnz2r59u9LS0hQdHW1pKygo0Pr16zV16lTl5OTIaDQ6sMLKw9vbW02bNtWBAwccXYpTCw0NLfbLlIYNG2rRokUOqqhyOXLkiL7//nstXrzY0aVUCs8995xGjx6tBx98UNLlX7IcOXJEEyZMIFjZ6aabblJSUpKysrKUmZmp0NBQ9e3bV/Xq1SvR8TfsM1bu7u6Kjo62rFBTKDExUe3atXNQVcDVmc1mPf3001q8eLHWrl1b4v+Bw3pms1k5OTmOLsOpde7cWXv27NHOnTstW0xMjB5++GHt3LmTUFWKcnJylJKSotDQUEeX4tTat29f7BUW+/fvV3h4uIMqqlxmz56t4ODgIgsCwHbZ2dlycSn6I7zRaGS59VLk7e2t0NBQpaena9WqVerZs2eJjrthZ6wkKT4+Xo8++qhiYmLUtm1bzZgxQ6mpqRo8eLCjS3NqFy5c0O+//275fOjQIe3cuVOBgYGqU6eOAytzXkOGDNHnn3+ur7/+Wj4+PpaZVj8/P3l5eTm4Ouc1duxYdevWTbVr19b58+e1YMECrVu3TitXrnR0aU7Nx8en2PN/3t7eCgoK4rlAO40cOVJxcXGqU6eO0tLSNH78eGVmZvJbajs9++yzateund544w098MAD2rJli2bMmKEZM2Y4ujSnZzKZNHv2bA0YMECurjf0j52lJi4uTq+//rrq1Kmjxo0bKzk5WW+//bYef/xxR5fm9FatWiWz2azIyEj9/vvveu655xQZGanHHnusZB2Yb3AffPCBOTw83Ozu7m5u2bKlOSkpydElOb0ffvjBLKnYNmDAAEeX5rSudj0lmWfPnu3o0pza448/bvnff/Xq1c2dO3c2r1692tFlVUq33367+ZlnnnF0GU6vb9++5tDQULObm5s5LCzM3Lt3b/PevXsdXVal8M0335ibNGli9vDwMDdo0MA8Y8YMR5dUKaxatcosybxv3z5Hl1JpZGZmmp955hlznTp1zJ6enuaIiAjzCy+8YM7JyXF0aU5v4cKF5oiICLO7u7u5Ro0a5iFDhpjPnTtX4uNv6PdYAQAAAEBpuGGfsQIAAACA0kKwAgAAAAA7EawAAAAAwE4EKwAAAACwE8EKAAAAAOxEsAIAAAAAOxGsAAAAAMBOBCsAAAAAsBPBCgAAAADsRLACAAAAADsRrAAAFVanTp00fPjwMj/GWU2cOFFt27Z1dBkAABGsAABl7Oeff5bRaNRdd91l9bGLFy/Wa6+9VgZVOYeBAwdq9OjR1/x+165dat68eTlWBAC4FoIVAKBMzZo1S0OHDtWGDRuUmppq1bGBgYHy8fEpo8oqNpPJpBUrVqhnz57X3GfXrl1q0aJF+RUFALgmghUAoMxkZWXpiy++0FNPPaUePXrok08+sXx36tQp1ahRQ2+88YalbfPmzXJ3d9fq1aslFb+tb+XKlerQoYP8/f0VFBSkHj166I8//rCqpk6dOunpp5/W008/beln3LhxMpvNln1ycnI0bNgwBQcHy9PTUx06dNDWrVst33/11Vdq2rSpvLy8FBQUpC5duigrK6vENbzxxhsyGAzFtrffftuyz08//SQXFxe1bt1akpSSkqJOnTrJy8tLUVFR2rZtm/bv38+MFQBUEAQrAECZWbhwoSIjIxUZGalHHnlEs2fPtgSY6tWra9asWXr55Ze1bds2XbhwQY888oj+85//KDY29qr9ZWVlKT4+Xlu3btWaNWvk4uKie++9VyaTyaq65syZI1dXV23evFnvvfee3nnnHX388ceW759//nktWrRIc+bM0Y4dO1S/fn117dpVZ8+e1YkTJ/TQQw/p8ccfV0pKitatW6fevXsXCWb/ZOjQoTpx4oRle+qppxQeHq4HHnjAss+yZcsUFxcnFxcX/fbbb2rdurViYmL0yy+/6KWXXlLPnj1lNpvVrFkzq84dAFA2DGZr/ksAAIAV2rdvrwceeEDPPPOM8vPzFRoaqvnz56tLly6WfYYMGaLvv/9erVq10q5du7R161Z5enpKujy71KJFC02ZMuWq/Z86dUrBwcHas2ePmjRpUqJjOnXqpLS0NO3du1cGg0GSNHr0aC1btky//vqrsrKyFBAQoE8++UT9+vWTJOXl5alu3boaPny4OnfurOjoaB0+fFjh4eF2X6NXXnlFs2fPVlJSUpH+IiMjNWnSJMXFxalz584KCwvTp59+avn+oYce0o4dO7Rv3z67awAA2I8ZKwBAmdi3b5+2bNmiBx98UJLk6uqqvn37atasWUX2mzRpkvLz8/XFF1/os88+s4Sqq/njjz/Ur18/RUREyNfXV/Xq1ZMkq5/datOmjSVUSVLbtm114MABFRQU6I8//lBeXp7at29v+d7NzU233nqrUlJS1Lx5c3Xu3FlNmzbV/fffr5kzZyo9Pd2q8QtdK1SlpKTozz//VJcuXXTkyBGtXbtW8fHxRY51c3PjNkAAqEAIVgCAMpGQkKD8/HzVrFlTrq6ucnV11bRp07R48eIiQeTgwYM6fvy4TCaTjhw5ct0+4+LidObMGc2cOVObN2/W5s2bJUm5ubmlVnfhjRxXBq/CdoPBIKPRqMTERH333Xdq1KiR3n//fUVGRurQoUNWjXOtUCVdvg3wX//6l7y8vLRz5065urqqadOmRfbZsWMHC1cAQAVCsAIAlLr8/HzNnTtXkydP1s6dOy3brl27FB4ers8++0zS5UD08MMPq2/fvho/frwGDRqkv/7666p9njlzRikpKRo3bpw6d+6shg0b2jxTtGnTpmKfb775ZhmNRtWvX1/u7u7asGGD5fu8vDxt27ZNDRs2lHQ5dLVv316vvPKKkpOT5e7uriVLlpR4/OuFKkn6+uuvdc8990iSXFxcZDKZioTHb7/9Vnv37iVYAUAF4uroAgAAlc/y5cuVnp6uQYMGyc/Pr8h3ffr0UUJCgp5++mm98MILysjI0HvvvaeqVavqu+++06BBg7R8+fJifQYEBCgoKEgzZsxQaGioUlNTr/uOp+s5evSo4uPj9e9//1s7duzQ+++/r8mTJ0uSvL299dRTT+m5555TYGCg6tSpozfffFPZ2dkaNGiQNm/erDVr1ig2NlbBwcHavHmzTp06ZQldU6dO1ZIlS7RmzZqrjj1+/HhNnTpVy5cvl4eHh06ePGk5Pw8PD6WlpWnr1q1aunSpJCk6Olpubm4aOXKkRo4cqV9++UVPPfWUJHErIABUIAQrAECpS0hIUJcuXYqFKkm677779MYbb+jtt9/WlClT9MMPP8jX11eS9Omnn6pZs2aaNm2aJTwUcnFx0YIFCzRs2DA1adJEkZGReu+999SpUyer6+vfv78uXryoW2+9VUajUUOHDtWTTz5p+X7ixIkymUx69NFHdf78ecXExGjVqlUKCAiQr6+v1q9frylTpigzM1Ph4eGaPHmyunXrJkk6ffr0NZeAN5vNeuutt5SZmak2bdoU+W7Tpk1q3bq1vvnmG7Vu3VrBwcGSpLCwMH388ccaM2aMFixYoKioKA0YMEAzZ85UzZo1rT53AEDZYFVAAMAN5Z9WDXS0e+65Rx06dNDzzz/v6FIAAFbgGSsAACqQDh066KGHHnJ0GQAAK3ErIAAAFQgzVQDgnLgVEAAAAADsxK2AAAAAAGAnghUAAAAA2IlgBQAAAAB2IlgBAAAAgJ0IVgAAAABgJ4IVAAAAANiJYAUAAAAAdiJYAQAAAICdCFYAAAAAYCeCFQAAAADY6f8DR0VI/b9EATUAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 1000x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Visualization ###\n", + "plt.figure().set_figwidth(10);\n", + "plt.plot(zMeas, yMeas,'k'); # Plot of meas. contour (cyl. type)\n", + "plt.plot(zMeasRaw, yMeasRaw,'r'); # Plot of raw meas. contour (cyl. type)\n", + "plt.plot(zMeas[dMeas], yMeas[dMeas],'go');\n", + "ax = plt.gca();\n", + "ax.set_aspect('equal', adjustable='box');\n", + "plt.xlim([0, l]);\n", + "plt.ylim([0, 2]);\n", + "plt.xlabel('Axial pos. $z/d$');\n", + "plt.ylabel('Radial pos. $y/d$');\n", + "plt.title('Meas. (Cyl.)');\n", + "plt.savefig('./Output/1-2-3_Meas_Cyl.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "83944bdc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHJCAYAAAAM1aT5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxT0lEQVR4nO3deVhV5f7+8ffezIogiiJOOKSA4gjmPJSFaVna6ahpNlkdm81sMCvTBsvMbNKOptlgZoWWPzOTY+GsKeI85oQiiGiCMsNevz+U/Y0ABQQWw/26rnVd7mc/a+3PWm4WN8+aLIZhGIiIiIhIhWU1uwARERERuTYKdCIiIiIVnAKdiIiISAWnQCciIiJSwSnQiYiIiFRwCnQiIiIiFZwCnYiIiEgFp0AnIiIiUsEp0ImIiIhUcAp0IlXI/PnzsVgsWCwWIiIi8rxvGAbXXXcdFouFPn36lHl91+rLL7+kTp06XLhwIVd7eno6H3/8MT169MDLywtnZ2caNGjAkCFDWL16dZE/J2c7Hjt27Ir95s6dS4MGDUhOTi7yZ1xNRESE/f8yv2n+/PnFXmZ+342KwmKx8Nprr5ldhkiZU6ATqYJq1KjB3Llz87SvXr2aw4cPU6NGDROqujYpKSm89NJLvPDCC7nqT0hIoHv37owdO5agoCDmz5/PqlWreO+993BwcKBv377s2LGjVGq67777qF69OlOnTi2V5QO89dZbbNy4Mc906623ltpnikj542h2ASJS9oYOHcqCBQv45JNP8PDwsLfPnTuXrl27kpSUZGJ1xfPFF19w9uxZHnrooVzt9957Lzt27ODXX3/lxhtvzPXesGHDGDt2LF5eXqVSk6OjI//5z394/fXXeeGFF6hWrVqJf0aLFi3o0qVLiS+3JKSmpuLq6orFYjG7FJFKTyN0IlXQ3XffDcDChQvtbYmJiYSFhfHggw/mO09GRgZvvPEGAQEBuLi4UKdOHR544AHOnDmTq9+iRYsIDQ3F19cXNzc3AgMDefHFF/Mcdjxy5AjDhg2jfv36uLi44OPjQ9++fdm+fXux1mnWrFkMHDiQmjVr2tsiIyP55ZdfGDVqVJ4wl6NTp040btyYY8eO4ejoyJQpU/L0WbNmDRaLhe+//77IdY0YMYKkpCS+/fbbIs9bUpo0acJtt93GihUr6NixI25ubgQEBDBv3ryrzrt161aGDRtGkyZNcHNzo0mTJtx9990cP348V7+cw9ArV67kwQcfpE6dOlSrVo309HQMw+Ctt97Cz88PV1dXQkJCCA8Pp0+fPnkO7SclJTFu3DiaNm1qPzQ+ZsyYPN+fpKQkHn74YWrXro27uzu33HILBw8evOZtJVJRKdCJVEEeHh7cdddduX6hL1y4EKvVytChQ/P0t9ls3HHHHbz99tsMHz6cn3/+mbffftv+Szk1NdXe99ChQwwYMIC5c+eyYsUKxowZw3fffcfAgQNzLXPAgAFERkYydepUwsPDmTVrFh06dOD8+fNFXp+TJ0+ya9cubrjhhlztK1euBGDQoEFXXUaTJk24/fbb+fTTT8nOzs713scff0z9+vUZPHhwkWurV68eAQEB/Pzzz0WetzBsNhtZWVl5pn/asWMHzz77LM888ww//fQTbdu2ZdSoUaxZs+aKyz927Bj+/v7MmDGDX3/9lXfeeYfY2Fg6depEQkJCnv4PPvggTk5OfPXVV/zwww84OTkxYcIEJkyYwC233MJPP/3E6NGjeeihh/IEsJSUFHr37s0XX3zBU089xS+//MILL7zA/Pnzuf322zEMA7h0ruegQYP46quvePbZZ1myZAldunShf//+17AlRSo4Q0SqjM8//9wAjC1bthi///67ARi7d+82DMMwOnXqZNx///2GYRhG69atjd69e9vnW7hwoQEYYWFhuZa3ZcsWAzBmzpyZ7+fZbDYjMzPTWL16tQEYO3bsMAzDMBISEgzAmDFjRoms16JFiwzA2LRpU6720aNHG4Cxf//+Qi0nZ5ssWbLE3hYTE2M4OjoakyZNsrflbMejR48WarkjRowwfHx8CtW3sHJqLWg6ceKEva+fn5/h6upqHD9+3N6Wmppq1KpVy/jPf/6TZ5m///57gZ+blZVlXLx40ahevbrxwQcf2Ntztsm9996bq/+5c+cMFxcXY+jQobnaN27caAC5vmdTpkwxrFarsWXLllx9f/jhBwMwli9fbhiGYfzyyy8GkOvzDcMw3nzzTQMwJk6cWGD9IpWVRuhEqqjevXvTvHlz5s2bx65du9iyZUuBh1uXLVtGzZo1GThwYK5RoPbt21OvXr1cV0UeOXKE4cOHU69ePRwcHHBycqJ3794A7Nu3D4BatWrRvHlz3n33XaZPn05UVBQ2m63Y63Lq1CkA6tatW+xlAPTp04d27drxySef2Ns+/fRTLBYLjzzySLGXW7duXeLj4/MdOcthGMZVR9ny884777Bly5Y8k4+PT65+7du3p3HjxvbXrq6utGzZMs+h03+6ePEiL7zwAtdddx2Ojo44Ojri7u5OcnKy/f/z7/71r3/ler1p0ybS09MZMmRIrvYuXbrQpEmTXG3Lli0jKCiI9u3b59oO/fr1y3X17e+//w5cOpz9d8OHD7/iuohUZrooQqSKslgsPPDAA3z44YekpaXRsmVLevbsmW/f06dPc/78eZydnfN9P+fQ28WLF+nZsyeurq688cYbtGzZkmrVqnHixAnuvPNO+6FZi8XCqlWrmDx5MlOnTuXZZ5+lVq1ajBgxgjfffLPIV9nmLNfV1TVXe06AOXr0KP7+/oVa1lNPPcVDDz3EgQMHaNasGXPmzOGuu+6iXr16Rarp71xdXTEMg7S0NNzd3fPt88UXX/DAAw/kajMuH2K8kmbNmhESEnLVfrVr187T5uLikutweX6GDx/OqlWreOWVV+jUqRMeHh5YLBYGDBiQ77y+vr65Xp89exYgT8DMr+306dP8+eefODk55VtLzvfs7NmzODo65lmna/k/EqnoFOhEqrD777+fV199lU8//ZQ333yzwH7e3t7Url2bFStW5Pt+TgD77bffOHXqFBEREfZROSDf8+L8/Pzst045ePAg3333Ha+99hoZGRl8+umnRVoPb29vAM6dO5crUPTr14+XXnqJH3/8kVtuuaVQyxo+fDgvvPACn3zyCV26dCEuLo7HH3+8SPX807lz53BxcSkwzAEMHDiQLVu2XNPnlLTExESWLVvGxIkTefHFF+3t6enpnDt3Lt95/nlFa07oOn36dJ6+cXFxuUbpvL29cXNzK/BijZz/59q1a5OVlcXZs2dzhbq4uLjCrZhIJaRAJ1KFNWjQgOeee479+/dz3333Fdjvtttu49tvvyU7O5vOnTsX2C/nl7mLi0uu9v/+979XrKNly5a8/PLLhIWFsW3btiKswSUBAQEAHD58mNatW9vbO3bsSP/+/Zk7dy5DhgzJ90rXrVu3UrduXftonqurK4888ggff/wxGzZsoH379nTv3r3INf3dkSNHaNWq1RX71K5dO99RNDNZLBYMw8jz//nZZ5/luXCkIJ07d8bFxYVFixZx55132ts3bdrE8ePHcwW62267jbfeeovatWvTtGnTApd5ww03MHXqVBYsWMBTTz1lb//mm28KuWYilY8CnUgV9/bbb1+1z7Bhw1iwYAEDBgzg6aef5vrrr8fJyYmTJ0/y+++/c8cddzB48GC6deuGl5cXo0ePZuLEiTg5ObFgwYI8N+7duXMnTzzxBP/+979p0aIFzs7O/Pbbb+zcuTPXSNCoUaP44osvOHz4MH5+fgXW17lzZ9zc3Ni0aRO33357rve+/PJLbrnlFvr378+DDz5I//798fLyIjY2lv/3//4fCxcuJDIyMtf5ZY899hhTp04lMjKSzz77rFDbcfLkyUyePJlVq1blGp202Wz88ccfjBo1qlDLKapDhw6xadOmPO0NGzakYcOG17RsDw8PevXqxbvvvou3tzdNmjRh9erVzJ07N9ftYa6kVq1ajB07lilTpuDl5cXgwYM5efIkkyZNwtfXF6v1/07lHjNmDGFhYfTq1YtnnnmGtm3bYrPZiI6OZuXKlTz77LN07tyZ0NBQevXqxfPPP09ycjIhISGsX7+er7766prWV6QiU6ATkatycHBg6dKlfPDBB3z11VdMmTIFR0dHGjZsSO/evWnTpg1waZTp559/5tlnn+Wee+6hevXq3HHHHSxatIiOHTval1evXj2aN2/OzJkzOXHiBBaLhWbNmvHee+/x5JNP2vtlZ2eTnZ191XPJnJ2dueuuu/jpp5946623cr3n7e3NunXrmDNnDgsXLuSbb74hJSWFunXr0qVLF5YuXUq7du1yzdOgQQN69OjBzp07C32ivc1my7fWiIgIEhMT85zAX1JeeumlfNsnTJjAG2+8cc3L/+abb3j66ad5/vnnycrKonv37oSHhxfpSRRvvvkm1atX59NPP+Xzzz8nICCAWbNmMWHChFzBsHr16qxdu5a3336b2bNnc/ToUdzc3GjcuDE33XSTfTTParWydOlSxo4dy9SpU8nIyKB79+4sX77cPlorUtVYjMKcdSsiUs5t3bqVTp06sWnTpiseFi6M+Ph4/Pz8ePLJJ6/5sV0jR47kyJEjrF+//pqWU9kcPXqUgIAAJk6cWGAoFZHCU6ATkUpj6NChJCcns2zZsmLNf/LkSY4cOcK7777Lb7/9xsGDB2nQoEGx6zl8+DCBgYH89ttv9OjRo9jLqeh27NjBwoUL6datGx4eHhw4cICpU6eSlJTE7t27870CVkSKRvehE5FK47333qNTp05cuHChWPN/9tln9OnThz179rBgwYJrCnMA0dHRfPzxx1U6zMGlQ6lbt25l1KhR3HzzzUyYMIEOHTqwbt06hTmREqIROhEREZEKTiN0IiIiIhWcAp2IiIhIBadAJyIiIlLB6T50hWCz2Th16hQ1atTI81gbERERkZJmGAYXLlygfv36uW7AXRAFukI4deoUjRo1MrsMERERqWJOnDhRqKe+KNAVQs6Dx5s0aZLnEUYiIiIiJS0pKYlGjRrZM8jVKNAVQs5h1mPHjgGXnm8oIiIiUtoKe6qXLoooIo3QiYiISHmjQFdE27ZtM7sEERERkVwU6IooKirK7BJEREREclGgKyKN0ImIiEh5o0BXRHv37iUtLc3sMkRERETsFOiKoFatWmRnZ7Nr1y6zSxERERGxU6Argvbt2wM67CoiIiLliwJdEbRt2xbQhREiIiJSvijQFUG7du0AjdCJiIhI+aJAVwQ5gW7nzp1kZmaaXI2IiIjIJQp0RdC0aVNq1KhBeno6+/fvN7scEREREUCBrkisVisdOnQAdB6diIiIlB8KdEWUE+h0Hp2IiIiUFwp0RdSxY0dAI3QiIiJSfijQFdHfD7nabDaTqxERERFRoCuywMBAXF1duXDhAocPHza7HBEREZHyF+hmzpxJ06ZNcXV1JTg4mLVr116xf3p6OhMmTMDPzw8XFxeaN2/OvHnz8u377bffYrFYGDRoULHrc3R01A2GRUREpFwpV4Fu0aJFjBkzhgkTJhAVFUXPnj3p378/0dHRBc4zZMgQVq1axdy5czlw4AALFy4kICAgT7/jx48zbtw4evbsec116sIIERERKU8czS7g76ZPn86oUaN46KGHAJgxYwa//vors2bNYsqUKXn6r1ixgtWrV3PkyBFq1aoFQJMmTfL0y87OZsSIEUyaNIm1a9dy/vz5a6oz58IIBToREREpD8rNCF1GRgaRkZGEhobmag8NDWXDhg35zrN06VJCQkKYOnUqDRo0oGXLlowbN47U1NRc/SZPnkydOnUYNWpUoWpJT08nKSkp1/R3wcHBAERGRmIYRmFXUURERKRUlJsRuoSEBLKzs/Hx8cnV7uPjQ1xcXL7zHDlyhHXr1uHq6sqSJUtISEjgscce49y5c/bz6NavX8/cuXPZvn17oWuZMmUKkyZNKvD9oKAgnJ2dOXfuHMeOHaNp06aFXraIiIhISSs3I3Q5LBZLrteGYeRpy2Gz2bBYLCxYsIDrr7+eAQMGMH36dObPn09qaioXLlzgnnvuYc6cOXh7exe6hvHjx5OYmGifTpw4ket9FxcX+4URW7ZsKeIaioiIiJSscjNC5+3tjYODQ57RuPj4+Dyjdjl8fX1p0KABnp6e9rbAwEAMw+DkyZMkJydz7NgxBg4caH8/595xjo6OHDhwgObNm+dZrouLCy4uLlesNyQkhK1bt7J161aGDBlS6PUUERERKWnlZoTO2dmZ4OBgwsPDc7WHh4fTrVu3fOfp3r07p06d4uLFi/a2gwcPYrVaadiwIQEBAezatYvt27fbp9tvv50bbriB7du306hRo2LX26lTJwC2bt1a7GWIiIiIlIRyM0IHMHbsWEaOHElISAhdu3Zl9uzZREdHM3r0aODSodCYmBi+/PJLAIYPH87rr7/OAw88wKRJk0hISOC5557jwQcfxM3NDbh0vtvf1axZM9/2ogoJCQEuXRhhs9mwWstNNhYREZEqplwFuqFDh3L27FkmT55MbGwsQUFBLF++HD8/PwBiY2Nz3ZPO3d2d8PBwnnzySUJCQqhduzZDhgzhjTfeKPVaW7VqhaurK0lJSRw6dAh/f/9S/0wRERGR/FgM3XfjqpKSkvD09CQxMREPDw97e7du3di4cSNff/01I0aMMLFCERERqUwKyh4F0XHCa6Dz6ERERKQ8UKC7Bjnn0SnQiYiIiJkU6K5BTqDbtm0bWVlZJlcjIiIiVZUC3TVo2bIl7u7upKSksH//frPLERERkSpKge4aODg42J/rqsOuIiIiYhYFumuk8+hERETEbAp01ygn0OmZriIiImIWBbprlBPoduzYQUZGhsnViIiISFWkQHeNmjdvTs2aNUlPT2fPnj1mlyMiIiJVkALdNbJYLDqPTkREREylQFcCdB6diIiImEmBrgRohE5ERETMpEBXAnKe6bpr1y7S0tJMrkZERESqGgW6EtCoUSPq1KlDVlYWO3fuNLscERERqWIU6ErA3y+M0Hl0IiIiUtYU6EqIzqMTERERsyjQlZCc8+g0QiciIiJlTYGuhOQEur1793LhwgWTqxEREZGqRIGuhNSrV4/GjRtjGAaRkZFmlyMiIiJViAJdCbr++usB+OOPP0yuRERERKoSBboSpEAnIiIiZlCgK0GdO3cGYPPmzSZXIiIiIlWJAl0J6tixI1arlZMnT3Lq1CmzyxEREZEqQoGuBLm7u9O6dWtAty8RERGRsqNAV8J0Hp2IiIiUNQW6Eqbz6ERERKSsKdCVsJwRui1btmCz2UyuRkRERKoCBboS1rp1a9zc3EhKSuLgwYNmlyMiIiJVgAJdCXN0dCQ4OBjQYVcREREpGwp0pSDnPDpdGCEiIiJlQYGuFOhKVxERESlLCnSlICfQ7dixg7S0NJOrERERkcpOga4U+Pn5UadOHTIzM9m+fbvZ5YiIiEglp0BXCiwWi86jExERkTKjQFdKdB6diIiIlJVyF+hmzpxJ06ZNcXV1JTg4mLVr116xf3p6OhMmTMDPzw8XFxeaN2/OvHnz7O/PmTOHnj174uXlhZeXFzfddFOZhCwFOhERESkr5SrQLVq0iDFjxjBhwgSioqLo2bMn/fv3Jzo6usB5hgwZwqpVq5g7dy4HDhxg4cKFBAQE2N+PiIjg7rvv5vfff2fjxo00btyY0NBQYmJiSnVdOnXqBMChQ4c4d+5cqX6WiIiIVG0WwzAMs4vI0blzZzp27MisWbPsbYGBgQwaNIgpU6bk6b9ixQqGDRvGkSNHqFWrVqE+Izs7Gy8vLz7++GPuvffeQs2TlJSEp6cniYmJeHh4FG5lgJYtW3Lo0CFWrFhBv379Cj2fiIiIVG1FzR7lZoQuIyODyMhIQkNDc7WHhoayYcOGfOdZunQpISEhTJ06lQYNGtCyZUvGjRtHampqgZ+TkpJCZmbmFQNgeno6SUlJuabi0GFXERERKQvlJtAlJCSQnZ2Nj49PrnYfHx/i4uLynefIkSOsW7eO3bt3s2TJEmbMmMEPP/zA448/XuDnvPjiizRo0ICbbrqpwD5TpkzB09PTPjVq1KhY66RAJyIiImWh3AS6HBaLJddrwzDytOWw2WxYLBYWLFjA9ddfz4ABA5g+fTrz58/Pd5Ru6tSpLFy4kMWLF+Pq6lpgDePHjycxMdE+nThxoljrknPrks2bN1OOjmyLiIhIJVNuAp23tzcODg55RuPi4+PzjNrl8PX1pUGDBnh6etrbAgMDMQyDkydP5uo7bdo03nrrLVauXEnbtm2vWIuLiwseHh65puJo164dTk5OnDlzhuPHjxdrGSIiIiJXU24CnbOzM8HBwYSHh+dqDw8Pp1u3bvnO0717d06dOsXFixftbQcPHsRqtdKwYUN727vvvsvrr7/OihUrCAkJKZ0VyIerqyvt2rUDdNhVRERESk+5CXQAY8eO5bPPPmPevHns27ePZ555hujoaEaPHg1cOhT69ytThw8fTu3atXnggQfYu3cva9as4bnnnuPBBx/Ezc0NuHSY9eWXX2bevHk0adKEuLg44uLicoXA0qTz6ERERKS0latAN3ToUGbMmMHkyZNp3749a9asYfny5fj5+QEQGxub65507u7uhIeHc/78eUJCQhgxYgQDBw7kww8/tPeZOXMmGRkZ3HXXXfj6+tqnadOmlck6/f08OhEREZHSUK7uQ1deFfc+dAD79+8nMDAQNzc3kpKScHR0LKUqRUREpLKosPehq6xatmyJh4cHqamp7Nmzx+xyREREpBJSoCtlVqvV/hgwHXYVERGR0qBAVwZyzqPThREiIiJSGhToyoCudBUREZHSpEBXBnIC3Z49e8rsdikiIiJSdSjQlQFfX19m1qjBHpuNQ/Pnm12OiIiIVDIKdGWkQ40aBACJy5aZXYqIiIhUMgp0ZST98mHXalFRJlciIiIilY0CXRmpe+edALQ8cwZbVpbJ1YiIiEhlokBXRlr8+99cBGoaBn/+9JPZ5YiIiEglokBXRhxdXTlYqxYAsd9/b3I1IiIiUpko0JWhpHbtAHDctMnkSkRERKQyUaArQ5633gpAk5MnTa5EREREKhMFujLUcuRIMoEG2dmcXL/e7HJERESkklCgK0PV69blQPXqABxfsMDkakRERKSyUKArYwkBAQBkR0SYW4iIiIhUGgp0Zczt5psB8D1yxORKREREpLJQoCtjze+9F4AW6emcO3TI5GpERESkMlCgK2PegYEcdnYG4M8vvzS5GhEREakMFOhMENO0KQApv/5qciUiIiJSGSjQmcDaqxcAtfftM7kSERERqQwU6EzQePhwAPwvXiT13DmTqxEREZGKToHOBI169SLWasUZOPDVV2aXIyIiIhWcAp0JLFYrRxs0AOD8smUmVyMiIiIVnQKdSTI7dwbAPSrK5EpERESkolOgM0m9u+4CoOXZs2RnZJhcjYiIiFRkCnQmuW7wYBIBD+BQWJjZ5YiIiEgFpkBnEgdnZw56ewNw+ocfTK5GREREKjIFOhMld+wIgMumTSZXIiIiIhWZAp2Jav/rXwC0iI3FlpVlcjUiIiJSUSnQmSjgnnu4CNQ2DP786SezyxEREZEKSoHORE7VqrG/dm0AYr/5xuRqREREpKJSoDPZxZAQAFw2bjS5EhEREamoFOhM5p1zP7q4OJ1HJyIiIsWiQGcy/+HDuQjUMgz+/PFHs8sRERGRCqjcBbqZM2fStGlTXF1dCQ4OZu3atVfsn56ezoQJE/Dz88PFxYXmzZszb968XH3CwsJo1aoVLi4utGrViiVLlpTmKhRJrvPoFi40uRoRERGpiMpVoFu0aBFjxoxhwoQJREVF0bNnT/r37090dHSB8wwZMoRVq1Yxd+5cDhw4wMKFCwkICLC/v3HjRoYOHcrIkSPZsWMHI0eOZMiQIWzevLksVqlQdB6diIiIXAuLYRiG2UXk6Ny5Mx07dmTWrFn2tsDAQAYNGsSUKVPy9F+xYgXDhg3jyJEj1KpVK99lDh06lKSkJH755Rd72y233IKXlxcLCzkilpSUhKenJ4mJiXh4eBRxra5u92efEfTww/xlseCZkYHV0bHEP0NEREQqjqJmj3IzQpeRkUFkZCShoaG52kNDQ9mwYUO+8yxdupSQkBCmTp1KgwYNaNmyJePGjSM1NdXeZ+PGjXmW2a9fvwKXaQb/4cO5AHgZBgcWLTK7HBEREalgys1QUEJCAtnZ2fj4+ORq9/HxIS4uLt95jhw5wrp163B1dWXJkiUkJCTw2GOPce7cOft5dHFxcUVaJlw6Ly89Pd3+OikpqbirVShO1aoRVbcu18fHc3rBAgJHjCjVzxMREZHKpdyM0OWwWCy5XhuGkacth81mw2KxsGDBAq6//noGDBjA9OnTmT9/fq5RuqIsE2DKlCl4enrap0aNGl3DGhVOavfuANQoR+f2iYiISMVQbgKdt7c3Dg4OeUbO4uPj84yw5fD19aVBgwZ4enra2wIDAzEMg5MnTwJQr169Ii0TYPz48SQmJtqnEydOFHe1Cq3BffcBEHjuHGnnz5f654mIiEjlUW4CnbOzM8HBwYSHh+dqDw8Pp1u3bvnO0717d06dOsXFixftbQcPHsRqtdKwYUMAunbtmmeZK1euLHCZAC4uLnh4eOSaSlvzgQM5bbVSDdj3j9uuiIiIiFxJuQl0AGPHjuWzzz5j3rx57Nu3j2eeeYbo6GhGjx4NXBo5u/fee+39hw8fTu3atXnggQfYu3cva9as4bnnnuPBBx/Ezc0NgKeffpqVK1fyzjvvsH//ft555x3+97//MWbMGDNWsUAWq5VDfn4AJIaFmVyNiIiIVCTlKtANHTqUGTNmMHnyZNq3b8+aNWtYvnw5fpeDTmxsbK570rm7uxMeHs758+cJCQlhxIgRDBw4kA8//NDep1u3bnz77bd8/vnntG3blvnz57No0SI6d+5c5ut3VTfeCID3jh0mFyIiIiIVSbm6D115Vdr3octxavNm6nfpQjZw8dgxPC8HWREREalaKux96ATqd+7MEWdnHID9n35qdjkiIiJSQSjQlTMn/P0BSPv5Z5MrERERkYpCga6ccb31VgAaHThgciUiIiJSUSjQlTMBo0eTDTTLyOCUbjIsIiIihaBAV854+vmxr3p1AI7MmWNyNSIiIlIRKNCVQwnt2gFgWbXK5EpERESkIlCgK4c8//UvAK6Ljsaw2UyuRkRERMo7BbpyKPDBB0kBfGw2Dv+//2d2OSIiIlLOKdCVQ641a7K3dm0AYr74wuRqREREpLxToCunLl5+NJnb+vUmVyIiIiLlnQJdOeUzfDgAgfHxZKakmFyNiIiIlGcKdOWU/9ChnLNYqAHs/+ors8sRERGRckyBrpyyOjpyoEEDAM4uWmRyNSIiIlKeKdCVY5m9ewPgFRlpciUiIiJSnhUp0HXr1o3HHnuM2bNns3nzZlJTU0urLgGaPPQQAK2SkrgYF2dyNSIiIlJeFSnQ3XHHHZw/f54PPviAHj164OHhQWBgIMOGDePtt99mxYoVxMbGllatVU7jPn2IdnTECdj33/+aXY6IiIiUUxbDMIzizBgZGckdd9xBr169cHJyYtu2bezZsweLxYK3tzenT58u6VpNk5SUhKenJ4mJiXh4eJTpZ68JCKDXgQNEdOxIHx16FRERqRKKmj0ci/tBjzzyCJ988gl33HGHvW358uU88sgj3H///cVdrPyDY79+cOAAvnv3ml2KiIiIlFPFvihi3759tG3bNlfbgAEDmDlzJps3b77mwuSSlqNHA+CflsaZ3btNrkZERETKo2IHus6dO/Ppp5/maW/Tpg1RUVHXVJT8H+/AQPa7uQFwSOfRiYiISD6KHehmzpzJp59+yv3338/OnTux2WykpaUxbdo0qlevXpI1VnlxrVsDkP3rryZXIiIiIuVRsc+hCwwMZPPmzTz++OO0b98eJycnbDYbjo6OzJ07tyRrrPLc77gDtm6l6ZEjGDYbFqtuHygiIiL/p8hXub700ksMGjSI66+/3t52/PhxduzYgdVqJTg4GF9f3xIv1ExmXuUKkBwfj5OPD87A8f/9D7++fcu8BhERESk7pX6Va2xsLLfddhsODg4MHDiQQYMG0bdvX/z8/IpVsFxd9bp12e7pSfvERI7PnatAJyIiIrkU+djd559/zunTp/nuu++oWbMmY8eOxdvbmzvvvJP58+eTkJBQGnVWeedDQgBwWrPG5EpERESkvCnWyVgWi4WePXsydepU9u/fzx9//EGXLl2YM2cODRo0oFevXkybNo2YmJiSrrfK8h42DICAU6fIzsgwuRoREREpT4r9pIiCnDlzhqVLl7J06VJ69uzJuHHjSnLxpjD7HDqArLQ0kt3c8AT2fvEFre6915Q6REREpPQVNXsUO9CdOHGCRo0aFWfWCqc8BDqAzb6+dI6LI6JfP/qsWGFaHSIiIlK6ipo9in3/i4CAAF555RWSk5OLuwgporTu3QGosWWLyZWIiIhIeVLsQBceHs7KlStp0aIFn3/+eUnWJAVoePkZua3PnSP13DlzixEREZFyo9iBrlu3bmzevJm3336bV199lQ4dOhAREVGCpck/NRswgFirFVdgn27eLCIiIpdd8yMH7r33Xg4ePMjAgQO59dZbGTx4MH/++WdJ1Cb/YLFaOdykCQBJixebW4yIiIiUGyXyDCnDMAgNDeWRRx5h6dKlBAUF8eyzz3LhwoWSWLz83c03A1B3506TCxEREZHyotiB7tNPP2XUqFG0bdsWT09PbrrpJtavX8/jjz/OzJkz2b59O61atWLr1q0lWW+Vd90jjwAQkJLC+aNHTa5GREREyoNi37akUaNGdOnSxT6FhITg4uKSq89bb73FN998w+7du0ukWLOUl9uW5Djs4kLzjAw2PfccXaZONbscERERKWFldh+6wjh9+jT169cnOzu7tD6iTJS3QLe6XTt679zJmtat6VXBw7KIiIjkVWb3oSuMunXr8ttvvxVpnpkzZ9K0aVNcXV0JDg5m7dq1BfaNiIjAYrHkmfbv35+r34wZM/D398fNzY1GjRrxzDPPkJaWVqx1Kg9cb7sNgEYHD5pciYiIiJQHpRroLBYLvXv3LnT/RYsWMWbMGCZMmEBUVBQ9e/akf//+REdHX3G+AwcOEBsba59atGhhf2/BggW8+OKLTJw4kX379jF37lwWLVrE+PHji71eZgv4z3/IAppmZnJy/XqzyxERERGTlWqgK6rp06czatQoHnroIQIDA5kxYwaNGjVi1qxZV5yvbt261KtXzz45ODjY39u4cSPdu3dn+PDhNGnShNDQUO6+++4KfbGGZ+PG7HN3B+DoZ5+ZXI2IiIiYrdwEuoyMDCIjIwkNDc3VHhoayoYNG644b4cOHfD19aVv3778/vvvud7r0aMHkZGR/PHHHwAcOXKE5cuXc+uttxa4vPT0dJKSknJN5c3Z9u0BsP5jfUVERKTqKTeBLiEhgezsbHx8fHK1+/j4EBcXl+88vr6+zJ49m7CwMBYvXoy/vz99+/ZlzZo19j7Dhg3j9ddfp0ePHjg5OdG8eXNuuOEGXnzxxQJrmTJlCp6envapUaNGJbOSJchr6FAAAqKjyc7IMLkaERERMVOJB7qbbrqJZs2aFXt+i8WS67VhGHnacvj7+/Pwww/TsWNHunbtysyZM7n11luZNm2avU9ERARvvvkmM2fOZNu2bSxevJhly5bx+uuvF1jD+PHjSUxMtE8nTpwo9vqUltYPPUQiUNsw2Dt/vtnliIiIiIkcS3qBgwcPJiEhocjzeXt74+DgkGc0Lj4+Ps+o3ZV06dKFr7/+2v76lVdeYeTIkTz00EMAtGnThuTkZB555BEmTJiA1Zo307q4uOS5p1554+jqyp5Gjeh24gRnv/oKLt9wWERERKqeEh+he/zxx5k4cWKR53N2diY4OJjw8PBc7eHh4XTr1q3Qy4mKisLX19f+OiUlJU9oc3BwwDAMSvEWfGXCdsstAPhERppciYiIiJipxEforsXYsWMZOXIkISEhdO3aldmzZxMdHc3o0aOBS4dCY2Ji+PLLL4FL95dr0qQJrVu3JiMjg6+//pqwsDDCwsLsyxw4cCDTp0+nQ4cOdO7cmT///JNXXnmF22+/PdfVsBWR/9NPw5w5BKamcnr7dnwuXyghIiIiVUuxA11qaiqGYVCtWjUAjh8/zpIlSwgMDKRfv37FWubQoUM5e/YskydPJjY2lqCgIJYvX46fnx8AsbGxue5Jl5GRwbhx44iJicHNzY3WrVvz888/M2DAAHufl19+GYvFwssvv0xMTAx16tRh4MCBvPnmm8Vd9XKjTuvW7KlendbJyRz84AN8Pv/c7JJERETEBMV+9FdoaCh33nkno0eP5vz58wQEBODk5ERCQgLTp0/n0UcfLelaTVPeHv31dxE33ECfiAg2NmhA15MnzS5HRERESkCZPfpr27Zt9OzZE4AffvgBHx8fjh8/zpdffsmHH35Y3MVKEdW9/34AWsfEkJmSYm4xIiIiYopiB7qUlBRq1KgBwMqVK7nzzjuxWq106dKF48ePl1iBcmUBI0ZwxmLBA9h9lSdqiIiISOVU7EB33XXX8eOPP3LixAl+/fVX+xMe4uPjy91hycrM6ujI/uuuAyDpiy9MrkZERETMUOxA9+qrrzJu3DiaNGnC9ddfT9euXYFLo3UdOnQosQLl6lyHDweg5Z492LKyTK5GREREylqxL4oAiIuLIzY2lvbt29uf5vDHH3/g4eFBQEBAiRVptvJ8UQRAelIS6Z6elw67zplD0OWbKIuIiEjFVNTscU33oXN1deW3337jk08+wWKxEBgYyKhRo/D09LyWxUoRuXh4sNXPj+7Hj5MwezYo0ImIiFQpxT7kunXrVpo3b87777/PuXPnSEhI4P3336d58+Zs27atJGuUQrD+618ANI2KwrDZTK5GREREylKxD7n27NmT6667jjlz5uDoeGmgLysri4ceeogjR46wZs2aEi3UTOX9kCvAxbg4HHx9cQMOLFqE/5AhZpckIiIixVRm96HbunUrL7zwgj3MATg6OvL888+zdevW4i5Wism9Xj12XH6Gbewnn5hcjYiIiJSlYgc6Dw+PXI/hynHixAn7/emkbGXdfjsADTZvNrkSERERKUvFDnRDhw5l1KhRLFq0iBMnTnDy5Em+/fZbHnroIe6+++6SrFEKKeiFF8gEWqSnc/TXX80uR0RERMpIsa9ynTZtGhaLhXvvvZesy/c+c3Jy4tFHH+Xtt98usQKl8Go2bcrW2rUJOXuW4++/T9N+/cwuSURERMrANd2HDi49Auzw4cMYhsF1111HtWrVSqq2cqMiXBSRY82IEfT65hv2VK9O64sXzS5HREREiqHMLorIUa1aNYKCgmjTpk2lDHMVTeD48diA1snJxGzcaHY5IiIiUgauKdDNnTuXoKAgXF1dcXV1JSgoiM8++6ykapNiqBMUxK7LSf7PadNMrkZERETKQrHPoXvllVd4//33efLJJ+3Pcd24cSPPPPMMx44d44033iixIqVozt94I/z4I56rVpldioiIiJSBYp9D5+3tzUcffZTnitaFCxfy5JNPkpCQUCIFlgcV6Rw6gJPr19OwRw+ygXO7d1OndWuzSxIREZEiKLNz6LKzswkJCcnTHhwcbL/qVczRsHt39larhgOw7513zC5HRERESlmxA90999zDrFmz8rTPnj2bESNGXFNRcu3ie/QAwO2XX0yuREREREpbsc+hg0sXRaxcuZIuXboAsGnTJk6cOMG9997L2LFj7f2mT59+bVVKkTUeMwZWrqRdQgKJx4/j6edndkkiIiJSSop9Dt0NN9xQuA+wWPjtt9+K8xHlRkU7hy7Hn66uXJeezvpHH6X7zJlmlyMiIiKFVNTsUewRut9//724s0oZOdmpE9etW4fDjz+CAp2IiEildc03Fpbyq95jjwHQNjaW5Ph4k6sRERGR0qJAV4n5Dx1KtKMj1YBdusmwiIhIpaVAV4lZrFaOtGsHQPb335tcjYiIiJQWBbpKrvbDDwMQdOwY6UlJJlcjIiIipUGBrpJrPWoUcVYrnsDOGTPMLkdERERKQZGucv37veWuRveeKx+sjo4caNWKert3k/rNN/Dqq2aXJCIiIiWsSIEuKiqqUP0sFkuxipHSUePee+H552l18CDZGRk4ODubXZKIiIiUoGLfWLgqqag3Fs6RmZLCBXd3ahkG22fMoP3TT5tdkoiIiFxBUbOHzqGrApyqVWNP8+YAJM6bZ3I1IiIiUtKu6VmuAHv37iU6OpqMjIxc7bfffvu1LlpKkMuwYfDGG7TcvRtbVhZWx2v+rxcREZFyotiHXI8cOcLgwYPZtWsXFouFnMXknD+XnZ1dclWarKIfcgVIO3+eTC8vagB75s2j9QMPmF2SiIiIFKDMDrk+/fTTNG3alNOnT1OtWjX27NnDmjVrCAkJISIioriLlVLiWrMmuxo1AuDMJ5+YXI2IiIiUpGIHuo0bNzJ58mTq1KmD1WrFarXSo0cPpkyZwlNPPVWSNUoJsd59NwAttm/HlpVlcjUiIiJSUood6LKzs3F3dwfA29ubU6dOAeDn58eBAweKXdDMmTNp2rQprq6uBAcHs3bt2gL7RkREYLFY8kz79+/P1e/8+fM8/vjj+Pr64urqSmBgIMuXLy92jRVV+/HjSQIaZGeze/Zss8sRERGRElLsM+ODgoLYuXMnzZo1o3PnzkydOhVnZ2dmz55Ns2bNirXMRYsWMWbMGGbOnEn37t3573//S//+/dm7dy+NGzcucL4DBw7kOr5cp04d+78zMjK4+eabqVu3Lj/88AMNGzbkxIkT1KhRo1g1VmSuNWuytVkzehw5wl+ffgqPPWZ2SSIiIlICih3oXn75ZZKTkwF44403uO222+jZsye1a9dm0aJFxVrm9OnTGTVqFA899BAAM2bM4Ndff2XWrFlMmTKlwPnq1q1LzZo1831v3rx5nDt3jg0bNuDk5ARcGkWsqlwfeABeeYVWu3eTlZaGo6ur2SWJiIjINSr2Idd+/fpx5513AtCsWTP27t1LQkIC8fHx3HjjjUVeXkZGBpGRkYSGhuZqDw0NZcOGDVect0OHDvj6+tK3b19+//33XO8tXbqUrl278vjjj+Pj40NQUBBvvfXWFa/CTU9PJykpKddUWbQbO5azFgt1DIMderariIhIpVCiNxauVatWsR/7lZCQQHZ2Nj4+PrnafXx8iIuLy3ceX19fZs+eTVhYGIsXL8bf35++ffuyZs0ae58jR47www8/kJ2dzfLly3n55Zd57733ePPNNwusZcqUKXh6etqnRpevDq0MnKpVY09AAAApusmwiIhIpVCk+9CNHTuW119/nerVqzN27Ngr9p0+fXqRCjl16hQNGjRgw4YNdO3a1d7+5ptv8tVXX+W50KEgAwcOxGKxsHTpUgBatmxJWloaR48excHBwV7bu+++S2xsbL7LSE9PJz093f46KSmJRo0aVej70P3d9g8+oP2YMZy3WHA7fx6XSrBOIiIilUlR70NXpHPooqKiyMzMtP+7JHl7e+Pg4JBnNC4+Pj7PqN2VdOnSha+//tr+2tfXFycnJ3uYAwgMDCQuLo6MjAyc83lQvYuLCy4uLsVYi4qhzaOPEjt2LL42G5vfeYfOVxitFBERkfKvSIHu7+en/fNctWvl7OxMcHAw4eHhDB482N4eHh7OHXfcUejlREVF4evra3/dvXt3vvnmG2w2G1brpSPMBw8exNfXN98wVxU4ODtzsF07fKOiyFqwABToREREKrQiBbqrHWbNYbFYeO+994pczNixYxk5ciQhISF07dqV2bNnEx0dzejRowEYP348MTExfPnll8Clq2CbNGlC69atycjI4OuvvyYsLIywsDD7Mh999FE++ugjnn76aZ588kkOHTrEW2+9VeVvfuz95JPw4IO0P36c5Ph4qteta3ZJIiIiUkxFPuT6d5GRkWRnZ+Pv7w9cGvlycHAgODi4WMUMHTqUs2fPMnnyZGJjYwkKCmL58uX224zExsYSHR1t75+RkcG4ceOIiYnBzc2N1q1b8/PPPzNgwAB7n0aNGrFy5UqeeeYZ2rZtS4MGDXj66ad54YUXilVjZdHqvvuIfuQRGmdlsWHKFLq9/77ZJYmIiEgxFemiiL+bPn06ERERfPHFF3h5eQHw119/8cADD9CzZ0+effbZEi3UTEU9MbGiiOjWjT4bN7LJ15cul5/0ISIiIuYravYodqBr0KABK1eupHXr1rnad+/eTWhoqP1RYJVBZQ10B8PCaHnXXaQDaceP43mFp3GIiIhI2Slq9ij2feiSkpI4ffp0nvb4+HguXLhQ3MVKGWoxeDB/urjgAux6/XWzyxEREZFiKnagGzx4MA888AA//PADJ0+e5OTJk/zwww+MGjXK/gQJKd8sVisnu3cHwHXJEpOrERERkeIqdqD79NNPufXWW7nnnnvw8/PDz8+PESNG0L9/f2bOnFmSNUopavLiiwC0P3uWhH37TK5GREREiqPY59DlSE5O5vDhwxiGwXXXXUf16tVLqrZyo7KeQ5djb/XqtEpJYc3dd9Prm2/MLkdERKTKK7Nz6HJUr16dtm3b0q5du0oZ5qqC+BtuAMBj+XKTKxEREZHiKNJ96PKzd+9eoqOjycjIyNV+++23X+uipYy0fOUV+Pln2iYmErtlC76dOpldkoiIiBRBsQPdkSNHGDx4MLt27cJisZBz5NZisQCQnZ1dMhVKqavfuTM7PDxol5TEgTffxPfHH80uSURERIqg2Idcn376aZo2bcrp06epVq0ae/bsYc2aNYSEhBAREVGCJUpZON+vHwB1/vc/kysRERGRoip2oNu4cSOTJ0+mTp06WK1WrFYrPXr0YMqUKVX+OakVUauJE8kCWicnc/TXX80uR0RERIqg2IEuOzsbd3d3ALy9ve1PhvDz8+PAgQMlU52UmTqtWxNVpw4Ax3WTYRERkQql2IEuKCiInTt3AtC5c2emTp3K+vXrmTx5Ms2aNSuxAqXsZN59NwDXbdqELSvL5GpERESksIod6F5++WVsNhsAb7zxBsePH6dnz54sX76cDz/8sMQKlLLTcdIkEoGG2dns0P+hiIhIhXHNNxb+u3PnzuHl5cWpU6do0KBBSS3WdJX9xsJ/tyYwkF7797OueXN6/Pmn2eWIiIhUSWV+Y+G/y8jI4Omnn+a6664rycVKGfIaMwaA9ocPczEuztxiREREpFCKHOjOnz/PiBEjqFOnDvXr1+fDDz/EZrPx6quv0qxZMzZu3Mi8efNKo1YpA0EPP8xRJyfcge2vvmp2OSIiIlIIRQ50L730EmvWrOG+++6jVq1aPPPMM9x2222sW7eOX375hS1btnD35ZPrpeKxWK0c79ULAI9vvzW5GhERESmMIge6n3/+mc8//5xp06axdOlSDMOgZcuW/Pbbb/Tu3bs0apQyFjhtGplA2wsX2L9wodnliIiIyFUUOdCdOnWKVq1aAdCsWTNcXV156KGHSrwwMY9P+/ZsadwYgDOvvWZuMSIiInJVRQ50NpsNJycn+2sHBweqV69eokWJ+dxffBGAkIMH+evwYZOrERERkSsp8m1LrFYr/fv3x8XFBYD/9//+HzfeeGOeULd48eKSq9JkVem2JTkMm40D7u4EpKYSceut9Fm2zOySREREqoyiZg/Hon7Afffdl+v1PffcU9RFSAVgsVo5M2QIAV98QbNffyU7IwMHZ2ezyxIREZF8lOiNhSurqjhCB5CSkEB63bp4GQZbXnuNThMnml2SiIhIlWDqjYWlcqnm7c3Odu0AsH36qcnViIiISEEU6OSKGr7+OgAhcXHEbtlicjUiIiKSHwU6uaLmt93Gdk9PHIADzz9vdjkiIiKSDwU6uarkESMAaLl2LVlpaSZXIyIiIv+kQCdXFTJlCmctFupnZ7PtzTfNLkdERET+QYFOrsrFw4NdHTteejF7trnFiIiISB4KdFIofpdH5oLj44nZuNHkakREROTvFOikUJr260dUzZo4AIdeeMHsckRERORvFOik0FLvvRcA//XrdXGEiIhIOaJAJ4UW8uabnLFY8LXZiJw0yexyRERE5DIFOik0Z3d39nTqBID1s89MrkZERERyKNBJkTR96y0AghMSOLFmjcnViIiICJTDQDdz5kyaNm2Kq6srwcHBrF27tsC+ERERWCyWPNP+/fvz7f/tt99isVgYNGhQKVVf+fn17UtkrVpYgcPPPmt2OSIiIkI5C3SLFi1izJgxTJgwgaioKHr27En//v2Jjo6+4nwHDhwgNjbWPrVo0SJPn+PHjzNu3Dh69uxZWuVXGdmPPw5A+8hIkuPjTa5GREREylWgmz59OqNGjeKhhx4iMDCQGTNm0KhRI2bNmnXF+erWrUu9evXsk4ODQ673s7OzGTFiBJMmTaJZs2aluQpVQsirr3Lc0ZGahkHkM8+YXY6IiEiVV24CXUZGBpGRkYSGhuZqDw0NZcOGDVect0OHDvj6+tK3b19+//33PO9PnjyZOnXqMGrUqELVkp6eTlJSUq5J/o/V0ZFjt90GQP2wMAybzeSKREREqrZyE+gSEhLIzs7Gx8cnV7uPjw9xcXH5zuPr68vs2bMJCwtj8eLF+Pv707dvX9b87WT99evXM3fuXObMmVPoWqZMmYKnp6d9atSoUfFWqhJr/8EHXACuS08nato0s8sRERGp0spNoMthsVhyvTYMI09bDn9/fx5++GE6duxI165dmTlzJrfeeivTLgeMCxcucM899zBnzhy8vb0LXcP48eNJTEy0TydOnCj+ClVSno0bs61NGwAyp083uRoREZGqzdHsAnJ4e3vj4OCQZzQuPj4+z6jdlXTp0oWvv/4agMOHD3Ps2DEGDhxof992+fCgo6MjBw4coHnz5nmW4eLigouLS3FWo0pp9M47MGAAnU6f5vhvv+F3441mlyQiIlIllZsROmdnZ4KDgwkPD8/VHh4eTrdu3Qq9nKioKHx9fQEICAhg165dbN++3T7dfvvt3HDDDWzfvl2HUq9Rs/792eLtjRU4+txzZpcjIiJSZZWbETqAsWPHMnLkSEJCQujatSuzZ88mOjqa0aNHA5cOhcbExPDll18CMGPGDJo0aULr1q3JyMjg66+/JiwsjLCwMABcXV0JCgrK9Rk1a9YEyNMuxfTkkzBxIh22beNiXBzu9eqZXZGIiEiVU64C3dChQzl79iyTJ08mNjaWoKAgli9fjp+fHwCxsbG57kmXkZHBuHHjiImJwc3NjdatW/Pzzz8zYMAAs1ahygl+6SWOvvEGTTMzWT1mDL2//dbskkRERKoci2EYhtlFlHdJSUl4enqSmJiIh4eH2eWUO6vvuoveYWEcdnamaXIyVsdy9XeCiIhIhVPU7FFuzqGTiqvDjBkkAc0zMoh6912zyxEREalyFOjkmnk0bEhU+/YAZM+YYWotIiIiVZECnZSIJtOmYQOuj4/n2D+uVBYREZHSpUAnJcKvb1+21q0LwHHdwkRERKRMKdBJiXEYMwaADjt2kHTypLnFiIiIVCEKdFJiOr7wAoednfEAoi6HOxERESl9CnRSYixWKycHDwagyU8/kZWWZnJFIiIiVYMCnZSokA8/5KzFgl9WFn/oXDoREZEyoUAnJap63brs6tsXgDpz5mDLyjK5IhERkcpPgU5KXIe5c0kEWqSn88dLL5ldjoiISKWnQCclzrNxY6J69Lj0748/xrDZTK5IRESkclOgk1LR5rPPuAgEpqay9fXXzS5HRESkUlOgk1JR29+frSEhALhOm6ZROhERkVKkQCelptXcuaQCbS5eZPv775tdjoiISKWlQCelpm7btvzRtu2lF2+8YW4xIiIilZgCnZSqFrNnkwF0OH+enbNmmV2OiIhIhRAREVGk/gp0Uqrqd+7MpoAAANJffdXkakRERMq3EydOMGTIEO64444izadAJ6WuyaxZZAGdEhLYNXu22eWIiIiUOxkZGbz99tsEBATw/fffY7FYijS/Ap2UusZ9+rCxZUsAsl54weRqREREypeVK1fSpk0bxo8fT0pKCj169GDt2rVFWoYCnZSJZvPnk86lc+m2vfuu2eWIiIiYLjo6mn/961/069ePgwcP4uPjw5dffsmaNWto06ZNkZalQCdlokHXrmxq1w4A50mTdF86ERGpstLT03nzzTcJCAhg8eLFODg4MGbMGA4cOMDIkSOLfLgVFOikDLX6+muSgaDkZP54+WWzyxERESlzv/zyC0FBQbz88sukpqbSq1cvoqKieP/99/H09Cz2chXopMzUCQpiS9euANSdNo2MixdNrkhERKRsHDt2jEGDBjFgwAD+/PNPfH19WbBgAREREUU+vJofBTopUx2/+44zFgtNMzPZcM89ZpcjIiJSqtLS0pg8eTKBgYH89NNPODo68uyzz7J//36GDx9erMOr+VGgkzLl0bAh+0eOBKDDTz+RsG+fyRWJiIiUjmXLltG6dWsmTpxIWloaN9xwAzt27GDatGl4eHiU6Gcp0EmZ6zZnDvvd3PAE9t51l9nliIiIlKgjR44wcOBABg4cyJEjR2jQoAHffvstq1atolWrVqXymQp0UuYcnJ1JmzIFgO5797L3yy9NrkhEROTapSYlMXHiRFq1asWyZctwdHTk+eefZ//+/QwdOrTEDq/mR4FOTNH+6adZ7+eHA2AZPZqstDSzSxIRESm2qPfe40zt2vwweTLp6encdNNN7Nq1i3feeQd3d/dS/3wFOjFNi6VLOW+xEJiayrphw8wuR0REpMgMm42I226j7bhxNM7K4m03N77//ntWrlxJwOVnmZcFBToxTd22bdk5fDgAIT/9RMzGjSZXJCIiUnjnjx5lU+PG9Pn5ZxyAdc2bc2N0NHfddVepHl7NjwKdmKrH/PnsrFEDd+Dk4MF6goSIiFQIkW+/Tep119E1JoYMYM2wYXQ/eJDq3t6m1KNAJ6ayOjpS7auvyAA6nz7N5hdfNLskERGRAqUkJLC6bVuCx4/H12bjqJMTh+bNo9fChVis5sUqBTox3XV33MGG7t0B8HvvPRKjo02uSEREJK/dc+dyun59eu/aBcDqNm3wOXWK1g88YHJlCnRSTnReupRjTk742mxsv+02s8sRERGxy0xJIaJnTwIfeoimmZnEWq1EvvUWvXfupJpJh1j/SYFOygW3WrU49+abAPTctYvdc+eaXJGIiAjsX7iQP7296bNuHQ7Aej8/3P78k+Dx480uLZdyF+hmzpxJ06ZNcXV1JTg4mLVr1xbYNyIiAovFkmfav3+/vc+cOXPo2bMnXl5eeHl5cdNNN/HHH3+UxapIEXV87jnWNWuGFXB64gkyU1LMLklERKqoXbNn84ePDwHDhxOYmspfFgsbxoyh+7Fj1Gza1Ozy8ihXgW7RokWMGTOGCRMmEBUVRc+ePenfvz/RVzmn6sCBA8TGxtqnFi1a2N+LiIjg7rvv5vfff2fjxo00btyY0NBQYmJiSnt1pBgCli3jnMWCf1oa6//9b7PLERGRKiTj4kXWP/YYu93dafOf/3B9fDzZXBqVS9+6lW7vv292iQWyGIZhmF1Ejs6dO9OxY0dmzZplbwsMDGTQoEFMufyoqL+LiIjghhtu4K+//qJmzZqF+ozs7Gy8vLz4+OOPuffeews1T1JSEp6eniQmJpb4w3Qlr7UPPkjPzz8nBTi3di0Ne/QwuyQREanETm/fzr4xY2i1di11L98+Kx34o0ULGn3yCU1uvrnMaypq9ig3I3QZGRlERkYSGhqaqz00NJQNGzZccd4OHTrg6+tL3759+f3336/YNyUlhczMTGrVqlVgn/T0dJKSknJNUnZ6fPYZ2z09qQbE3347tqwss0sSEZFK5tTmzUTccQdRXl7U7tCBPqtXU9dmI9ZqJaJvX5J276bnwYOmhLniKDeBLiEhgezsbHx8fHK1+/j4EBcXl+88vr6+zJ49m7CwMBYvXoy/vz99+/ZlzZo1BX7Oiy++SIMGDbjpppsK7DNlyhQ8PT3tU6NGjYq3UlIsFqsVz0WLSAE6/vUXa3XoVURESsjJ9etZ06oV3l260GfpUjqcP48jsLNGDTY89RTeFy7Q53//o07r1maXWiSOZhfwT/98VIZhGAU+PsPf3x9/f3/7665du3LixAmmTZtGr1698vSfOnUqCxcuJCIiAldX1wJrGD9+PGPHjrW/TkpKUqgrY0379WPNsGH0+vZbOv/4IwfDwmj5r3+ZXZaIiFRQSSdPsm3QILpFRtLwctsODw/O9+1LkyeeoO2NN5pa37UqNyN03t7eODg45BmNi4+PzzNqdyVdunTh0KFDedqnTZvGW2+9xcqVK2nbtu0Vl+Hi4oKHh0euScpezwUL+KNuXVwBy4gRpJ47Z3ZJIiJSwRg2G+tGjybVz48+kZE4A9u8vNjx0Ue0S0yk9+LF+FXwMAflKNA5OzsTHBxMeHh4rvbw8HC6detW6OVERUXh6+ubq+3dd9/l9ddfZ8WKFYSEhJRIvVL6LFYrTVet4ozFQov0dKLat9ezXkVEpNCO//Yb2+rUocd//4vP5cd0bZk0iY7nztHuiSfMLq9ElatDrmPHjmXkyJGEhITQtWtXZs+eTXR0NKNHjwYuHQqNiYnhyy+/BGDGjBk0adKE1q1bk5GRwddff01YWBhhYWH2ZU6dOpVXXnmFb775hiZNmthHAN3d3XF3dy/7lZQiqRMUxPbp06n5zDN0O3GCiBtvpE9EhNlliYhIOZaZksL6u+7i+l9+wQ9IBTaHhtL1++9pWkmPupWrQDd06FDOnj3L5MmTiY2NJSgoiOXLl+Pn5wdAbGxsrnvSZWRkMG7cOGJiYnBzc6N169b8/PPPDBgwwN5n5syZZGRkcNddd+X6rIkTJ/Laa6+VyXrJtWk/Zgxrt2+n5xdf0Gf1atY//jjdP/nE7LJERKQc2vvllzj85z/0SUsDLh1erf399/Tp29fkykpXuboPXXml+9CVDxGdOtFn61YygJ1vvEHIhAlmlyQiIuXExbg4tt56Kz23bcMBOGexsPfBB+k+ezYWa7k5w6zQKux96ESupuf69Wxo1AhnIPDll9k1e7bZJYmIiMmyMzLY8NRTnG/YkD6Xw9x6Pz+yd+2ix2efVcgwVxxVYy2lUnBwdiZk7162eHtTHWg0ejRHfvnF7LJERMQE6UlJrLnnHk5Wr063jz6iYXY2Jx0c2DJpEt2PHatw95G7Vgp0UqE4u7vTas8edrm7U9MwMAYN4sKpU2aXJSIiZSQ5Pp6IgQM55+VFrwUL8MvK4qzFQsQNN1Dz5Ek6vfqq2SWaQoFOKpzqdetSb+NGYq1WmmdksPv663U7ExGRKmDbu+/yV/369Fm2DF+bjVMODqweNAjXuDj6/PYb7vXqmV2iaRTopEKqExTE2f/+lwyga0wMq/92ZbOIiFQuSSdPsqZVKzo+/7z90Ora++/H+/x5ei9ZQvW6dc0u0XQKdFJhBT30EJuGDweg16+/svG550yuSERESlrklClcaNKEXvv2AbC6TRtqnjxJz88/x1n3k7VToJMKredXX7G6TRusQPtp09j92WdmlyQiIiUgYd8+1rZsSfBLL9EgO5toR0e2v/8+vXfurNKHVguiQCcVmsVqpfsff/BH3bq4AT6PPMKfP/1kdlkiIlJMWWlprB42DMfWrel5+dnsq9u2pXZMDO3HjDG3uHJMgU4qPEdXV1rt2ME+NzfqGAZ1Bw1ii54CIiJSoWRnZLD+8cc54eFB70WLqGkY7HdzY9enn9J7xw6dJ3cVCnRSKbjXq0fdqCi2e3riAQRPmkREaCiZKSlmlyYiIldg2Gxsev55jnh40H3mTJpmZpJgsbD63/+mxfnztPnPf8wusUJQoJNKo7a/P61OnmSNvz9WoE94OMdq1WLHxx+bXZqIiPyDYbOx5bXX2O/uTpd336VFejrnLRYibr4Z11On6P3ddzg4O5tdZoWhQCeVirO7Oz337mXdqFGctVhokZ5OuyefZK2/P4nHj5tdnohIlWfYbGx79112e3rSadIkAlNTuQBE9OyJ5ehR+qxcqYseikGBTiodi9V66fl9Bw6wJiAAgJ4HD5LarBmbXnjB5OpERKqunTNnsr12bTo+/zxtLl4kBYjo1ImM/fvps2YNnn5+ZpdYYSnQSaVVq0ULeu3bx85PPuGIszP1bDa6TJ3KxoYNid+50+zyRESqhNRz51j38MPsqlGDto8/Tofz50kHVrdrx8UdO+jzxx/U9vc3u8wKT4FOKr22jz1G/dOniejWjSwuPVnCqX171gwfTnZGhtnliYhUSkd//ZWI4GDSvL3p8dlntLl4kUxgTUAAZzdtovf27dRt29bsMisNBTqpElxr1qTP+vUc/vZb9rm54WUY9Fq4kD89PYl8+209C1ZEpITsmj2bP3x8aHrLLfTZtg0vw+CkgwMRN9/MXzt20GvfPup37mx2mZWOxTAMw+wiyrukpCQ8PT1JTEzEw8PD7HLkGmWlpbF+5EjahoXhdfnrf8jFhVODBtFh2jQ8GjY0uUIRkYrnYFgYFx9+mI5//QWADdhaty6WRx+l40sv6YrVIipq9lCgKwQFusrp3KFD7Pr3vwnZsYPql9suAFGtW+P7+uu0GDzYzPJERCqExOPH2T5oEN23b8cRyAA2t2xJo48/psnNN5tdXoVV1OyhQ65SZdVq0YLe27eTdfw4q//1Lw47O1MD6LVnDy3uvJMdnp6sf+wxUs+dM7tUEZFy5/zRo0T07g1NmtD7cpjb2KAB8WvX0vPAAYW5MqYRukLQCF3VYNhsbJ8xg7Tp0+kUE4Pj5fZkYJevL1m3307wW2/hVquWmWWKiJgq9dw5No8YQYcVK/C83HbIxYWkiRMJHj/e1NoqEx1yLQUKdFVP3LZt7H/+eZqvXk2jrCx7e4LFwu4ePfCfPh3fkBATKxQRKXubx4+nwbvv0jA7G4CDrq6cfewxOr/zDlZHx6vMLUWhQFcKFOiqLsNm48CiRcR9+inXrV9v34llA1G1a5N25500GjaMxn36YLHqDAYRqZwyU1JY36sXfSIjAYhxcODYww/T9aOPFORKiQJdKVCgE7h0deyWCRNwmzuX9omJud5LBI7UrEli8+Y4de6M76234nfTTbqqS0QqvNitWzl90032/V5EcDCdV67U6SelTIGuFCjQyT8d/+03jk6eTJ2tW2menIxrPn0uAjGurqS4upJaowYZjRvj1K4d3r160fjmm7UzFJFyb9MLL9Dy3XepZRgkAXufe44uU6eaXVaVoEBXChTo5EoyU1I4unw5p5cvx7Z1K17HjtH8wgX7rVDyYwNOODoSV7s2qU2a4BgUhEdwML69euEdGKjDtyJimsToaHa/8w6OixfTOS4OgH1ubrguWULTfv1Mrq7qUKArBQp0UlTZGRkcXbGC87t2kREXR8aJE1gPHsQzJoZGFy5Q6wo/dolATLVq/FW3Lpnt2uF10000v+su3OvVK/W6s9LSOH/0KEnHjpF84gTp8fFkJyeTnZyMLSUFW0oKRloaRmoqpKWBkxOWWrVwqlOH6i1b4tWmDT4dO+JSyJ8TW1YWZ3bvxpaZiWO1aji7u+NUvTrO7u44ODsXOtgaNhu2rKwiHeLOTEnhYmwsyXFxpCUkYHVywsXLi2p161KzaVOFaqlyzuzezd4RI+iycycul9tswJrrr6fbqlU4u7ubWV6Vo0BXChTopCQZNhsJ+/YREx5O4qZNsGcPNWJiqJuURP3s7HxvDmkDjjo7E9uwIdnt21MrNJS6nTvjXr8+1by9ixQ+jq9axfHPP8e6cSP1YmJwy8rC0TBwtdnstyC4VvFWKwmurlx0dyfd05NsDw9wdQUnJ6xxcVSPj6f2hQv4Zmbaf3H8k41LNyjNADItFjItFrIsFjKtVmwWC842G67Z2bgYBtUARy4d5j7v4ECqoyOGxYIB2CwWDIsFB5sN16wsqmVn424YuF2h/gwgwcGBZEdH0h0dyXRyItPZmSwXF7JdXLC5uoKjI05nz+J+/jxWm43kGjVIr1kTw9kZHBywpKbieu4c7hcvYjEMsq1W0lxdudi8Oc5duuAeEEC1+vVxb9SIOkFBOt9STJMYHU3UiBGErFtHTmQ77OzMiZAQ6j/zDC3vusvU+qoqBbpSoEAnZSX13Dli1q7l7KZNpG7ZguvevTSOj6f+5atr85MGHKlWjbMNG2Jr145affvSbPBgqtetC1waBds7fz4Jc+fSaNs2mmdkXLWORCDR0ZEUJycyHRzIcnQky8mJbEdHsp2dsTk5YTg5YcnKwik5GdfkZLySk/HJysr3fMIryeLSVcMFBbvSlgYkWyxYAderBL3SkgWcsVo56+bGRU9P0n18cOzShYb/+heNb7hBo4VSKpLj49ny4IO0Xb7cftRgT/XqpE+cSMfnnjO5OlGgKwUKdGK2+J07Ob54McmrV1Nt714aJyRQx2bD4UrzWK3Eu7lRJzUVH5vN3p4J7K5Zk8SgIKrfdBPVmzbFwdUVZ09PPJo0wdPPD0fXosaySwybjbMHDnBm2zaS9u4l4+RJsmNj4fx5LOnpWDIzsdWpg2OLFri3aYN3SAj1goNxdHXFsNnISksj4+JFMpOT/2+6/Do7NZWslBSyU1OxZWTgWKMGzjVr4uLlhWutWji6uXExJoYLR4+Sef48RnZ2rsni4IBLnTq4eHtTzceH6r6+uPv64lStWq51yLh4kbP79vHX3r2kxceTlZREVmIi2RcuYLt4EePiRUhJgfR0qFcPl+bNsTo7k37sGLa4OMjMBJsNnJ2xNm6MW7NmWBwdyU5NJf34cYiKwis6Go+0NKpnZ1PTMLjSTR9irVYOtWyJ6113EfT001Tz9i7W/41IjtgtWzjw5JO0++MP+/OsDzs7c2bMGDpPmaI/IMoJBbpSoEAn5ZFhs5EcH0/Crl3ErlhB+ubNVD94kEZnz1LvbwEOIAnY3agR3HEHrceNw9PPz5yiJY/sjAwS9u7l7I4dXNi/n7Q//4RDh6h1+DAtL17MNXKZCuyuU4eUPn1o9MADNO3XT798pVBSz50j6rXXcP7mGzqcPWv/Y/C4oyMn7ruPrjNn6rB/OaNAVwoU6KSiOXfoEKf/+IPEHTtw9vYm6LHHdEJzBZR2/jy7P/mE5EWLaL53r/3G1jlOOThwpEkTLDffTMN//xufjh1xrVnTnGKlXNq/cCGnp0yh3e7d1Pzbr/vtnp6kP/YYIa+9piBXTinQlQIFOhExm2Gz8edPPxHz3//i8ccftP7rr3zPO/zLYiHB2Zmk6tVJ8/Ag29UVw80NsrOxZGTgmJyM+/nz1EpJwfny7j/LYiHe3Z2kevWwNW+OW7t21OnRg4a9eukPgQrozO7d7J08mbrLlhGYmmpvj3Fw4FC3bjSdOBG/vn1NrFAKQ4GuFCjQiUh5k5KQwL7PPuPCjz9Sd9cumqaklPgFHdnASUdH4r28SGnQAPz9qdGxIz49e+LbqZMe+VROZGdksPfzzzn79df4REbmCnHpQGSjRrg8+ijtn31Wo3EViAJdKVCgE5HyzrDZSDpxgjM7dpC0fz8pf/5J1unTkHMRh4PDpVvHuLvj0qwZNVq1wtnLC4CM8+dJjIwkc88enI8dw+vMGRqmplLjCp9nAy4AFx0cSHF0JNXZmTQ3N9Jq1cJWrx44O0N2Njg64lC/Pq5+ftS+/noa33BDsS+6kf9zZs8eDnzwAdZffyXwxAn7xQ059larxplbbqHN229Tq0ULk6qUa6FAVwoU6ESkqjFsNuJ37iR29WqSIiOx7duH28mTeJ87R6OMDIo7zpMGHHNzI6FePbL8/XFp1Qr3li3x9PenRqNG+V55LJcYNhtR06aRMWMGnWJjc13l/pfFwr6GDbHdcgv+Tz1FnaAg0+qUklHhA93MmTN59913iY2NpXXr1syYMYOePXvm2zciIoIbbrghT/u+ffsICAiwvw4LC+OVV17h8OHDNG/enDfffJPBgwcXuiYFOhGR/5OVlsZff/7JxZgYUuPiSIuPJ+PMGTJOncJ28iTW06exZGdjODhgzcjAJSkJj4sXaZiWdsVH4uU4bbVy3NublIAAnNu2pWanTjTo0wfPxo1Lfd2uRbYtm7XRa4m9EItvDV96Nu6Jg/VKNxcqnMTjx9n+zDM0XraMppmZ9vZ9bm6c7tiR2iNHEnjffRr5rGSKmj3K1QkQixYtYsyYMcycOZPu3bvz3//+l/79+7N3714aX+EH+cCBA7lWtk6dOvZ/b9y4kaFDh/L6668zePBglixZwpAhQ1i3bh2dO3cu1fUREamMHF1dqRMUVORRIFtWFtHr1hEbHk7qli04HTxIjXPnqJmaindWFjnjcj42Gz7x8RAfD2vW2Oc/Y7EQ6+7O+QYNMIKCqNGpEzWDgqjTvj3u9eqZeguXxfsW8/SKpzmZdNLe1tCjIR/c8gF3Bt5ZpGVlpaVx5OefiV24kGpr1hB05gy9L7+XBES1aUODN94g8PbbCSy5VZAKrlyN0HXu3JmOHTsya9Yse1tgYCCDBg1iypQpefrnjND99ddf1CzgUv2hQ4eSlJTEL7/8Ym+75ZZb8PLyYuHChYWqSyN0IiKlLzMlhQsxMcT8/jvnVq7EunMnHqdP43vxInX/cW/Ff7IBKVx6TJz18s2aHbg0amED/rJaSXJy4nyNGqTUq4fRpAmurVpRq1MnfLt1o0b9+sWue/G+xdz13V0Y5P51asECwA9DfrCHOsNmIyUhgfOHD3Ph2DFSTpwgLSaGjEOHcDh8GM/YWJpfuJBnJPOgqytxgwfTcfr0Mnmus5ivwo7QZWRkEBkZyYsvvpirPTQ0lA0bNlxx3g4dOpCWlkarVq14+eWXcx2G3bhxI88880yu/v369WPGjBnFqjMrKwvbFXYszn+7guhqfZ2cnLBYLKXaNzs7m+wrPDaqKH0dHR2xXv4LuDz0tdlsZGVlFdjXwcEBBweHctPXMAwy/3a45Fr6Wq1WHC9fYVhafeHSz2VJ9LVYLDg5ORWrb2ZmJgX93VlafSH3z3JR+mofcQ0/946OuPv54X///XD//bn6Jp06Rczq1SRs2EDatm24HTlC7b/+wjsz0/4MYmegmmHYn4ds49Jj1QC8bDa80tPxS0+HhATYvRuHZcvs56GdBmKrVSPV1ZWMatXIqlYNW/Xq4O4Ol0Oig2GAzYbNZiPbYgEHB7IdHfjP9RsxnP/2/bBemgwMsMGjs/9Fs0+d8UrPxMswcAXqXJ4cLk8ABpee5AKQAPzp5cWFLl3wvfdeWgwaRHMnJ+0j8ulbmfcRRVFuAl1CQgLZ2dn4+Pjkavfx8SEuLi7feXx9fZk9ezbBwcGkp6fz1Vdf0bdvXyIiIujVqxcAcXFxRVomQHp6Ounp6fbXSUlJ9n8vWrSIQ4cOFTjva6+9Zv/34sWL2bt3b4F9X3rpJft/3LJly9i+fXuBfZ977jmqV7/0N9uvv/7Kli1bCuw7ZswY+4jlqlWrrhiIH3vsMepefubn2rVriYiIKLDvww8/TIMGDQDYtGkT4eHhBfa9//77adKkCQCRkZEsX768wL7Dhw+nZcuWAOzatYsff/yxwL7//ve/ad26NXDpXMnvv/++wL6DBg2iffv2APz555988803BfYdMGAA119/PQDR0dHMnz+/wL4333wz3bt3ByA2NpY5c+YU2LdPnz706dMHgDNnzjBz5swC+3br1o3Q0FAAEhMTr/hHR6dOnbj11lsBSElJ4d133y2wb/v27Rk0aBBwaafz1ltvFdi3VatWDBkyxP76Sn1btGjBiBEj7K/ffffdAn8RNGnShPv/9gt6xowZpKSk5Nu3fv36PPLII/bXn3zyCefPn8+3b506dXj88cftr2fPns2ZM2fy7VuzZk3GjBljf/35559z6tSpfPtWq1aN559/3v56wYIFHDt2LN++Tk5OTJgwwf5a+4jS20d4jBjB9tatWfWPfUTG5cfEZaWm0u/66wls2RKrkxN/xsTw8+rVGFlZpCcmkvHXX2QmJGCcPYtDUhIDMjLok55ObcMgEfgxJeXSFcHnzuWpYQBw/eV/HwPm5/zbExL++Xu8OZBzltBFiI+CGS4ZNEn7vy7ZXHryR3snJ4KqVSPF05PTDRqwLCsL9xYtqNm8+f8dQt6/H95+W/uIy6rSPqIoyk2gy5Hzl2AOwzDytOXw9/fH39/f/rpr166cOHGCadOm2QNdUZcJMGXKFCZNmlSc8kVEpIw5V6+O8+Uw26hXL/wu/9GXtGcP7gcOAFCjYcM88zUfNIja7duTGB3N4R9+4OTixdhSUrClpUFaGqSnY7k8UrTNw4PU6tXBaiU2I4NjZ8+CYXC0Ripw8ao1RndoRfWaLXHx8sLFywtnd3fcLRYa9ulD+8t/9MXHx7PjCn/0iVxJuTmHLiMjg2rVqvH999/nugL16aefZvv27axevbpQy3nzzTf5+uuv2bdvHwCNGzfmmWeeyXXY9f3332fGjBkcP34832XkN0LXqFEjEhMTqVatmg6nlJO+5eEwqg656nDKP/vqkGvV2kesPraa0K9Cc3e+fMj1UudL08qRK+ndpDf/pH3EJdpH5O1boW9b0rlzZ4KDg3MdlmrVqhV33HFHvhdF5Oeuu+7i3Llz/Pbbb8CliyIuXLiQazi/f//+1KxZUxdFiIjINcm2ZdPkgybEJMXkuSgCLl0Y0dCjIUefPloitzCRqqPCXhQBMHbsWEaOHElISAhdu3Zl9uzZREdHM3r0aADGjx9PTEwMX375JXDpGHuTJk1o3bo1GRkZfP3114SFhREWFmZf5tNPP02vXr145513uOOOO/jpp5/43//+x7p160xZRxERqTwcrA58cMsH3PXdXViw5Ap1OVe5zrhlhsKclLpyFeiGDh3K2bNnmTx5MrGxsQQFBbF8+XL8/PyASyegR0dH2/tnZGQwbtw4YmJicHNzo3Xr1vz8888MGDDA3qdbt258++23vPzyy7zyyis0b96cRYsW6R50IiJSIu4MvJMfhvyQ733oZtwyo8j3oRMpjnJ1yLW80iFXERG5mtJ6UoRUTRX6kKuIiEhF5WB1oE+TPmaXIVWUec9JEREREZESoUAnIiIiUsEp0ImIiIhUcAp0IiIiIhWcAp2IiIhIBadAJyIiIlLBKdCJiIiIVHAKdCIiIiIVnAKdiIiISAWnQCciIiJSwSnQiYiIiFRwCnQiIiIiFZwCnYiIiEgFp0AnIiIiUsEp0ImIiIhUcI5mF1ARGIYBQFJSksmViIiISFWQkzlyMsjVKNAVwoULFwBo1KiRyZWIiIhIVXLhwgU8PT2v2s9iFDb6VWE2m41Tp05Ro0YNLBZLmXxmUlISjRo14sSJE3h4eJTJZ1YU2jZXpu1TMG2bgmnbXJm2T8G0ba6suNvHMAwuXLhA/fr1sVqvfoacRugKwWq10rBhQ1M+28PDQz8gBdC2uTJtn4Jp2xRM2+bKtH0Kpm1zZcXZPoUZmcuhiyJEREREKjgFOhEREZEKToGunHJxcWHixIm4uLiYXUq5o21zZdo+BdO2KZi2zZVp+xRM2+bKymr76KIIERERkQpOI3QiIiIiFZwCnYiIiEgFp0AnIiIiUsEp0ImIiIhUcAp0ZWTmzJk0bdoUV1dXgoODWbt2bYF9IyIisFgseab9+/fn6hcWFkarVq1wcXGhVatWLFmypLRXo9QUZfvcf//9+W6f1q1b2/vMnz8/3z5paWllsTolZs2aNQwcOJD69etjsVj48ccfrzrP6tWrCQ4OxtXVlWbNmvHpp5/m6VMZvjtF3TaLFy/m5ptvpk6dOnh4eNC1a1d+/fXXXH2q6vemqu1zirp9qtI+Z8qUKXTq1IkaNWpQt25dBg0axIEDB646X1XY7xRn25TlfkeBrgwsWrSIMWPGMGHCBKKioujZsyf9+/cnOjr6ivMdOHCA2NhY+9SiRQv7exs3bmTo0KGMHDmSHTt2MHLkSIYMGcLmzZtLe3VKXFG3zwcffJBru5w4cYJatWrx73//O1c/Dw+PXP1iY2NxdXUti1UqMcnJybRr146PP/64UP2PHj3KgAED6NmzJ1FRUbz00ks89dRThIWF2ftUlu9OUbfNmjVruPnmm1m+fDmRkZHccMMNDBw4kKioqFz9quL3JkdV2ecUdftUpX3O6tWrefzxx9m0aRPh4eFkZWURGhpKcnJygfNUlf1OcbZNme53DCl1119/vTF69OhcbQEBAcaLL76Yb//ff//dAIy//vqrwGUOGTLEuOWWW3K19evXzxg2bNg111vWirp9/mnJkiWGxWIxjh07Zm/7/PPPDU9Pz5Is03SAsWTJkiv2ef75542AgIBcbf/5z3+MLl262F9Xpu9OjsJsm/y0atXKmDRpkv11Vf3eVLV9zt8V57tTVfY5hmEY8fHxBmCsXr26wD5Vdb9TmG2Tn9La72iErpRlZGQQGRlJaGhorvbQ0FA2bNhwxXk7dOiAr68vffv25ffff8/13saNG/Mss1+/flddZnlzLdsnx9y5c7npppvw8/PL1X7x4kX8/Pxo2LAht912W56/iCqjgr4XW7duJTMz84p9Ktp351rZbDYuXLhArVq1crVXxe9NjqqwzykJVWmfk5iYCJDn5+Tvqup+pzDb5p9Kc7+jQFfKEhISyM7OxsfHJ1e7j48PcXFx+c7j6+vL7NmzCQsLY/Hixfj7+9O3b1/WrFlj7xMXF1ekZZZXxdk+fxcbG8svv/zCQw89lKs9ICCA+fPns3TpUhYuXIirqyvdu3fn0KFDJVp/eVPQ9yIrK4uEhIQr9qlo351r9d5775GcnMyQIUPsbVX1e1OV9jnXqirtcwzDYOzYsfTo0YOgoKAC+1XF/U5ht80/leZ+x7FIvaXYLBZLrteGYeRpy+Hv74+/v7/9ddeuXTlx4gTTpk2jV69exVpmeVfcdZk/fz41a9Zk0KBBudq7dOlCly5d7K+7d+9Ox44d+eijj/jwww9LpObyKr9t+c/2yvTdKY6FCxfy2muv8dNPP1G3bl17e1X93lTFfU5xVaV9zhNPPMHOnTtZt27dVftWtf1OUbZNjtLe72iErpR5e3vj4OCQ56+Q+Pj4PH+tXEmXLl1ypfV69epd8zLLg2vZPoZhMG/ePEaOHImzs/MV+1qtVjp16lSh/1oujIK+F46OjtSuXfuKfSrad6e4Fi1axKhRo/juu++46aabrti3qnxv8lNZ9znXoirtc5588kmWLl3K77//TsOGDa/Yt6rtd4qybXKUxX5Hga6UOTs7ExwcTHh4eK728PBwunXrVujlREVF4evra3/dtWvXPMtcuXJlkZZZHlzL9lm9ejV//vkno0aNuurnGIbB9u3bc23Dyqig70VISAhOTk5X7FPRvjvFsXDhQu6//36++eYbbr311qv2ryrfm/xU1n3OtagK+xzDMHjiiSdYvHgxv/32G02bNr3qPFVlv1OcbQNluN+55ssq5Kq+/fZbw8nJyZg7d66xd+9eY8yYMUb16tXtV0i9+OKLxsiRI+3933//fWPJkiXGwYMHjd27dxsvvviiARhhYWH2PuvXrzccHByMt99+29i3b5/x9ttvG46OjsamTZvKfP2uVVG3T4577rnH6Ny5c77LfO2114wVK1YYhw8fNqKioowHHnjAcHR0NDZv3lyq61LSLly4YERFRRlRUVEGYEyfPt2Iiooyjh8/bhhG3m1z5MgRo1q1asYzzzxj7N2715g7d67h5ORk/PDDD/Y+leW7U9Rt88033xiOjo7GJ598YsTGxtqn8+fP2/tU1e9NVdvnFHX75KgK+5xHH33U8PT0NCIiInL9nKSkpNj7VNX9TnG2TVnudxToysgnn3xi+Pn5Gc7OzkbHjh1zXeZ83333Gb1797a/fuedd4zmzZsbrq6uhpeXl9GjRw/j559/zrPM77//3vD39zecnJyMgICAXDvfiqYo28cwDOP8+fOGm5ubMXv27HyXN2bMGKNx48aGs7OzUadOHSM0NNTYsGFDaa5Cqci5ncQ/p/vuu88wjPy3TUREhNGhQwfD2dnZaNKkiTFr1qw8y60M352ibpvevXtfsb9hVN3vTVXb5xTn56qq7HPy2y6A8fnnn9v7VNX9TnG2TVnudyyXixQRERGRCkrn0ImIiIhUcAp0IiIiIhWcAp2IiIhIBadAJyIiIlLBKdCJiIiIVHAKdCIiIiIVnAKdiIiISAWnQCciIiJSwSnQiYiIiFRwCnQiUqX06dOHMWPGlPo8FdXbb79N165dzS5DRIpIgU5EKpwNGzbg4ODALbfcUuR5Fy9ezOuvv14KVVUM999/Py+++GKB7+/YsYN27dqVYUUiUhIU6ESkwpk3bx5PPvkk69atIzo6ukjz1qpVixo1apRSZeWbzWbj559/5o477iiwz44dO2jfvn3ZFSUiJUKBTkQqlOTkZL777jseffRRbrvtNubPn29/78yZM9SrV4+33nrL3rZ582acnZ1ZuXIlkPfw6YoVK+jRowc1a9akdu3a3HbbbRw+fLhINfXp04cnnniCJ554wr6cl19+GcMw7H3S09N56qmnqFu3Lq6urvTo0YMtW7bY3//hhx9o06YNbm5u1K5dm5tuuonk5ORC1/DWW29hsVjyTNOnT7f3Wb9+PVarlc6dOwOwb98++vTpg5ubGx06dGDr1q0cPHhQI3QiFZACnYhUKIsWLcLf3x9/f3/uuecePv/8c3twqlOnDvPmzeO1115j69atXLx4kXvuuYfHHnuM0NDQfJeXnJzM2LFj2bJlC6tWrcJqtTJ48GBsNluR6vriiy9wdHRk8+bNfPjhh7z//vt89tln9veff/55wsLC+OKLL9i2bRvXXXcd/fr149y5c8TGxnL33Xfz4IMPsm/fPiIiIrjzzjtzBcKrefLJJ4mNjbVPjz76KH5+fgwZMsTeZ+nSpQwcOBCr1cr+/fvp3LkzISEh7N69m1dffZU77rgDwzBo27ZtkdZdRMoBQ0SkAunWrZsxY8YMwzAMIzMz0/D29jbCw8Nz9XnssceMli1bGiNGjDCCgoKM1NRU+3u9e/c2nn766QKXHx8fbwDGrl27Cj1P7969jcDAQMNms9nbXnjhBSMwMNAwDMO4ePGi4eTkZCxYsMD+fkZGhlG/fn1j6tSpRmRkpAEYx44dK9Q2uJrXXnvN8PPzy7O8li1bGkuXLjUMwzBuvPFG45577sn1/rBhw4yWLVuWSA0iUrY0QiciFcaBAwf4448/GDZsGACOjo4MHTqUefPm5eo3bdo0srKy+O6771iwYAGurq4FLvPw4cMMHz6cZs2a4eHhQdOmTQGKfG5ely5dsFgs9tddu3bl0KFDZGdnc/jwYTIzM+nevbv9fScnJ66//nr27dtHu3bt6Nu3L23atOHf//43c+bM4a+//irS5+eYNGkSn3/+OatXr8bPz8/evm/fPk6ePMlNN93E8ePH+e233xg7dmyueZ2cnHS4VaSCUqATkQpj7ty5ZGVl0aBBAxwdHXF0dGTWrFksXrw4VwA6cuQIp06dwmazcfz48Ssuc+DAgZw9e5Y5c+awefNmNm/eDEBGRkaJ1W1cPnT698CX026xWHBwcCA8PJxffvmFVq1a8dFHH+Hv78/Ro0eL9DkFhTm4dLj15ptvxs3Nje3bt+Po6EibNm1y9dm2bZsuiBCpoBToRKRCyMrK4ssvv+S9995j+/bt9mnHjh34+fmxYMEC4FIQGzFiBEOHDuWNN95g1KhRnD59Ot9lnj17ln379vHyyy/Tt29fAgMDiz0ytmnTpjyvW7RogYODA9dddx3Ozs6sW7fO/n5mZiZbt24lMDAQuBT2unfvzqRJk4iKisLZ2ZklS5YU+vOvFOYAfvrpJ26//XYArFYrNpstV2hdvnw5e/bsUaATqaAczS5ARKQwli1bxl9//cWoUaPw9PTM9d5dd93F3LlzeeKJJ5gwYQKJiYl8+OGHuLu788svvzBq1CiWLVuWZ5leXl7Url2b2bNn4+vrS3R09BXv0XYlJ06cYOzYsfznP/9h27ZtfPTRR7z33nsAVK9enUcffZTnnnuOWrVq0bhxY6ZOnUpKSgqjRo1i8+bNrFq1itDQUOrWrcvmzZs5c+aMPex9/PHHLFmyhFWrVuX72W+88QYff/wxy5Ytw8XFhbi4OPv6ubi4EB8fz5YtW/jxxx8BCA4OxsnJiXHjxjFu3Dh2797No48+CqBDriIVldkn8YmIFMZtt91mDBgwIN/3ci4qeO+99wxHR0dj7dq19veOHz9ueHp6GjNnzjQMI+8FDuHh4UZgYKDh4uJitG3b1oiIiDAAY8mSJfY+hbko4rHHHjNGjx5teHh4GF5eXsaLL76Y6yKJ1NRU48knnzS8vb0NFxcXo3v37sYff/xhGIZh7N271+jXr59Rp04dw8XFxWjZsqXx0Ucf2eedOHGi4efnl+9n22w2w8PDwwDyTJs2bTIMwzA+++wzo3v37rnm++qrr4yGDRsaXl5exo033miMHz/e8Pb2LnAdRaR8sxhGEa6LFxGRPPr06UP79u2ZMWOG2aXk6/bbb6dHjx48//zzZpciIqVE59CJiFRyPXr04O677za7DBEpRTqHTkSkktPInEjlp0OuIiIiIhWcDrmKiIiIVHAKdCIiIiIVnAKdiIiISAWnQCciIiJSwSnQiYiIiFRwCnQiIiIiFZwCnYiIiEgFp0AnIiIiUsEp0ImIiIhUcAp0IiIiIhWcAp2IiIhIBff/AWGW3zEE8nPaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 700x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Visualization ###\n", + "plt.figure().set_figwidth(7);\n", + "plt.plot(zMeas, yMeas,'k'); # Plot of meas. contour (cyl. type)\n", + "plt.plot(zMeasRaw, yMeasRaw,'r'); # Plot of raw meas. contour (cyl. type)\n", + "plt.plot(zMeas[dMeas], yMeas[dMeas],'go');\n", + "plt.plot([0,9],[0.5, 0.5], 'k--', alpha = 0.5);\n", + "ax = plt.gca();\n", + "#ax.set_aspect('equal', adjustable='box');\n", + "plt.xlim([0.4, 2.3]);\n", + "plt.ylim([0.49, 0.65]);\n", + "plt.xlabel('Axial pos. $z/d$');\n", + "plt.ylabel('Radial pos. $y/d$');\n", + "plt.title('Meas. (Cyl.) - Enlarged');\n", + "plt.savefig('./Output/1-2-3_Meas_Cyl_Enlarged.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "b06d3cda", + "metadata": {}, + "outputs": [], + "source": [ + "### Create geometry file ###\n", + "create_geometry_file('./Output/Meas_Cyl.out', zMeas, yMeas, dMeas);" + ] + }, + { + "cell_type": "markdown", + "id": "b4258a5e", + "metadata": {}, + "source": [ + "# 5.a) Residuals" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6ea15c2f", + "metadata": {}, + "outputs": [], + "source": [ + "### Load data ###\n", + "path_res = './Tutorials/Meas_Cyl/logs/';\n", + "res_e = np.loadtxt(path_res + 'e_1', delimiter='\\t', skiprows = 0);\n", + "res_k = np.loadtxt(path_res + 'k_0', delimiter='\\t', skiprows = 0);\n", + "res_o = np.loadtxt(path_res + 'omega_0', delimiter='\\t', skiprows = 0);\n", + "res_p = np.loadtxt(path_res + 'p_1', delimiter='\\t', skiprows = 0);\n", + "res_Uy = np.loadtxt(path_res + 'Uy_1', delimiter='\\t', skiprows = 0);\n", + "res_Uz = np.loadtxt(path_res + 'Uz_1', delimiter='\\t', skiprows = 0);" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f87560f8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2jUlEQVR4nOydd3gU1frHv5vNpncCgVBDb1IMTRAFC4qKBUVURFTwXiSoCJaLHa/K9aciKgEL9oKoFAGRqhSlBxJKKAESEtL7Jtlsn98f75zZ3exusolJFs37eZ48m509c+adM6d8z3vKqCRJksAwDMMwDNOC8fG2AQzDMAzDMN6GBRHDMAzDMC0eFkQMwzAMw7R4WBAxDMMwDNPiYUHEMAzDMEyLhwURwzAMwzAtHhZEDMMwDMO0eHy9bcCljtVqRU5ODkJDQ6FSqbxtDsMwDMMwHiBJEioqKhAbGwsfn7r9PyyI6iAnJwcdO3b0thkMwzAMwzSArKwsdOjQoc5wLIjqIDQ0FAAlaFhYmJetYRiGYRjGE7RaLTp27Ki043XBgqgOxDBZWFgYCyKGYRiG+Zvh6XQXnlTthsTERPTt2xdDhw71tikMwzAMwzQxKn65a+1otVqEh4ejvLycPUQMwzAM8zehvu03e4gYhmEYhmnx8BwihmEYhvkbYrFYYDKZvG2G19BoNFCr1Y0WHwsihmEYhvkbIUkS8vLyUFZW5m1TvE5ERATatm3bKPsEsiBiGIZhmL8RQgy1adMGQUFBLXLTYEmSoNPpUFBQAABo167dX46TBRHDMAzD/E2wWCyKGGrVqpW3zfEqgYGBAICCggK0adPmLw+f8aRqhmEYhvmbIOYMBQUFedmSSwORDo0xl4oFEcMwDMP8zWiJw2SuaMx0aBGCaMOGDejVqxd69OiB5cuXe9schmEYhmEuMf7xc4jMZjPmzp2L33//HWFhYbj88ssxceJEREVFeds0hmEYhmEuEf7xHqIDBw6gX79+aN++PUJDQ3HTTTdh8+bN3jaLYRiGYZhLiEteEO3atQsTJkxAbGwsVCoV1q5d6xRm6dKliIuLQ0BAAOLj47F7927lt5ycHLRv31753qFDB2RnZzeH6QzDMAzD/E245AVRVVUVBg4ciCVLlrj8feXKlZgzZw6ef/55HDlyBKNHj8b48eORmZkJgPYqqEltk7AMBgO0Wq3DX1ORlry77kAMwzAMwzQ5l7wgGj9+PF577TVMnDjR5e+LFi3C9OnTMWPGDPTp0weLFy9Gx44dsWzZMgBA+/btHTxCFy9erHUDp4ULFyI8PFz569ixY+PekB3Fe79psrgZhmEY5lIjKysLU6ZMQWRkJCIjI3HfffehtLTU22YB+BsIotowGo1ISkrCuHHjHI6PGzcOe/bsAQAMGzYMx48fR3Z2NioqKrBx40bccMMNbuOcP38+ysvLlb+srKwmvQeGYRiGaQmcPXsW8fHx6NatG/bu3Ytt27bh3LlzePrpp71tGoC/+SqzoqIiWCwWxMTEOByPiYlBXl4eAMDX1xfvvPMOxo4dC6vVimeeeabW3T39/f3h7++PxMREJCYmwmKxNOk9MAzDMMxf5bM/0pFdVt1s12sfEYiHr4yr1zkzZ87Eo48+igULFijHnnnmGRZEjUnNOUGSJDkcu/XWW3HrrbfWK86EhAQkJCRAq9UiPDy8UexkGIZhmKagvuKkublw4QK2b9+OPXv24J133lGOWyyWJp2aUh/+1oIoOjoaarVa8QYJCgoKnLxGDMMwDMN4h5SUFERFRWH//v1Ov4l3knmbv7Ug8vPzQ3x8PLZu3Yo77rhDOb5161bcdtttfyluHjJjGIZhmMZBo9GgoqIC7dq1Q3BwsLfNccklP6m6srISycnJSE5OBgCkp6cjOTlZWVY/d+5cLF++HJ999hlOnjyJJ598EpmZmZg5c+Zfum5CQgJSU1Nx8ODBv3oLDMMwDNOiGT58OMLCwjB16lQkJyfj7Nmz2LRpE5544glvm6ZwyXuIDh06hLFjxyrf586dCwCYNm0avvjiC0yePBnFxcV49dVXkZubi/79+2Pjxo3o3LnzX7oue4gYhmEYpnGIiorCxo0b8eyzz+Lqq6+GJEno3r07pk6d6m3TFFSSq50LGQUxqbq8vBxhYWGNGve+Zf/GiEc/atQ4GYZhmH8uer0e6enpytsZWjq1pUd92+9LfsiMYRiGYRimqWFB5IbExET07dsXQ4cO9bYpDMMwDMM0MSyI3MCTqhmGYRim5cCCiGEYhmGYFg8LIoZhGIZhWjwsiNzAc4gYhmEYpuXAgsgNPIeIYRiGYVoOLIgYhmEYhmnxsCBiGIZhGKbFw4KIYRiGYZhmYd68eZgwYYK3zXAJCyI38KRqhmEYhmlckpOTMWjQIG+b4RIWRG7gSdUMwzAM07ikpKRg8ODB3jbDJSyIGIZhGIZpcrKyslBcXKx4iMrKyjBhwgSMHDkSubm53jUOLIgYhmEYhmkGkpOTER4ejri4OBw7dgxDhw5Fu3btsGPHDrRr187b5rEgYhiGYRim6UlOTsbAgQOxYsUKXHXVVXjqqafw8ccfw8/Pz9umAQB8vW0AwzAMwzB/kX3LgLKs5rteREdgxKP1OiU5ORnHjh3D7Nmz8csvv2DkyJFNZFzDYEHkhsTERCQmJsJisXjbFIZhGIapnXqKE2+QnJyMO++8E99++y3Kysq8bY4TPGTmBl5lxjAMwzCNQ0VFBdLT0zFr1iwsXboU9957L06cOOFtsxxgDxHDMAzDME1KcnIy1Go1+vbti8GDB+PEiROYMGECDhw4gOjoaG+bB4A9RAzDMAzDNDEpKSno3bs3/P39AQBvvvkm+vbti4kTJ8JoNHrZOoI9RAzDMAzDNCmzZ8/G7Nmzle8+Pj7YsGGDFy1yhj1EDMMwDMO0eFgQMQzDMAzT4mFBxDAMwzBMi4cFkRv4bfcMwzAM03JgQeQG3oeIYRiGYVoOLIgYhmEYhmnxsCBiGIZhGKbFw4KIYRiGYZgWDwsihmEYhmFaPCyIGIZhGIZp8bAgYhiGYRimxcOCiGEYhmGYFk+LEER33HEHIiMjcdddd3nbFIZhGIZpscyePRtXXnmly9+6dOmC119/vZktstEiBNHjjz+Or776yttmOBGw65y3TWAYhmGYZiE1NRXLli3Dm2++6fL3Pn36IDk5uXmNsqNFCKKxY8ciNDTU22YwDMMwTIvlrbfewtChQzFq1CiXv0dFRSE/P7+ZrbLh67Ury+zatQtvvfUWkpKSkJubizVr1uD22293CLN06VK89dZbyM3NRb9+/bB48WKMHj3aOwYzDMMwzCXGN6nfIKcqp9muFxsci/v73u9xeLPZjFWrVuHFF19Ujv373//GsGHDMH36dABARUUFgoODG91WT/G6IKqqqsLAgQPx0EMP4c4773T6feXKlZgzZw6WLl2KUaNG4aOPPsL48eORmpqKTp06AQDi4+NhMBiczt2yZQtiY2PrZY/BYHCIS6vV1vOOGIZhGKZ5qY848Qbnzp1DRUUFLrvsMgCA1WrFjz/+iGuuuUYJc/ToUUycONFbJnpfEI0fPx7jx493+/uiRYswffp0zJgxAwCwePFibN68GcuWLcPChQsBAElJSY1mz8KFC7FgwYJGi49hGIZhWjplZWUAgJCQEADA5s2bUVpaCj8/PwDAgQMHcOHCBacRoubkkp5DZDQakZSUhHHjxjkcHzduHPbs2dMk15w/fz7Ky8uVv6ysrCa5DsMwDMO0FDp37gyVSoUVK1bgyJEjmDdvHm666Sb8/PPPOHLkCP7973/jmmuuwVVXXeU1Gy9pQVRUVASLxYKYmBiH4zExMcjLy/M4nhtuuAGTJk3Cxo0b0aFDBxw8eNBtWH9/f4SFheHrr7/GiBEjcO211zbYfoZhGIZhgLZt2+L111/HN998g/Hjx2Pu3LlYuHAhdu7ciSuvvBK9evXCjz/+6FUbvT5k5gkqlcrhuyRJTsdqY/PmzfW+ZkJCAhISEqDVahEeHl7v8xmGYRiGsTF//nzMnz/f4Vh6erqXrHHmkvYQRUdHQ61WO3mDCgoKnLxGDMMwDMMwDeWSFkR+fn6Ij4/H1q1bHY5v3boVI0eObNJrJyYmom/fvhg6dGiTXodhGIZhGO/j9SGzyspKnD17Vvmenp6O5ORkREVFoVOnTpg7dy6mTp2KIUOG4IorrsDHH3+MzMxMzJw5s0nt4iEzhmEYhmk5eF0QHTp0CGPHjlW+z507FwAwbdo0fPHFF5g8eTKKi4vx6quvIjc3F/3798fGjRvRuXNnb5nMMAzDMMw/DK8LojFjxkCSpFrDzJo1C7NmzWomi4jExEQkJibCYrE063UZhmEYhml+Luk5RN4kISEBqamptS7RZxiGYRjmnwELIoZhGIZhWjwsiNzAq8wYhmEYpuXAgsgNPGTGMAzDMC0HFkQMwzAMw7R4WBC5gYfMGIZhGKblwILIDTxkxjAMwzAtBxZEDMMwDMM0Ofn5+VCpVHjvvfcwePBgBAQEoF+/fvjjjz+8bRoAFkQMwzAMwzQDR44cAQAsXboU7777LlJSUtClSxdMmTIFVqvVy9ZdAjtVMwzDMAzzzyclJQUajQabNm1CXFwcAODVV1/FkCFDkJ2djY4dO3rVPhZEbuBXdzAMwzB/F0q++gqm7Jxmu56mfSyiHnigXuckJydj4sSJihgCAH9//8Y2rcGwIHIDv+2eYRiG+btQX3HiDZKTkzFt2jSHY4cPH0Z0dDTat2/vJats8BwihmEYhmGalOrqaqSlpTmMulitVrz33nuYNm0afHy8L0e8bwHDMAzDMP9ojh07BpVKhW+++QZ79+7FyZMnMXnyZJSVleGFF17wtnkAWBAxDMMwDNPEJCcno3fv3njhhRdw1113YciQIfDx8cHevXsRERHhbfMA8BwihmEYhmGamJSUFFx22WWYMmUKpkyZ4m1zXMIeIjfwqzsYhmEYpnFITk7GgAEDvG1GrbAgcgO/uoNhGIZh/jqSJOHYsWOXvCDiITOGYRiGYZoMlUoFrVbrbTPqhD1EDMMwDMO0eFgQMQzDMAzT4mFBxDAMwzBMi4cFEcMwDMMwLR4WRAzDMAzDtHhYELmB9yFiGIZhmJYDCyI38D5EDMMwDNNyYEHEMAzDMEyLhwURwzAMwzAtHhZEDMMwDMO0eFgQMQzDMAzT5EiShIiICHzwwQdOvz322GO4/PLLvWCVDRZEDMMwDMM0OefOnUN5eTmGDBni9NuhQ4cQHx/vBatssCDyJpK3DWAYhmGY5iEpKQm+vr4YNGiQw3Gz2YyUlBQWRC2ZdtWnvW0CwzAMwzQLSUlJ6Nu3LwIDAx2OnzhxAtXV1V4XRL5evXozkJWVhalTp6KgoAC+vr548cUXMWnSJG+bxTAMwzCNRsr2LFSU6JvteqFRARh4bcd6nZOUlOR2uEyj0WDAgAGNZV6D+McLIl9fXyxevBiDBg1CQUEBLr/8ctx0000IDg72tmkMwzAM0yjUV5x4g8OHD+Ouu+5yOn7o0CH069cP/v7+XrDKxj9+yKxdu3bKeGWbNm0QFRWFkpIS7xrFMAzDMC2IrKwslJWVoU+fPk6/bdu2DSNHjgRAounGG29Uflu1ahUSEhKaxUavC6Jdu3ZhwoQJiI2NhUqlwtq1a53CLF26FHFxcQgICEB8fDx2797doGsdOnQIVqsVHTte+kqaYRiGYf4pmEwmAIBOp3M4vnXrVpw9exaTJ08GAAwYMACpqanKOa+//jpeeumlZrHR60NmVVVVGDhwIB566CHceeedTr+vXLkSc+bMwdKlSzFq1Ch89NFHGD9+PFJTU9GpUycAQHx8PAwGg9O5W7ZsQWxsLACguLgYDzzwAJYvX960N8QwDMMwjANxcXHo3bs35s+fDz8/P7Ru3Rr79+/H888/j/vvvx9XXXUVAJrm0qFDB2RlZWHNmjW4/fbbERMT0yw2el0QjR8/HuPHj3f7+6JFizB9+nTMmDEDALB48WJs3rwZy5Ytw8KFCwHQRK3aMBgMuOOOOzB//nzFLVdbWHtxpdVqPb0VhmEYhmFcoFKp8Msvv+Cpp57CPffcA5PJhO7du+O1115T2nfBsGHD8Ntvv+GTTz7Bvn37ms1Grwui2jAajUhKSsJ//vMfh+Pjxo3Dnj17PIpDkiQ8+OCDuOaaazB16tQ6wy9cuBALFixokL0MwzAMw7ima9euWL16dZ3hhg0bhsceewxvvPFGsy6A8vocotooKiqCxWJxcpfFxMQgLy/Pozj+/PNPrFy5EmvXrsWgQYMwaNAgHDt2zG34+fPno7y8XPnLysr6S/fAMAzDMIzn9OzZE23atHHyHDU1l7SHSKBSqRy+S5LkdMwdV155JaxWq8fX8vf3h7+/PxITE5GYmAiLxVIvWxmGYRiGaTiJiYl46623oFarm/W6l7SHKDo6Gmq12skbVFBQ0OSTrBISEpCamoqDBw826XUYhmEYhqF3nfXq1QuhoaG45ZZbmv36l7Qg8vPzQ3x8PLZu3epwfOvWrXVOjv6rJCYmom/fvhg6dGiTXodhGIZhGKBbt244ffo03n//fa9c3+tDZpWVlTh79qzyPT09HcnJyYiKikKnTp0wd+5cTJ06FUOGDMEVV1yBjz/+GJmZmZg5c2aT2pWQkICEhARotVqEh4c36bUYhmEYhvEuXhdEhw4dwtixY5Xvc+fOBQBMmzYNX3zxBSZPnozi4mK8+uqryM3NRf/+/bFx40Z07tzZWyYzDMMwDPMPw+uCaMyYMZAkqdYws2bNwqxZs5rJIoInVTMMwzBMy+GSnkPkTXhSNcMwDMO0HFgQMQzDMAzT4mFB5AZeZcYwDMMwLQcWRG7gITOGYRiGaTmwIGIYhmEYpsXDgohhGIZhmBYPCyI3NMccotygXk0WN8MwDMMwnsOCyA3NMoeo9u2XGIZhGOYfgyRJiIiIwAcffOD022OPPYbLL7/cC1bZYEHkTVTeNoBhGIZhmodz586hvLwcQ4YMcfrt0KFDiI+P94JVNlgQMQzDMAzT5CQlJcHX1xeDBg1yOG42m5GSksKC6FKF9yFiGIZhmMYjKSkJffv2RWBgoMPxEydOoLq6mgXRpQrvQ8QwDMMwjUdSUpLb4TKNRoMBAwZ4wSobXn+5K8MwDMMwf43DG3+Gtqig2a4XFt0Gl990W73OOXz4MO666y6n44cOHUK/fv3g7+/fWOY1CBZEDMMwDPM3p77ipLnJyspCWVkZ+vTp4/Tbtm3bMG7cOOX76NGjUVFRAQA4duwYDh8+jIEDBza5jSyIGIZhGIZpUkwmEwBAp9M5HN+6dSvOnj2LTz/9VDm2e/duAMALL7yAa665plnEEMCCiGEYhmGYJiYuLg69e/fG/Pnz4efnh9atW2P//v14/vnncf/99+Oqq65yCL9o0SJkZ2fjs88+azYbWRC5ITExEYmJibBYLN42hWEYhmH+1qhUKvzyyy946qmncM8998BkMqF79+547bXXMGPGDIewn3/+Of7880/88MMPUKmab8M+FkRuSEhIQEJCArRaLcLDw71tDsMwDMP8renatStWr15da5g1a9bg+++/x7p166BWq5vJMoKX3TMMwzAMc0nw8MMPIz09HcOHD8egQYPw66+/Ntu12UPkbSQJaEaXIMMwDMNcqpSWlnrt2uwh8iISQIKIYRiGYRivwoLIq6gAiSdtMwzDMIy3YUHkVVSAZPW2EQzDMAzT4mFB5EWSrb4siBiGYRjmEoAFkRcpgQ9g5SEzhmEYpn5IPP8UQOOmAwsiNyQmJqJv374YOnRo016IPUQMwzCMh2g0GgDOr8BoqYh0EOnyV+Bl925oto0ZWRAxDMMwHqJWqxEREYGCAnqzfVBQULPu5nypIEkSdDodCgoKEBER0SibOLIg8jYsiBiGYZh60LZtWwBQRFFLJiIiQkmPvwoLIm/DgohhGIapByqVCu3atUObNm2Ut8i3RDQaTaO+3oMFkbdhQcQwDMM0ALVa3ezv+/onw5OqvQ2vMmMYhmEYr8OCyNuwh4hhGIZhvA4LIm/DgohhGIZhvA4LIm/D7zJjGIZhGK/zjxdEFRUVGDp0KAYNGoTLLrsMn3zyibdNcoQ9RAzDMAzjdf7xq8yCgoKwc+dOBAUFQafToX///pg4cSJatWrlbdMI3n6dYRiGYbxOo3iILBYLkpOTUVpa2hjRNSpqtRpBQUEAAL1eD4vFcmm9A4ZXmTEMwzCM12mQIJozZw4+/fRTACSGrr76alx++eXo2LEjduzYUa+4du3ahQkTJiA2NhYqlQpr1651CrN06VLExcUhICAA8fHx2L17d72uUVZWhoEDB6JDhw545plnEB0dXa/zmxQeMmMYhmEYr9MgQfTTTz9h4MCBAID169cjPT0dp06dwpw5c/D888/XK66qqioMHDgQS5Yscfn7ypUrlXiPHDmC0aNHY/z48cjMzFTCxMfHo3///k5/OTk5AGhr75SUFKSnp+O7775Dfn6+W3sMBgO0Wq3DX5PCk6oZhmEYxus0aA5RUVGR8u6QjRs3YtKkSejZsyemT5+O999/v15xjR8/HuPHj3f7+6JFizB9+nTMmDEDALB48WJs3rwZy5Ytw8KFCwEASUlJHl0rJiYGAwYMwK5duzBp0iSXYRYuXIgFCxbU6x7+EuwhYhiGYRiv0yAPUUxMDFJTU2GxWLBp0yZcd911AACdTteo24gbjUYkJSVh3LhxDsfHjRuHPXv2eBRHfn6+4uXRarXYtWsXevXq5Tb8/PnzUV5ervxlZWU1/AY8gQURwzAMw3idBnmIHnroIdx9991o164dVCoVrr/+egDA/v370bt370YzrqioCBaLBTExMQ7HY2JikJeX51EcFy9exPTp0yFJEiRJwuzZszFgwAC34f39/eHv74/ExEQkJibCYmniIS2eVM0wDMMwXqdBguiVV15B//79kZWVhUmTJsHf3x8Arej6z3/+06gGAvRmX3skSXI65o74+HgkJyfX+5oJCQlISEiAVqtFeHh4vc/3mEtpxRvDMAzDtFAavA/RXXfd5XRs2rRpf8mYmkRHR0OtVjt5gwoKCpy8Ro1Ns3mIeMiMYRiGYbyOx4KoPpOlH3/88QYZUxM/Pz/Ex8dj69atuOOOO5TjW7duxW233dYo13BH83mIeMiMYRiGYbyNx4Lo3Xff9SicSqWqlyCqrKzE2bNnle/p6elITk5GVFQUOnXqhLlz52Lq1KkYMmQIrrjiCnz88cfIzMzEzJkzPb7GJQ17iBiGYRjG63gsiNLT05vEgEOHDmHs2LHK97lz5wKg4bcvvvgCkydPRnFxMV599VXk5uaif//+2LhxIzp37twk9giabcjMYmra+BmGYRiGqROVdEm9x+LSQwyZlZeXIywsrFHjfmfyLZj36myg142NGi/DMAzDtHTq2343eFL1xYsXsW7dOmRmZsJoNDr8tmjRooZG2/Iw6bxtAcMwDMO0eBokiLZv345bb70VcXFxOH36NPr374+MjAxIkoTLL7+8sW30Cs02ZGaqbtr4GYZhGIapkwbtVD1//nzMmzcPx48fR0BAAFatWoWsrCxcffXVbl+J8XcjISEBqampOHjwYNNeiD1EDMMwDON1GiSITp48qew55Ovri+rqaoSEhODVV1/Fm2++2agG/uNhQcQwDMMwXqdBgig4OBgGgwEAEBsbi3Pnzim/FRUVNY5lLQUeMmMYhmEYr9OgOUQjRozAn3/+ib59++Lmm2/GvHnzcOzYMaxevRojRoxobBu9QvPNIWIPEcMwDMN4mwYJokWLFqGyshIAvdessrISK1euRPfu3T3ewPFSp9l2qraYmy5uhmEYhmE8okGCqGvXrsr/QUFBWLp0aaMZ1PLgbaAYhmEYxts0aA4RwzAMwzDMP4kGeYh8fHygUqnc/t7k824YhmEYhmEakQYJojVr1jh8N5lMOHLkCL788kssWLCgUQzzNs02qRruhSXDMAzDMM1Do77L7LvvvsPKlSvx888/N1aUXqfJ32X20ADgxjdsB89uA4rPA8P/1ajXYhiGYZiWRH3b70adQzR8+HBs27atMaNsAdTQo/kngMw93jGFYRiGYVoojSaIqqur8cEHH6BDhw6NFWXLxGwE1H70f/G52sMyDMMwDNMoNGgOUWRkpMOkakmSUFFRgaCgIHzzzTeNZlzLoMYcIn0ZEBAB5KYAn1wDvFTsDaMYhmEYpkXRIEH07rvvOggiHx8ftG7dGsOHD0dkZGSjGdcikayAjxo4swXoe7u3rWEYhmGYFkGDBNGDDz7YyGZcejTfKjM3c9qrS4CQGMBqIYHEMAzDMEyT4bEgOnr0qMeRDhgwoEHGXEo026s71H6ASQ9oAmzHJAlQqYCQNkBlARDWrumuzzAMwzCM54Jo0KBBUKlUEKv0eWPGRiIkBqjMByI7ywdUULxGYe0BbQ4LIoZhGIZpYjxeZZaeno7z588jPT0dq1evRlxcHJYuXYojR47gyJEjWLp0Kbp164ZVq1Y1pb3/PEJlQaRgN4QW0REoz2p2kxiGYRimpeGxh6hz587K/5MmTcL777+Pm266STk2YMAAdOzYES+++CJuv/32RjXyH01I2xqCCIDFCPiHAOEdgaz93rGLYRiGYVoQDdqH6NixY4iLi3M6HhcXh9TU1L9sVIsiJAaoyKP/zQZArQHa9gcCI4HQdsDWl4Bf/+NdGxmGYRjmH06DBFGfPn3w2muvQa/XK8cMBgNee+019OnTp9GMaxGExtDEaQAwVAL+ocCQh4ErnwR85Mdz5lfv2ccwDMMwLYAGLbv/8MMPMWHCBHTs2BEDBw4EAKSkpEClUmHDhg2NauA/Hv9QwFhJ/xu0gH+NFW03vQ2krGh+uxiGYRimBdEgQTRs2DCkp6fjm2++walTpyBJEiZPnoz77rsPwcHBjW2jV2i+fYjsMFSQQLJn6Ayg5Hzz2cAwDMMwLZAGCSIACAoKwr/+9c99I3uz7UNkj0HrLIhUKqAozXX4Yz8Bl93V9HYxDMMwzD8cjwXRunXrMH78eGg0Gqxbt67WsLfeeutfNqxF4aOml7raeYgkScKS5CV4bPBjwNmtts0a7Vk1Heh/p/NxhmEYhmHqhceC6Pbbb0deXh7atGlT67J6lUrFGzPWl+ieQNFpQK+lVWcAzpadxcdHPyZBFBgJJH1Ok61rYqgAAsKa2WCGYRiG+Wfh8Sozq9WKNm3aKP+7+2Mx1AA6jgAy99Gb7gPp5bgT102Er4+sV8e9Dmx40vEcYxWgCQKqS5vXVoZhGIb5B9KgZfeuKCsra6yoWh7RPYC0LUBVIRAUBQC4v8/9eOSyR6A1aoF+dzifU3IeiB1MIophGIZhmL9EgwTRm2++iZUrVyrfJ02ahKioKLRv3x4pKSmNZlyLQaWi1WQp3wP+Ycr74mJDYpFTmQP4BQEjHwMsZts52xYAXUazh4hhGIZhGoEGCaKPPvoIHTt2BABs3boV27Ztw6ZNmzB+/Hg8/fTTjWpgi6HbNfTeMpUKOrMOQZogdAjpgOyKbPrdPwwwVtD/ZVmArgiIY0HEMAzDMI1Bg5bd5+bmKoJow4YNuPvuuzFu3Dh06dIFw4cPb1QD/9nYrQ5Ta4BH9wAA8qvyEegbiNiQWKQWy69C8Q+lCdSBkcDFA8B1rwDBbYAvbga6jlHmHjEMwzAMU38a5CGKjIxEVha9hX3Tpk247rrrANBS8Ut1UrVOp0Pnzp3x1FNPedsUBV9NrOOBmH4AgEVJi2CVrAjxC0GVqYp+E4IIoH2J2g4A/ORNMIvPNZPFDMMwDPPPpEGCaOLEibjvvvtw/fXXo7i4GOPHjwcAJCcno3v37o1qYGPx+uuv/y28V1naLOy8uBMjY0ci0DcQOrOOfvAPpWX5uhJgx0KafC0EUXmW9wxmGIZhmH8ADRJE7777LmbPno2+ffti69atCAkJAUBDabNmzWpUAxuDtLQ0nDp1CjfddJO3TamTpIIkzB40G/2j+0Pjo4HZKk+k9g8Dzu8A3upmCxwYATx5Aig84xhJWSZwdntzmcwwDMMwf3saJIg0Gg2eeuopvPfeexg8eLByfM6cOZgxY0a94tq1axcmTJiA2NhYqFQqrF271inM0qVLERcXh4CAAMTHx2P37t31usZTTz2FhQsX1uscb6Hx0WBU+1HOP/iH4ZnUTwDJCrxYbDse2g7Y8YZj2G/uBLa93LSGMgzDMMw/iAbvQ/T111/jyiuvRGxsLC5cuAAAWLx4MX7++ed6xVNVVYWBAwdiyZIlLn9fuXIl5syZg+effx5HjhzB6NGjMX78eGRmZiph4uPj0b9/f6e/nJwc/Pzzz+jZsyd69uzpkT0GgwFardbhrznRGrUI83Ox87R/KH4NCYbkowHUdnPhfdRAULRtSf6eD4CiM0BUN+c4GIZhGIZxSYNWmS1btgwvvfQS5syZg9dff12ZSB0REYHFixfjtttu8ziu8ePHK3OQXLFo0SJMnz5d8TwtXrwYmzdvxrJlyxSvT1JSktvz9+3bh++//x4//vgjKisrYTKZEBYWhpdeesll+IULF2LBggUe29/YlBvKEe7v/DLZCh/SrkaVD/xr/njlHKAyDwjvAKRtBWYfAlbcA5zZAvQc1+Q2MwzDMMzfnQZ5iD744AN88skneP7556FWq5XjQ4YMwbFjxxrNOKPRiKSkJIwb59iojxs3Dnv27PEojoULFyIrKwsZGRl4++238cgjj7gVQwAwf/58lJeXK39iNV1zUWGsQKhfqNNxnSyIqh53If7CYgFtDv1fVUg7XxefBb6b1JSmMgzDMMw/hgYJovT0dIe5QwJ/f39UVVX9ZaMERUVFsFgsiImJcTgeExODvLy8RruOPf7+/ggLC8PXX3+NESNG4Nprr22S6wCABUacLjntcMwqWeGjcn4s1T4qdDVZUOXqiYW1B7TyBo5dx9iOdx7FGzcyDMMwjAc0SBDFxcUhOTnZ6fivv/6KPn36/FWbnFCpVA7fJUlyOuYJDz74IN5++22PwiYkJCA1NRUHDx6s93Xqw13r7kSW1r0XStxntVmP1h2ugM6kcw7kH2bbo0hw56f0AthPb2hMcxuOrsTbFjAMwzCMWxokiJ5++mkkJCRg5cqVkCQJBw4cwOuvv4758+fjmWeeaTTjoqOjoVarnbxBBQUFTl6jvyMSgI/GLkVyYXKt4fIzylFlrMLgtVNwpOCIcwC/IMBYQyhddhdw53J6Aay3kSTg/+Js389s9uw8q5U+M/4ETPqGXdtqpevXRmmGY/pZTEDBSddhJYn2g3KF2QhYLY5hLxW2vUL31RB+XwisTWhUc5hLkIp8b1vAMF6lQYLooYcewssvv4xnnnkGOp0O9913Hz788EN88MEHGD16dKMZ5+fnh/j4eGzdutXh+NatWzFy5MhGu44rEhMT0bdvXwwdOrTpLqIC+of3dho2s0eSJPz0vyT88hY10G2C2jgH8gsBjJXA6U3Aud9tx6N70AaOzcWf79N71mpiNtj+370I+O5ux9/XJgA5RwBTtaOgeDUSSP4O+OImoDjN8Zy9SwF9ufO1xFwqwZJ4YEGEa3GS+jNdc9UjwAeX244f/gpYOoJsqXneggjgfx1t3ysLbUJj28t0f9tftYUtveB8XUkCTm20/W+P2ejem2YxkxhztTP5F7dQehSddX3ung/oNS+1oc11fXzn/4Dkb4BTvzjmL4cwbzl+r8gjDyXTPDSG+H6np3PH6u/IpdQRaUwkyfN7M1V7Lx3EaIWr+vkSp8HL7h955BFcuHABBQUFyMvLw4EDB3DkyJF671RdWVmJ5ORkZQguPT0dycnJyrL6uXPnYvny5fjss89w8uRJPPnkk8jMzMTMmTMbarpHNMeQmaQC/K0+MEu2t9i7GwqM1rUHANu7zezxCwZMOuDMr5jgV1Y/I8zG+hU0wH2lufVF4OR623eLGVg1A8jaR993vwNsr7GC78eHqLGtKgZ+mg7s/9Dx97WP0ueHV9psPPYTsHk+fRacJMH1irwyb1EfYMf/6Pu534HLp9HxzL3O9v7wALBhLu0CXmEnBoKj6fPVKBI1rvhhGl3/7e7A+4OB3KPAvqXA76/RfZ7dRuHeG+B8bm4y8P29QPpuin+V3d5dr7W2edN+nm3bTgEA9rwH/DDVUbwBJOgydtOqwiXx9GoXwXf30KfVDGTtJzFlqCABk58KHPgE2DSfRNii3rRKUSDSe8h0+jz3G3C+hiBa9zid+/trjsfXPwEkfekYl/13gIZzrRYSxBV1zAn8r4uOQE073VFZQGFObgBKzrsO89mN9GmopM93+wPlF11f6+uJ9Gk21n5de6rLHL+nrqNPXYnjM7bn9K+1x1l8jrytxirnfCq8PdVlZOtvrwNHf3Adj6GShD0AvNEOyPiD4izNoE1e7bHWeDVT5n7XcVaXAivuo/93/M/5d0kCjq+mclN4xjHf2SNEtaGCzvHE42vvjQaArINATrLrsJueqz0uSbJ1UBpjPuZP0917mE+spc/fa+wrJ7zju98G9ibKec8Alwiv+pe3Aum7KN1q5j1BzXy37jEg64DjsZqdGhHXslGu78NsABZ2IBv/14nsceddLjgJrJ/TcM91E1CvZfdlZWVISEjAli1boNFo8J///AezZ8/GggUL8Pbbb6Nv37747LPP6mXAoUOHMHbsWOX73LlzAQDTpk3DF198gcmTJ6O4uBivvvoqcnNz0b9/f2zcuBGdO3eu13UuRSQAPiYrfFW+MFlM8PVxfhxqldrhe+cwF/ftG0CrygKjkOGncfxt31LgmheAfcuoQA+dAUTZVRivtQambwU+vR54xU7RH18NtL8ciOziGF/BSfKezPwTaNvf8bdOVwDBrW3fi04Dx36kP8DmOQGARX2BWfuAE6vp+9GVwOlfgLaXOd9f2wFA3lHg/7rSztw58rDhmc3AL3OBSPl+fnqYPncsBHwDSXyJSebfTQYMWuCWxcCQh2xxp3xHDX5QNDVAnUdSA3HLYhIAJ9eR3RX5wO2JwKApQPK3QOpa+gPo1SnmGkN639zp+L26jHYWB2wN6Ze30OexH2l4057UdcCRr4GrngYiOgFVRY7p925/oN1A4J5vgWNyQ7daFlYX/gQKUoHetwBnfnVsQISYatUdKE2n57VvKZQXDX97F3DPCqDjcGD5tcCE9yh/Cf58j/JQRCf6fvhL+gNIhD60iYRESAyJ1sFTqJJUqYH1jwPx08iej0YDeceAjU9TGhekAlN+ImHXZwLtrwUA2UkkriwGIPsw5YWT64Djq4DMfcDY+eQtfHQPYK4msb7hSUCy0KalmiDgwEcUV8fhFN/z+bRNRXBr+i7yxoa5wKFPbR7Xd/sBT5+j68QOJuEa2QU4t53Ky8WDwF2fA7+/DgRGAR2GUplp05fi7TwS+Op2oN9t5KG7/UN6iXPeUUrH1r2BgHBqcB/eDJzdSgshPh8PBLUi4XzX53SvHYeToLlyDsWbuY/K/O+vAzfJ8yIPfQ6ofCjuEtmLGBhJDU5Mf2DX/1E8x38C+t1Bu9mXZgB7a+wB98MDgK4YGDCZyuVzuUBuCtm67Aoqt617AweXAxufAvrfRc9ME0Qe6d/+S+Xu9C+2jkqbPlT/HPoMGHgfbSbb/XqyZdQc4M/FwL93kcgLbUv502wAFven6/r4Au2HkNdbE0T2J39LddvvbwBxVwMpK6huqC4FPrkWuPJJynN9bgWSPqd8vftt4LalwJp/U0coYzft6xbUCug4guLf9RY9w3Wz6SXa214Brn2Jyt/4/yN7Ogyl51JdCrSPp892g4D0nXTdzH2UFvkn6P7zjgEqFXlZM/cBExZT5/HqZylfhcYAJ9YABc8CO9+kZ2aqBlr3BPZ9SHXpFbOBva8BFiPVbdO3AVYTveR79ztA92tJYBgrgNjLga9uBS5/gDzeT52ljmnbAXT9iE7keb/rM2DXO1SHtepG27XMO0N53C+EwtzwBtU1hgr6PbwTUJ5JnvKXy6gz7hdMQ+sXZUElBPqrkbY6bsY2oPA0TedYEAEMf5SeS1Ar2jLGvl72EipJ8tw1MGvWLKxfvx6TJ0/Gpk2bcPLkSdxwww3Q6/V4+eWXcfXVVzelrc1KYmIiEhMTYbFYcObMGZSXlyMszMWGiX+B/3vgIcx54zVsMiShW0Q3dArthK9Tv8asQbbXn3xw5AP4fNRP+d72yTLc2WsijBYj5u2Yhw+u/YB+eCUcuP5VXHZ2OY5Ns9v6YM8H1DC+P8h2bNAUKlxBUcA7vaiC+HmWoyB6JRwYPBW4rUZl+eGVVLi7jAYe3GA7fuQbGgbqejUw/N907OIhalQBYNi/aUuAtC3U2Ai6XUuFL6IzUHaBGuB+E8ljkDiUKj5Dhc3jEv8gNU6RXci7VO1meCl2MFWOKjVV4L8+Ta8+uexuuqeqImDLCyTI+t1BFeDvr9O5Y18Auo212S54uQzY/BxV1r8+Q14Xe657hXplEZ2poPuHUUPbZTRVvK+UkwBoOwA4+Ak1Mrd+QD2zGduBqK5UGeuKqSECaAWhjy9w/2ry/ohGSvBSCfDLPKDbNeQ9Aij9zAbg9qXAm50pjn53ODZ8bfqSCBnyMDVSAFX6J9bQ87Unpj8wfCYJrZQVlKZXzAIu7KGGX6UmAWLPkOkkLgS9bwFObXD+HyDBZdbbhO+414EtzwM9bwTObHKMV4RV+5NI6nsbDX3esJAEmCsCIgB9GTWo2Yeo8UzfCbTpBxScAMI6ANoa3qDWfYDCk7Zn5wmBUZQfO4+itOo6hvJcbbSPpzQMbUdeymteAH57zXVYcc8i/m7XkGivjeA2QFUBCaGs/XKjusT23Z6AcBrmEJ8inSYut4ntmvcqwvqHA4Zy2/U8od9EKn+drwQu/EHC5eQ612FDY4GKHFu57jOBBMXIx4E97zuGrZkfOwyjhrrdIBKZtRHdkza27TqWvKERnZy9ZDXpdAV5oHvdBJzeWHvYqK7kpew0EsjcA8RdZaszylwMrwM2ASKeWffrqD7UBAPi5d81iekP5B8n0Xl2K5X/E2tqt03k+csmkYAZOoNEr+gguEJ0EG9ZDGyYQx1Rc3Xt1xFlVuSZyyYBrXoAY56t/bwGoNVqER4e7nH7Xa8hs19++QWff/453n77baxbtw6SJKFnz5747bff/lFiCGi+ITPJaET/6P44VnjM5aaMAapAh++6XHKJXv/T9dhxcYdyPDFvDSyyC9MqWW0n+IU4iiGAhg602UCl7FYXvZiaHPnaeaJlSIzrRuLnBBIIR762Hasqsv3faTgQ3h4YeA8JLUHhKWDUE7bx5vVPUM/jQ/n1JX0mkGs2NJYquqQvKExUV/diCKDCDQCQqAci7qNNH+C1NsC7fWn/pts/pOGC0LZUKAHq2UZ2obSzR/R6orpS77ImbfqSh6LzSKpQDVpqgERabX8VOPAx9TxvfJN6XQERlJ7Lr7W5+u29goYKqiiXxJNw1QRSYyQov0g95ohOtuMnVtM9vC3vzq7NBtR+AFT02W8i4Ctv75ltt69VVFdqnAQxsgewqpCebcoK8gZ0HklCW5x7+VTqkQIkfAHyPtl7F7MP2/4XYqh1b/ocMJk+1Rrb9QBnMQTYPHFisYBavo8j39BnxxHO5wTIFaHwwAqPV6TsbfULcj5HiF2L7M3rcyt9dhhGn+3jnc8RXi1xnRB54YfwUqr9bGHFb6I/2m4QfRbK8wk7XeEcv/AwCttEfF3HOtpmjybQMaxI2xB5CDJY/gwIJ6F609uAj/wcxMuji+R3JXa/zhavKHvC22mQy287eYi4izyXtJeLeWsiflHmxc77wkbh8XV1HwER9OkrfxfDw/52jZ0QQ8KLGSh7KUR+7HYNfdYs34BteEyktXgu4n7sEeeL5y1sC2lLn21dDJcLRF4XYaN7ONpsj5hGIZ6HyPM9rnN/jmgDNHJeF1u5iHt3sbWLckwnvxqqJJ0+XYkh4cm/IO8HuOVFx+MD7nE+RyCGxzvK83P15bbn62XqJYhycnLQt29fAEDXrl0REBBQ73eXMTYkFSCZjIgLi8MXJ75Aqb7USRD5VjpmFFMVZfQSfQlGxZJosFroWFlZHmbufQ8VRrsl+HYNtySpgAnvU8WtK6G/G/9HvXKAxvL3LQNSvredX1N0xPQH7vvBNq8EsA3lWM3kXUhZSV6PfYnAzD+owVb5UKVl1FFlr5ELt18wcP2r1IMf9i/qDQG2hqg8m3p3ExZTpQ1QzyIggiq6iXIPRlQ+Ix8jsaEvJ9evZKUGsSKHKn/7OUyaIGoYKvOohy4qhJwjcmWnIje+aAwBEmfB0RTveLuJxP7hlNamKoq3TV9yCQdG2BqS3e/YwvsFk9gJCHMcJjTpgFGPU4V//2rqsdqfoy8HRs8FRiSQcHpvANkS2pae1ZRVtvAWu3kGpmrgtkTqZQ6eQs8huid5qZ5JJ2+JJogq3xGzKH7RCFTmkzAFaGivZgV55Bvq6V63gLwDD22iXvCs/ZSuV86l9B8wmcIJuowGRs8DIAH/2mETgikrgPCOJNyie5GgGCF7TQfeS8JPpSLxVZEL9LjB1ij4qKnB7TeRnmfs5SSII+PI7pGP2Q1vyg1N+yE0fDZoConCsPaUnveupDQBKH8CJJ6GPkLpCJDNMf0pb4e1p+Nino02h2wIbkNpLcqMjy95Rm/9gO591BM2mypl70pEJ4rv8gcAv1AqF9E96T6EoCvLsg2JdRkNdBhiS9uIzmSLKBuV+VQWy+X9yoT46CMP2wZFUwcmIMIWf0UeeRBzjgDXvkxhAsIdy36/2+k+Og6ndBfzXcx6OhbWjr4L0QvYGvayTLr38mxg3Gu2NLC/j/bx1LgGhFM+EGJQ7LsmhH3/ifQZ2o48EGOft4mkqgLylIhzguQ5gtE9SLCNeoLymV8oHes5nu49JMYmDiI70/dBU8hDHDuY7Bz2L/q93UCKP6iVTaxHxVH697rZUSRfZ1cHibmLIs173UTPuv9dtmfkF0xiV5sL3PExlaVWPWx1u5hPFBhlqyMBYOpayk8RnWz3Ic7pdAXl9S6jSShG9yLPzo1v2oSeWU/10GXyBr+xg6lcRnSic+781CYcO19hex6xgylfqv3o3M4u3s0JUP696W0Aqr+nILJardBobHNU1Go1goODG92oS4HmWGUmPEQqlQoP9XsIP5/7Ga0DWzuEMVU6jmhWHqMKYHT70egW0Q1WyYqLp2iy3085VFmY7Ydy7ATR0vzV1ACrNTQ89PXtVPGLIZLEocCm/9D4OkDzF+z3N5IkGuv3C6KML1Y7iYb+3Hb6XPsojVun76IKwqSjnpwYQgoIJ+FwzwrHyYHjXgd8amTJfrfTUI5/mK3yM5RToTVU0pyNoCgSdgCFC46mnrDoGao1JCT+9btjT8/Xn8JU5NGnvpyGxQDqWRkrqPI06chDBZDoCGpFYYfKDcPT50iUBEaR8NAEUgWUtZ/iVamBGb/ZeuM+GlncaJ33kBKNkrmaxtXL7VbtCUEUEE7PYIC8Wq/wpG3uVnd5mC/hAFVM175MDYqxgiqv6jLZVa0lwQLIz0NHdgv71b40P+E5ucIWvV+VynmV2+Cp1PCHxNi8beXZlIb6cmoMo7qSmInpT0LxulcojaK6UU80uDU1KHOOUzw3LqTnc9kkOkf0eHOPkijTFVNDps0Gbnid8tNtS6kRuuopsmH4TBIUQa1orlX5RWDMfHreD26kNJ7wPt2vEEPth1AlXV1GjaA2B5hzjBqj+1eTHaLBG/4ocN3LJFRuS6Q0uPsraugfO0w23vs9CdPLp9nE5rjXKP3D2tOzH5FA15n5Jz2Hu+S5QPEPUj6/fCow+klKj7s+pbBPn6Nhvgc30jlD5Y7piAQqL51GACMepWdwx0fkIW3dh9LrwV+o3N34JjV4w/5FQ3VVhVRfBEaQ/RV5lF7aHBL4FgMw+imyY0QCdQiqy0ikVRUCc1Mp/n/tpHx05VwSSGPm0zMYMYvEU+wgynvlF2URXUhix6SjIfPg1hR29FP07LtfR9e8bgHZ9PQ5smnaehJIN75JwnXoI+SRlaxkr8oHePyIPP9vGU0Qvu8H6myNe41EQUQneu7h7YHJX5Ett75Ptj34C93H3V/R5OChM6g8d7+O8pbVQuKrIhe4fw2dM+Unuo/bEsn7E/8g5ckh06m+M1bStIKKXOCpNPk+NpD4uGUx3U//iUDrXiSK7l9NxyZ+REKo9810H+P/R7Zd9QzQ/056HqMeJ+H38BbKe9E9Kb0e+Jnqmru/pvw0Zj4Jze7XUZmM6ERlqrqU4tfm0BC+sQqY+DHd88jHSNj0ugkY8xygKyVRZNJTx7PkPKWTxUjPwKync9oNomcvROjsJKrj5hyjTkbsYCqHouPhZeoliCRJwoMPPoiJEydi4sSJ0Ov1mDlzpvJd/P0TaJYhM5AgAoDru1yPladXIiogyiGM2W4lQJrGiKJO5G6MCY5BoG8gqs3VSD9KQ1Ptckhc6C12E3z9ggG/UFhnyKuDAsJJuYvx6sgulDFHPuZoXN/bqGI89qPNtV2eZeuB6MttE3SjulGhAICHfqXGSLh1g1oBLxSQJyAgjM4T3p+QNrb/AcDXjzwXNy+yHYvoZDvXWEXvaQNIOFlNVIH7+Np6jn4hdE1dMcVnj18I9ZTHPk8NlElHguq5bBIm+nJqtESDd/1/SVwZddSA3/gmLaMXQ1NiiCQ4WhYckbKXSaJKdcpPdKy6BAhuRT1VMRHSPxTQFdG5Jh15ocY8RxWYGOIJjLL17ENiqNKwmul+/YJtaacvt9ki3Oute1EadBgKjJgJ9L2dGpqqQvk5aG3i00ctC6Eg8jb4aGxhxXCS/QuFxeR0gbimmE8S2pbuEbBNuDRUyuJcRekT3FoWRHEkiALC6d41QbZzjFWy+A4g+wCa8yOEXWAkVd72Qs4oCztNIMUj8lxQK8rnmiCq+DUBFNYvmBp6X396Froi+ZmV0jnlF8mbaayi/COuowkiESbm0gRGUPxB0TTfQ1xfE0iNhiYQikcqMIriD4wg2wIjatxHkO1ctYaes7ApuA2VQ78QW/oYqwD/EAqn1tjyf2AkpVOAPFdD7UsNsr1tAAn2kDayGJfzRmAkNcD2toh79/WnRixIvnf/UPk+omz5VzlHZ3eOnoR1dRldz1xNeUe552oSaBYT5XFxz4ER9BkQRuVBrKoV52gCqLOm9pPzrf29R5AHWBPgfB+igyaEvFI+IkiwaALJZk0Q2eobYOuIBUeT9yUggs4NiqLv9vGLhl7kjeDWFDZAft7+oSSIlfsIIqGq9qNnWFUod+7kTpIYWjLJnhtTNcWp1lAeDpA7OsqzDKf08g2skV6BtnjtP6tLbWXKN4Bs8w+1eYpE/EqdFk150T+U8kxYB1s5sZopXwVH00hEj+ttdURFnlymath0CVAvQTRt2jS0adMG4eHhCA8Px/3334/Y2Fjlu/hjPIOGzKjhEEKoS1gXhzBiSX6XyV0RY/aF70nyegSoAxCsCUaVqQqVJSSAskofAAAY7L0uvgGAXxB27qCGTWcJtXllXim3Nf7jXqPKVij1fndQxj/wsc2DVJGP/CHv0f8l6VAq+HYDaZXEfHl1UWWBbbjG15/+fNRUODN2k9u1fTwVDrGUddAU+jRWAV3keSz28zRE5SXG2gWaIJooLfZb0pfZGoSa+IVQ4ex+na0iEASE2SYD/msHfY56nGw3aKnQdxgKdBlFlauY/zLwXlscgREkPCLj5Aa2FTUSuhKbiBLj5n7BlP4Rnagh6zSCnkX2IbqnCe8BgRE0zNn2MltD0HUsnaPyoZ7woCm2JdNRXQEAq4vfgGSVqEEIiqJ4e1xP6V6ZZ/PQ2WM1ycNNaqrMglvb0udBeaLoRLuVcP3usP1/7UskWkXFrwl0XBntF0zP2S+EGm5Dpe0ZhbYjT4dfCAqMXWRRU1N8yBOpwztSfP7hJC41gbCajI4NimShtBENL0DzckT6iwbYN9A2vOmjoUY4SPYsBkVBEs/MVGXXuAlxE0T3YayyNdoB4XQ9IRw1geSZsBcU/vLk1MBIOU/I5/r6k6BWwgbAZLBAbw60LftWBFFruYHyp+ekCaIVSH4h5MXSBNYQRLKwEwj7hUgTaesfCqu+wtYxEB0fJ5EWZCvjQVF0Hf9QeqZqX5sIqClyDJWUHkIECo8jQHWFf5jteVtkUaAIokhIujKbZ9M3QBYFATSHRTx3Hx8qc/ai1j+MyomD6JDFjRAkIW2ofAW3Idt8/ShthZDwDaAJyZpAqicMWrl8FNB1DHJHykFw2Yk1YUuIOCeC8oFYIOAgHOVjITGyTa1tk9cBufNSQ2yK+A2V+P3YAHlI30LlzqwHNAHIKO0CvTnAZpsQf2KoVJQPv2BUl1dQvGJIXzwXITKD5DotKNp2H6ZqEud6ua70CyH7guTnIaYNBITZypRJFvSXkCDyrTuIjc8//7yp7LjksF9l1pQIDxEAHH2A5vIUXNCiTWfZSxBkRtWQ8/jPThMeM+hRXRSB6Zuno2dkT0UQZRxzbPyrRW8agNkkoczQAWmH8gEA5ZVBCNKXA48nK2GK794HTVE1wsx6ysQ+GkjwgSpCnnRqqKAhkE+vw095azDzaivUlflKAyWFtIUKQLXJH4FBUTbvwKN7HG925BPkmQmKAh75jQqCmDdw+1IAQHLZtYg4Z0UX+xVvgG34C7BNnJ30JeAXjLzOsxDk64cwgHr0Qa1sgqXvbbbz1L6wVmtxIcMPnXrchD0bi9D9bBn2r0/H7bN7Oz8cgWSF5KOBqkM80EEWaQnycNMdH9LnxE+okbrmeWe75V60JMkSUhPk4CKuqg7Agb3tMPax0TQMpFLBOugB+Kh98FH+CswE5HkqoTR/CKAJzZJEy/KTv6Vjjx8BAOSa+kACoBK9OUFIDHnw7Bujp8/TZ3hHik942/yCbXOFushzAAZMsp0n5jz4hdiuERCO3VnjMBrA0vw1SADwXeH7uKlUhQiryeZZMVfbREFYLM1fUKnwY/HbSFC8PEHUKFpMKK0KQ8rxwRgz0I8m7Yd3QJGpC6JVKizL/xEJvv6KkMir6gR9hgZdegeROGvVXW5E7byFsrjRVvrDXwqEWhUIQxUQLHqzgVH4Mud9PCjEjW9ADVEQYOuhB0XR8EFIjDLfTpIAlW8gpaXwMvgGUKNWcNJRqNgPb2sCkKtth0hzIE7kDkJxdhTGDcujXrhojJRJsnJnRDRUfsE0kb1NHyCoFSyVZVAHRiKtpA96iHMA58ZUNOCtuuPji59hpvAmKRPE5QbYT4ioAMrnVYU0JFSRBwREwGK2QFkKoKSXLG58/ej/knNAQDis1RXwsRsalyRAFRAme7j85OduhBQcg7JiCZEBEfj4/Lv4d2AEfi19FuNVKvyY8wJuNvghMLQ94BuICn0YLuRF4rL+dsPlxgqbQPVRQzIaALU/qiytoCo3QqUORVZ2B/QKiYGlsgRqO+FolXzgY+/d6zGO0tw/FOZqHXyD28giJwbV1jAEAiRCfANhNhihVvvL3UWVLOhKoQpuje1ls3CtmCeqUuG3wgcw0uyH49kjEH4uCHG+QdBXWBESKqetsMlHDYvkS2ksi6gjWZchJCQcPTroqczE9ENqmQpjxRwgJY8EY2fuXRhX7od2QuAFtYJUVQJVcDSsVSXwsctXnxV8ReXQoCURajVTPggIt3U4q0tsc8F8fGydC9Fx8PWndiMoigRX1zFUZn39IUkqqHwDZKEqz6W0X3DgRerlIWpJNOcqM4FKpUJ2ahF+XHhIOXZl7JUYENsfklYLk18ofCVfHM4+An+1P4I0QS7fbaY32jxEx4+qsTLrBfj4UOFIS7XQSq+oOIgdF/btMOHrF/bKBSAM5WM/xNIPQikzz9oPlGUie7dtVdmXz/1JPanwDkhPKcS2pH7QV5rw2VN/UAGS2WK3shoA4OMDi1+E7bsmEIl5axyCnKkejV++yHVOLP8QZVuAxIPPwqg30/wilQqr/i+J7B//FtDvDmhNUdgiyfOa7v6KzslbA5PBgkx9f2z8ugCWNoNwNNkPp/blIft0qeNeOzUovO5HLF1kW/ll1JtxZGsmACD7DHm4ytvdQl4ZmepKI/LOlwN+wdiePxVQqbA0fw2sVgmrNOthNtlWAn6x7z6knokgz8q1NOFyWcIOAIAF/tiy/Djw791Aq27ISSvD+WS5wg9tC0TFoXRmjpPNF0+VoLLzXdCZ7Vbf+PjQCjFNAA4FvkDPP5gqXOnhLTR8qNbInodASEa9U7wAsM34MrZ/ex6GQTNRPuJ/sFqs+P61A6iQYnBUd4tD2FJLR1RVSpDm58EY2N7mnfANoArV1x8/ViQqedEqARcqewK+AcgsbouLWT6oNofgTH6cbbWWJgAri98VNwWo/WEoyoPB7I+jGXH4ZVdP6Msr8e3+SUBUV+zU0sRXk1UexpXv77fMCTh1xIAzOZ2w/VBveZiiCAhqhSqrnVfFxweSyQBoAlCNSOjKdPIcKzPdR3kmENwGVomq008LvgJ8/ZGY+RXyckD7FZWm49w5PyT+/pA83JIH+Ifhl9LnbNfRBGFn3p3Iy7YiNbsrzmWGQmo7EOX55JGQ5BVQosyc04+ArlpDDYvKB3opFMeSqdH+8MwiIDASW8qfonwkPM9yo63NykHmBTUQEEHx+gXDYgEQEIbz+mGOD9xUTQ1WzhGgqhjVlhAcOdcNCO8ASRMMBEbgw/wf7e5DFmn+IbRXUlEaEN0T1gKaR7gs4xOH6Jfmr0FBtoHiMuloyKbkPAy+rfBd2jwgKApmKQDwUeO8gTpDBabusKj8sfTkWzjwhwXZ+SHYe6IHEBCOLG03h47AmeorIUkSdhTdjzPHrTh0vh+OHQHKKoKw7cz1QHBrst9uWHhZ/o/ysJEW8AtB6vk2OJKkQWl1JD7alwAER2NL2VxA7YvPCr60u/cAfJ/2OM4kV8J6dBW0+9bBUl2Jz4/MAvyCcar6WsDHB3orze08qbsWJqs/9uePw5lUCReK2mPdnqFASAwO5V8F+Por3tZPC76Evsoke90CUFjRCtpSE5UpYyWkSPIQQ6VS8shZ/UiYLGoSnSoJZWlnoM0vhVYXiDVp04DgaCzLs3t2ds9Qa22P9DQzlYmCUzCXXMT+E52B8A74peJVQKVCShWV9yJjR1jVgciLm4Oz54NgCoxFhW8XKlNdRsHsF6mU2aX5q2ERVaV/iLwvnuRsgxdgQeRFrCrAqjc4HNv9DQ1PZZyiybSqzDCcW6fDcwe/RmTJSQDAjANvI0gThGDfYFSanJdEJn9o8678+WsZACAghCbDpx0pp/ktAJY+SvOKSvNo+OTnsG3I6fcGCgxdbJFFdIS0+SWs3dBGOVRdYZInF0eh4HwRLha2QnE22WG2SDS5de5JpB3MR0WJHmcO5EFbXI3KUj0+nL0DOWfLkDjzNwebE2f+BovFikJzd4fj+ioTCjNp0vGX8/9UjpcXVuOr5/egJMdu6Gf4v4Ae10NXYcTFM2VO6XLmQB5+KaXloaKSEXaLSsSoN2P53F2w2AmWjZ9fUP7f/tVJFGVVYs+qs7BYrFi76Ahy0krxzYv7cHjLBexZdRYGnQmZJ0qw6v+ScPqUBqd0Y5Xz886VIe+8Fh89vhOZqcVI2W6bNK3TGrF01u9OdmemlmDNu8k4tTcXa945jAPr02ki8w0LAQDfvbJfSUPB+vdT8OX+Kfj8uQM4tuMifv2Q8pUQcvvT42HUW5B1sgRGvRlLH/sTiTN/Q07nx5HbKQE55gFYeuJ/DvF+98o+AMDpkkE4tS8Pp8Nn45sf2uPE7hwUX6yEpHacGCnStjRPh29eS8Ync3bBog5AVlEroN1AmB/eAQAouFABXTl1DKwWKzYUP4fKCgn7yyfhQPpgrN3YDiaLHw1HukLti+UF32LdCgMq/PsAAE4UD0WZJRbwD8Vx3XgAwMcF3wMAjutuQNpRHbKNA/DHLj+cKr0cWYWtIQVGoartNQ4T+xPz1iDjWBGW5q/GicMGfJb6PD7/OADFETfgy5QEaP37UOPj44Nl+bTCzyCFwiqL4x3rylF6/xF89vNQHDgZR5FGdsH60I2ASoUMAw2hlvWcCb1ehWJzHE6n+kBriITVqsbhc93xTdb/UFYdgaX5jp2HTWXPoiCrEokZX+DA/gAc1zyCXWkjoQuUy5DdsvIPz7yLihI9EvPWwOoTgM26l7B+bQB0HW/BV0dn2SL1D8OvZfMBAPpr3oGh2oztbdahEjEon5aCU8brkVXcDntKJqGs3BdLz32oeJOM1WYk5q2BweiDC9duByK7IHfEp9hTeBvOVI3AsvyflO0GqsoM2BVru5+zhwqwtfDfOJvVChj5GKQOw1Cko7A1Xz9kNpHXvpCmU+LQ4TD8ljIQJosGiOiMdcXPkydLXhm5tXweMlNLkKq7FttWFaMqagTMUX1Qqqa8oizWAOxWw/kAPj443SMR5zNDkWK5D3uSO8IaTZ7ksiIT0vSOS/EPRr0LSR2Ecksstm0LQcktv+CHiy+iLPpGVFsjHMJ+WvAVctLKAACZaZT3KwzBSDeOQGlVKBASg/2VNI3g0/K1AACTFATJKuHigEUwqSOQVjYQJ8+EAdE9kbhvLsoM0Q7XsFolbC2fi6oyA6qsrbBplR5HWy/E4bSuMIX1QK6+Byw+tqGqPf0PKP9XVmmwRvc+Nn+bB32H63D4Ql+Yet6JQ1WTodf7IEPbCwDwRwUtLFlZvBhHdpVj1fa+2PxtDo6UXo+v1vanOapyp9TROGBv//3QG32RNeQz7DsR5xzGC7Ag8iKSCrDqHOdylJVTRfrL69Qw5pwtAwAMLkxDRPl5JVywJhhh/mGOS+xl9IUS9mQ7DleVF9Awmr7K5BRe/HbxTAU27e6CnELbyrSMU9Uwy8v6C01dbCf1vwsIbo1jW9KgM/ij6CI1fukpRbSsO4xWZf34v0PY+lkqvn5+LzLkyd9r3j5M92917BWcP1Ko/F9RosfO705j47Kj+OEN8tJVlhpQkkvptePb06go1mPtu4eVc1J+y8Lnz/yBimI9qrVUyexbew7GahqWsBcfaQdpCDE/XUvf5SHFAxvSYdCZoaswwmKxQrJKqCw1yPdWiFN7chVvhsVI6bJxGYmNwgsVOLI1E79+dAwWM/2WlebowTPobEMk699PwR8/pinfzUbH4VmdfA8GnRk5aWXY/iUJ4uLsSlglYPs3p+EJu74/Q14lAHtWnbV5YyxWrHsvGcd3ZSthD2zKx+r3TuHgJjomGh9JklCap3MQoLtXku3Hdlyk9JC7fSKPic/dP6RBW0h5LMd/HNaduAPpx4rx0TxbBWyS710Io/27zSjIqkbuOa1tPpLa18mjCJDHDgAKcq3IyySvltGXGlF9pWN+11easFM7E1u+zlCO5abTPWVdAL5I+pfy7ARiSHrHSpsw/v6dNFRqragodu1FyzpJnsPiXD2+ezsD1ZVmlBTL1a1Khcw0x47Qt7tuwJbPUgEAZ4/Z0vj8cbmjIQt0scWG4KJ8nYMbLyBbR0Ko8CLluTNynhZUV1DaHt1bjgL5VUCfLziJSq1dObR7ddCn33XFxqVHcSpZD73eB98sPI3t36YjM5M6V/npjsPaIt3yzmuxYUkK9FUmrP6iEkf+qMSuteT1tajJE6stqsYxW9HFueRCpGW2wuafLaiOGoKl31yG7HRKW2uNeqLwAtV5v35WY7UjgKIcW3n7eO8jyv8VRbZpBBlnTEjZW41jByisEO6SVULilnuUcBdPlWDbbxH4dflplBWJhSDtyP5iW3zCxgOpXfDtf23e/X37g2EwqHAmmeKvWfeaDJTnd/xA+ao4R4/TBymvmSw2j7RBb7v/rFMl+HlzJxQW0nMqL1djz0HyhpntRl8BwKgzwyqpkXGM6t0qrQXHTobjRGoQ0k9R/kv9w+ZdPrItW6mTV797FJVlRljMVpR3fxh7T/WDJN970qYMx+vI5W/fhizF0XM+ha5pMVmps2umH2yeYAmHt+Xgm5f2Yt37KUj69QIuBVgQeRGrCrBWOgoiq1WukII7AACCwmxjq62LkpX/NT4aRPhHoMxQ5jJuk9VZ+LgMZ3BshKsrTDi+09ZA/rL0KKyhpN6rJ/2iHDeMX4rME0UwSNQLvXi6VD7fiMpSAyxyxS2ECQD8+dNZh2uJSr4snyqmLctPKL999dweHN+VDX2VYylf/34yAKAgQ6vYK/jjhzTotEZFNElWCUmbLiAzlYYahJcMAHTljg2SKJDC3lX/l4QPE3YoIgQgwQU4v0pJiJxzsqDLPl2m2GCodrT/wIZ0uENUTiLtRByu2P/zOZza42JosRby5AZM2G+WBV1Jtu062bJnTWzlIBp20Sgd33nRKV4hGK2yIMqS07sgo8LhOACsS6RG/8wB6t4LwXLmADXeFfICAVf3Jq4jEOn0yZxdTmEPb6LnufuHMw7HS3JdbDIns+VTyn+iYReV99kawsIelTwUXVUjP23/6qSr4BRfUoHDd3EfIt3sKZAb/8Ob6X5O7cuTj2vl77Z0Es9MdDxyz5Y7xO8fRENCNcshYBMFQoSLz7zzFMc6udwBwOn9ZMNuOzFvb6sQ9p/Osw2zG+RyXFEkC0hZeAkxLgQzAHz29B8AoAzzi/hEWTLWqLPsEaIPAEx6i9LAC9tc3fP3/yVhLhp2cfznxbZ7tsoNunh2Qrgr96ejfCw6lwBw4TiJG/HsSuXyLDpjmz4+5vY+zh1xzCOiU7d/HdUfolMJAEe2kNdXJ9+7yLcivextEuxfd97hXgVCtNkL/Z/+RyJPlKnkbVQPivTa/YNjPgCAYrmDfPR3qi/y5XxULNc1R+W61FCjfvc2LIjc0Bz7EFlVgLXKfaMHOHoNgnR5yv/p5ekI9w9XBFGFv+PE6ip3W7rXoDjHfQMhyL16BQBg/Ye2xqUkpwq/59l6U6IS1lea8OX8P2HSO1da9vNmAJuH6NuX97m9tqhEREVXs1F0hRAWWaeogbkof4oGAgAqyxzjERWDaFSq5N9F5Q+Q0AGAC3KPSwzluSJFrjRERSmG4Iqy3Kd3klzhVMn3WFXm/l4Pb6ZKUFRKp/ZSw1jbm3guyJ4OSRYoXz1HXsTMVBcr8mQ2yUNtwqZjdmJZIER1aZ5Ovo8MAEB5kXNFLBAN7fevUWMkPE9rFx1xe47wjog8IIR0bQihJTj4S4bbsKJyFoLo1F569vZevZqIsCdrCDj7jkBNNn9yHABQWaqvM6xANKJFcp77Q26EXNkmGk+RTrtWULld/36K2/iFFyE9hUT9/vXUYAox68pGkV7CiygaU19/tVNYgfAq5Z2jz5rpZo8ox6ITsf0LEtPuvHIAeYQBm9AW8dcUoa4Q5TvThTAVCE+4EO5COIqGvzby5U6cGCoTHRJXCPvFs0ySRZW9cKzJ3jV071tlYS/Kh70HuCYndlMaK/WU2X39YV8XArb6pLaOWeqfFL+PL0mN3SspL+5be97tOd6EBZEbmmVStU/dgshQolU2pVPZvZLjitgrEO4XjsSDywAAu+IcJ8a5mlsksB86qiypW2CUFTsX3LSkAlTqnTfTEg1ObY25QOyf5AlbP6fKsF33urd1EL03UXmJQm+Pu0Ks86BxEj0kXz/3Fb9ADMmdTaIGrfNlrWoLDsAmFrbJ91wbYm6Q8GTlnit3G/bQxgwAjl4FwNHLVhP/YPIqpNXiJRGUFYghCHkI6qT7hkXku5BImr9x7nDdDZbwUoi5ZJs/OVFLaEeEmKoqr/v5iiEZbS2CTiAEqWikRWPnCcIjemC9e69hTYQgre05CxEoGjkhLMpraUxFAyU6Cqkuyoxbm3aQTSK/bvjAvfDa9gXl0z2ryUslPL2uEKJAdC7S5WEY+/qrJsITdF4WdkKA1fSEu+LXj6gs7Vnl7EETiI6feGanZY/doVqEtnKuLDprEygC4Zn9+b1kAI7TCdwhvDLCg7ZhifvnUJOU30jQ7Vzhfhher3OsJ2p2Kl0hOoLiOdSnfHgDFkReRKMKtu3A6wZjUSnU8vCXyu74VR2ugkatwVTLEwCANz7LdDivNkH0x49pSmXpSUP351rnCsjeNe2K2npZgpq999oQvV1jtefbIJw77L4S8fyVxu4pza/bCyd62MJ9Liqt2qitl1aTmh4ne1e6O3Z+59ncI8Amljzp0e3/2TFMbb1ZgRCMnlDT9V9ay5BiTX77+pTH5xzeQr1xISBrY9NH5O0RomPNO3WnvyDXAy/JX8HeI+opwtNYHzzp/DSEmh5lgSeewd/l5536Z9OkrUAIO08QHihPEEJRfLry/EbEuN7duSyv7vSpiRBcGbV1UmuYcPLPukWz8KRdqh6hmrAg8iIh6pg6w+i1VfCRdyQOvsq2qkH0TP2TaK6Rn5EKTqCOetqFukJc9uVl9lGhTUGS8r8oXxeOuR8uqa50L3rOHqq9R3/wF897vZ4ghiZqjnnXRm29z8agPg1ympxengz5/VbL/JOauJokXxeNIQb/boievCfUp+H6p+GJx7gmtXlsmIZRs1y7mgfkThjW5gl0h72obdU9rJaQNkobILzc0X1Im7oDNQMsiC4x2ubtQ0dfct1KkoRSaxRMfqHomHwUkXffrYQzGSwO4+IqWb4HVdOxb05+o/wWMpBWIbTPsU1yFNRcUWNPbR6WunA1h6gmJR7MXxKYPXB5e4qpkfa8EPN4GIZxj09r/1p/z/BteNk+5HdpTcr9u2IvwIrP1t6RVKlq/blBDBzfufEjbQAsiC4xwsvPIS2bxnNpuIVyX0iABn5duyrhzCarMjnTniCdbRgqUtcWAFCZQuPRwVU297FYHSM40OFnp7jqM7TiDmst4sMTb4lPB6pMPZnb4ykn2+50eVznY4S5k2s3NMMIjD6NlxcbQqXKuUydijjjIuSlgbWw9nLexVz3XDx3DDHW62ULbslX1z51wZ7TGs8EXKsBUXUH+hvSFB7mV4+/1viRNgAWRG5ojlVmhKMwqQ5sjewA8uhY5NUb0UX0Sg/f1q2VcEar6wIshs4AYHLKfMff7OYV/fD6AYffHtl4ESWqv+aF8ddudjpWFOR6DH9fp3UexWm92PjzEwbkjXF5PMjqB99M127grDDP5wo0Bhpj/ed/eEKFX2mTxNuS8LPW/zUDecE0hFyicb8ysS4kK3lsQyTnLnrvsp4Njre5qfL1fKg5JYb2nSoN8HzIsyFciEz2OGxpwF6PwhUfLUFamONeSXpV0wwvFgTUvcqtJlnhNDRfEOj5BPqmYlfONm+bAIAFkVuaY5UZ4Si3MzuNQ7vBVwAAfj9Jw1/+BmrE1KG2DRPP5LquWCPKzyFQV4Bj09zvcQEA2iLHpasRZWkYv/91t+GFKKuNrtnOk6Tb6GJdhu2fe2Wd8TU3HbN+c/+b1nEHbd9aJq03BmZNSN2BGkCoMbLuQM2MvYj/p9K2ivby6lBWY98x4x5XwV0SU1T/zetMqrJ6n9MQ/Nzsh+YKf5PnYv+uP2gop/cFz4en1cb6N/AP7PZ8Mvwdp0mQti50v0WEoIe2m8P3DoWed0hUehJe1aq6vX/xafX3EI48Tqvd+mY1fGpEYxGo09QdqBlgQXQJ4htMPdCzx0gQlfUe5hSmYJ/rSc1+xnJUB7VRNhH0FLXVhGCd+1VfnTK31iu+uggxNY87uX226+ExV0SW1T1EGFJB6Rqgr7tia1XkKErDyuteadEul5aUS6r6DyP4erj3VH3x19e9YlDQNs/9nlLusKo8r4ZaFdcu9O2x37fLUzx5Rn8Fo1+ow/d+5513W3aHn4td6esivMpzD6tYkBFSWX9vg9E/os4wfgYSQh3zMjyOtzSSXpWhqsc4TafsuoVKTcIqPc8r4l796yECBSqr53OeBqeSWG5fXPc5Uj3KkGKLnKQaF+/DbFTqWEkNAKHp1zStDR7CgsjbqHwgWWxDVWpzNUxBlFMLs2kJZKTBuXdUaLefQ5+TX8Liq0GgrkCpOP5wsXvoX8HXUvfKhYb09CNLTzXEnDoRjbja4nmDoLLWPWQo5mEF6+pezlszjJ8HXiWjn+M+SxFl7nt+ouESDVmkHFZTy3V6naZNNgOqPd8Dqmv6egBAbM4fdYYNqax7j5Wa9Di7qs4wKnnriY4Xnd/15g5P7K1JoJwu7XL+rCOkM56kqVV+q3fnC78CALShdU8m7XBxBwCgfbbzjtzuEPmmPmnQK43e9WbyDfb4nPoIYB/5GQZXkQen+9nVdZ4jwnrijREEVlPHrj4dBPFKEY/C+tC8pZgC2sG5S8bGOs8R9vtI9ZiWIM9eDi/3fMWumEOq8UA8W+S82BBhJ4jJr3sExV8e/q9tlCFxg/MrebwBCyIvo46IgKVc3mK/rAwW30AEBpH7sCotAwDgn+/s7THKO9R2badDu/wDCLnnHlxxYIHD5o321NYzEUNyrgitIDe98FjU9HrYE1Fe/3k2sfVoeKILkz0OawggD1RUSd2CS20msacx191T0gfSxooinSNKa9nIzJ9saFV8XL6O+x12BaIi85V7baEV7j19IqwQQhY1TUAPqnLf2/WTK6dOWZ6P2QsR6GuuWxSHa6ny9qSREEQXOy8OcEYl20L3FlFGgl9VSwOjtjguXfbE09Wq5Lhsk+eeqPiktwAAA45/VGdYq49Gvg7N3wjU1y2ifKw0idtXFve15TlBmwJqgEVjF1VS9yafajPFb5FfdirKfm2Eyx41TwRLpPzMAmSbrD51e0FFmVRbPZ/ILjqFbfMP1BHS/hzKR/1PLK87rPzpZ5D3CPLAOxNYTcNSakvddYByHbmD1kYWXj4edO5i5HuWPEjbyhB6n11UKeVFTwS3qFt6pv0AAAjTZtR5jugoR8md3/p0xpobFkRexje6FcxFlEEuPvkkAGBgn44AgBitvCOywbmhVsm6x+936mXFPPUUAEDTxnkPiTE7H8PVu590a0NtPbXOF7YAsBX6gcc/VH6rWWGKHmCsvLzfvpfdMWu7Q1ghwgLkzyv2vuhw3BVxcq+6ffZul9e3p1Mm2R2gd9xnydWQiPCoaEwkMPqc/NJtvCKsn5E+u6ZvcBtWeIhi5WGw0Ep6nr3OrHB7TpcLmwAAIVXk/RFiJ0zr3EsUAihOFh+dL9Ck9rCKDLfx+8uVk69cMYtzasNHIjHtU0ujJCr8AFl0hNYy7CIEaKhcmfp48N49Ea/obYqeaaDO/fwHkYbDDtIKlja1CGqRlwKrKb8IoSJEbNu8/U7nBAmhKKelCFubcBcNrrjn0Ar3c2NEmgohKs5pLfe0aysrEeUkPoSHtI0HgkWIAsULWul+Lo4YihaNqSf5SDSe4eU0TCg2nK3Nsyw6YPYrZN3RJYPqB1FmhBj0RAiLDo6vB50iMXgXaKB4rT51T7IX9y7qi0hZEKtddDKEMBGiRmyp0k72xon6D7A9XyG0RP0h8pkYpnSF0oGSPcy1edM18jMSXkTRISkP7+r2HIEQdla5U93ORVm6VGBB5GXUUa1gKaZKWB1GwyW92kUAAEJUtARcV8uePiFVNEQRGECF0ueio0ehbe5e+EhW+EhWWAYPcRlHm0LnCYWDkxfTb0XJiD/8tsteUPdzjm5O0XPqIBfoDjn02ev0t+ggV6AB1YXKEABgqygCDSUI1WZg5N4XAAC9T33tdD3RyLbNp4phaNL/AQCC7YZprto9D8MPvKpUHipQRXf5kUUAgD6naX8m+3kSsbk0Vl+zJ9O6gNJl1J7nAFCFKzwUAXKDKTwiV/75LNrl7nHovfvIXjkxDBOky0dE2RnFK9aq+Dj6nPrawe0shtV6n/4OgK3iiZYbhmt2JKBV8QkMOLYMMfJGm6ISj5Q9dB3senqxObsxYv8r6JFGr3YRjZ5wX7vyHLTL+ROtio8r6SoqtMhSamhE3gAo7QN1+eh/YjlCKjIhyW7+6CLbawOGJL2JK/98Vknz0X8+CwDolbYSADWM7bN3YtQeWhUpwvVL/UyJI6BG4y9EwcBjicp9Xr3rCXQ/txptc2kyarg2A4OTFyNEbkzjMqgx6n3KtkdXcFUOeqT9iE6Z5DEL1JMI8TdoMWrPcxi193m0KjqGPqe+Itv/eApRxSfgry9Vyo1If8lHDT9DGbqlr0NI5UVojFqM2fkYACD+8Nvod+JTRZjYGiGj8hza5B/ClX8+izE7n0Cfk18q6dwpaxsiS04q3hKRt0MqL8JfX4KBRxMVwSCEW5CuAANTlqBVyQn5+AFElp5Wyp4Q2CqrSSkbYg6hYqM89NTh4g6M2L8AY3Y+oaSbKPuBstgIkMVBSOVFhFRexGXHP4bKakHX82sx+o+nEVl6SukgiIZXeDi7n/1JiXf0H09h7I7ZGH7gVQCAn9xJsapomCpQVwA/Qzmu3jUHww7SIpDIkpPofGGz0uEQaRpWcQE+VhNG7aPOlijH9oghRfE8RJm97NhHgGTFmJ1PIKC6CD3SflTEWUyN+rLbeffDPWJoVKSTKN+t5HIXJIveUDtPS7fzawHYhKMQvkHVhbhq9zxFlAC2jmZneY6nCiQeo+R6qEvmZvQ6vUIRrIOS38OAo0sdvEEaUwW6n/1J8RpfsfdF9DvxKXqe+R59Tn4JH4sRo/fMh8pqVgS8EOvtcveibd4+DD/wX6d7F3mttVwXhGvTobYY0EVOkzE7n0CromPofq7uodPmonE2cWAajG90KxgzqSCb8/OBCECtoUbFEk2TqTfGXoZb3ZwfVqOHGTDtYcDOcSJECQAYn3oBsQu+R04s7Xjd//gnON7/kRoL/8n9HVmWhioDuWrDtekwamyTQfuc/BK57UYisiwN/vpSdE1fp/T2ANvwXGjlRVy1e67i6r9mRwKqgmLgZ6xEcFUO8mOGQgUJ1+xIAAAMPUxDD1fvmgO11QSL2h+6oBj4WM3I6nitEn+4NgMxeTZ3eJ/T3yC4KhdWHz/4WvTw1elhVfmgdeERBOpLEFyZbdcDrMYV+16ExqTD+biboQ9ohdjcPTjf9TaoZbv9jVoEVBfistRPYTrzPTTmKnTJ2Ijo4mPwM1bA7BuAyLIz6JH2I1SQoJIs8DNVoodcsZdG9kJlcCw6ZO/AuW53ILgqV7nHaLmB6nH2J7QpOAx/Yzna5e1DRFkaTve6D74WPXqe+R5B1YUYs/Nx+EgWDDi6FH5GrVIZDTy2FAD1VLPbXwW11YSRe59X0iNQ9oqN/uMpaOQeaFD2DqT1mASNPK9CPJPI8rMO4agvKr9l3DcAB4Y8j6DqQozaM1/xLkWWpSG4Kgc9z6xERPk5ABJUAIYlvUkGSFaoAIzc+zwsPn4IljcL7Zq+HhYfP2UehWi4AKCX7IIfsf8VaEyVONttIvwM5eiUuQ0hlVkI0Jcocx5EWor0Ed8BoFPWdlzoeL3i5RPDNFftngdfiwFjdyRABSBcex77h72EYQdfV/J/mx1HHPKjQHhFKQ49ep/5Dga/CIRU5aBD9i74mSrhYzFCUvlg5L6X4CNZMOzQQlhVPvCRrIgsOYlwbTrCQSIkLn09fC16dLj4O/yM5eh1egViCg4qzwQA2uUfgAQVRuxfAB/JisFHlwCgnrraYsCwg68jsLpIGUqKKDsLbWgnFEUPQIeLv8NHsqCV7L3x15fARzJjcMr7FHfuHgTrcnG83wx0vPg7IsrPYfiBV6G2GtHt3BrE5B9CgL4EGlMlep/6BrF5tmXmA44tw9HLHoXaasIV+14CACVNhx5aiOCqPMWjOHbX48p5g1M+gFkdAF+TDirJqqRxYHURwioyEKgvgUkTrOTDwOpCxB9+GxpzNcLKz8NHsuCq3fPgYzXCRy7LIVU5GLtjNiSVCj6SFRJUaJ+9E2qrEVfsewn+hnKM2TWHrp+8GBpTBbqe/xn5MUMRUnkRrYqPo1XJKfgbyqC2GsmTJA+3tS4+imtkMTs06U2oLXqURXSX0zpNEdBjd8yGChIGpbyPksg+iM3dg6wO18DPWIaq4HYI0hWg1+lvEVKZhat2zwMA2bZSGP1C0ar4BKxqP0gqH1QFtUN5eBzUFiOGHlqo5Eu11Yxu59aiw8XfbcN1Ri0GpixBaFU2MrrcpHgpAWD4QduePh3sFpV0S7dtdRJdcgLVAa2wd8SrUAHoJM/NU55Loc2r1k4ehhuza45D+RCfIp+N3Ps8AgxlSrw9zv6EHmd/hArUSVNbjbh691yHdOuf+qkiQi8FVFJtr8duwSQmJiIxMREWiwVnzpxBeXk5wsI829LcU9557L94/D8Po2LbNkRNm4a0MWOxpfeLeGTJGHwye4cSbqVfAXa9T2+WT5zpuDRcZMo+p07iZO8+iFz0HlatI537p28ZXtxmayh9f9kO883X4rcx1Ku+avc87Br9jkMD8NuYRKXid0d1QCtUBbdDdPFx2LaOJKhplGD2DVQqt4YigYbqdEExkOCD0CrnCbvpnW9EbO5eZSjFFRYfDXysJifhZ/HRAJCgtpqV+7Cq1PWb+Ai6Z9Vf3P3arA5Aepfx6HHOfW/TE4yaUPiZKqD3j3TyquS1iUdbu9e3/DYm0anxrwvRyNd87vZ4kh56/whoTDqURvb0cA5R43Om+yT0PPtj3QE9oDiyDyLKz9VrrktDqC3dAUAX2BqSyqfWFaOexuWOnLZXOIikuigICkUbXcP3X2pMJNA8LrWLYdriyD4Iq8iApFK7XABREtETfqYKxeNYG1aVLySVz1/OD4XRAxRvqD32z87gFwZ/oxalET2UDgAAaEM6Iqyy9tXGFjdp8VdJ7f0A+speVU8IGD4McV+6n6rQULRaLcLDwz1uv3nIzA3NsQ+RutwEdatWMBdRj96cR8Mxfr6Oj2X8sA61xlPib/PetL7mKuV/ezEEAHHtHd+07mvRKy7jFVfRNcmjU/vEv0B9sdKI2VeoJ4dcRx4T4C+LIRG3j2RFSFWuSzEEAHEXNtUqhgAaknFV8autJsUrJH6vSwxlh0S7sPOv9yl8Lfq/LIYA2xBDTTEEwEEMAY5zETxF9M5rpmepv23fJE/SI0DulUcXH0dRhy71tqMxaCwxBFAvuanFEFC3gAmqLvRIDHkSlzvqI4YANLsY0g7q7/Y3FeBSABy9shdalZ6ExlztdjVoVNkZhFTlYueguufN+EjmRskPrsQQ4Pjs7D239tQlhgDXadEY1EcMAUDHZUubxI76woLIy/gEBEAy1r564OYBts0NxZi0PVNuJNe1ztcfPmr3qwvU/rbJf3HyUure8gTf3K5hyI2Eg9u+3tx+V8PP9SKZ4fSKk7IbbqszbFYf2rk8v+fAel+nNPTS2srffi5CbejvvK/OMCdaxdX7+nmtSOiH9/B8l+WyWU95HFYf4PnycYGlV996nyO42MXzc8WE2f2Drq0jJJDXnjb3K3r4Mc/jl+dyZU/z3ANoDQj0OKxyTqvWdQdqBHSXDfY4bPD4SR6HrdTQPV8xcqLH50RJtOjF710axjR5sKJLoPXzPE/mTHrQ47DnB9V/o9u8rv3qfU5DMMW43pzXHt+g+pfVpoAF0d8Ae49Rt/QNTssvv3tkBADguYffA2RBFONiyalKriSDK7OdlnO3DoiutV+fPDSmTjt7dmjaXZDPdK2/CPGE1vI2Bx0i6m4QpAi6xyCt5zvOnr+BXsobWVH3apfyKY8AAMyauleuJMXQpnWeLF8WhM6g+A1RnjdknQbX3dCb5RUk1dfc6HG8bYtp8rTkZrK/KwJi2wEAzka0rzPsyasmeBxvudxQqW64CQBg6XtZneeYayw08L/9Do+v5/v8K/Q56PI6wwYH0Woga5t2HsdfPUHunNQjbxjfpblSJX3rtkmgfv0tj8MaWtEbzU2Rzl5Wd0h3TwEA+PTsAwAo80BQBPl5fs8F0bL3va97r1JNOlrIgxQeQvVFdT2Et+nmujtdglbREXTOwPg6wwaH0AKcyo7kvaryr/udjFlxdM+6AXXHLzD2HQAA8J80GQBQHFD3MJThqrpF/6UCC6JLADGNK/L++5Vj0Tqb+zOqjc2z4BMcrEwQFqs+RnanCmbz3Kuh8vFBSEUW+tktHbf41r0t+qvTv8PA9z91+7u6b929+B5t6v+6CcNt1JsLvvqqOkICHS/rBQAoD47wOH7j7XfXGSbqTuodtrrN3dR1G/EFtNJKHz+izrDlt1GlEXAFvYrFFFR3+rSPpjBVk6cBAPwGu+8Zh/Wgyi/gBs9FiO8Y2hE2+t7JHp8TNmokAED3iHsPxeAIEtvVncimoo7d3YatSYfBnvdU26lpSDPOg53CbxjeAwAQOPneOsP6yt7TMKO8md9ddZ8jdtj2feRRAECkyfNh4si2NHzdMSa8jpBAYH8SZ1060jlmD/JR1BW0ICMy1HOvT4iGhESkb91Dnhr5RdNtO5DIqYqte4NJa4dOAAD9mOsBAMYA9422JNdZ0VF0r2EBNC9SH9HK7Tm+seSJCI/0vB5Sx5FnMyiczrGGRdR5jp8vpZOvhmySRo2p8xzTRJoDetk9t3tsW4gs7Pzi6+4wtNNRZyumC3UUfMPqzlfQUBp3nkQ2FV55fZ2nBMl1md+w4QCAVvq6N+M1dqa8UllL/XGpwILoEsDHPwDW6mqYsm3zZDq0sc1libIr4CFXX6Us9faRzDgR1cUpvmFJ/3P43u9YCnqnnrB9P/mF0yaKvqGhiB460imu5LHdsXugP/bm01LxsJvGu70PTTvHHqwUXEvPSfZk+YbR/KcO777rNqiv7BXo/+hDAIDIoe57sBFTaHin/XvvAQC63XydextkWvUjoeXXsfa5WgAQ4U9FRi3701rN/LfbsHERtPvtFaOoJ1YYX7dbO7wLuePbDSUhFD7efXoP60JCufMLtFxd3UpuZD92v0FgWCwND4Z2pusEuhBTAX3JI9TmWVoe7xtD3sEuke4b1whZSIT3obRsHx3qNqzApws1RqHt6vY+Rj82m+zvQs9IeHJqQx1I9ra+uW7BGBFJ9kYOod5y6+i6e75+8vyz1lfQMGrrbp3qPCf4emp0IvpTGsd3b1PnOTExEQCAtnF076Hj676fVvLrf/qMoB592M03u4//Oco/nWLonls/MKXO+KNnzAAAhETSOR3kRrU2DLL3sHMPSqeg69w3wIF9yPsZOmYMAECSG++2Be73bfLvQqLMTxYqqgl1e+xCI0k4hITT8w+upX4TBAdR2qrD6dweI9x7riW5nusxlTpm/oH+dcYf8xJtE9BuMNUbsXKHQaplOoT1MK0Ibvs8bS1QflPdQ4B9zSSiIq+nOrKLT93TJdoNp7o3On4QAMAS4r6cizLboRW1X/2uJpGujrz03qcoYEF0CaDp1BHGrCxoOndRjnXoRI3p6D+egdrHNoUu9s03EWeyrcqpuOLqWuOubtUGKpUKKh961KZH70VIVQ58LQZo7psKAOix1/0LJt8YkYHWr72M6TOXAQDaL1qk/PbuggEOYX3kBijmeZrMHfjcy8pvYQ8/DADoupE2EWz3Oi0N7TmVPBU+QdRbDLnW5l6NmkZeku7baa8Nvy5d6HjfXm7tbfv881D5+SF41Ciow8MRfKWzCBEVWcg15C0JuYq8U76taRhJeOoiJt2leK6EKIh9m4YIulwhVwyPPurWlqAR1IvS+FFlftWH79D1xo51CBdy7bXwm0mVR6h8/x1GUSMbMeEWJVzgoEHo/M3X6HWU9vUIHjnS4X567NxB1x1me/edf8+e8AkJQc99NBHWP4jyVfBo2nqh9RTyhAQNsfVCO39De0BFTXsAAJS8E3oN2d3qkRlKWJX8zKOupvh6Xk5DG63ucfRAtXnmGaWiF+d3WULLwP06UK82eNQoW5pcTfnaR36hcesEmgsTJHvM4u6hCj9yil3jrXKcJhx+C4mAwH7UoLR5ah7cETP/PwBsaRkmizSRxq4QeTUsXs4Lw0hMxa12fhVJq0doqDKoPzVyGjk/+Xej+UFxa2gvltbz5irn+ModDJH+/rJXJrRrFwBAhJzGvu3aocvK76EKCIB/bxISAb1kkS97QMLktOiwNNHJtsipVA+oAihvRMkiRBvbxSls1HQqxxETSWyI9Ap3Uc4EIm9FtKPy1eoOGjZqM2a0QzhNhw6KqNfIeSJw0CD67EP5KmAA1Tm6x59Vzuu2lTZhFfVF0HAqd12fmAXAMU0FAQMpnp695PlAMSRMOz1H+SCgn7PXsv27VPd1mEb1Q5D8HNQB7l/7ET59hoP94rmLsmWPqGsC5TwSOJCEVvAI8kZH3XMPgoYPR8wLLyjniA5Zlx9pgYCmI93PgK50P5H3uZ//16EtdajUEREAAP84up+Iu0m8qVvbhjZVcv0swmpCqLPbdsbDbuOPnkXp36oViWZRhwpBJASTplPdHYlmQ2Jqpby8XAIglZeXN3rc7059UZIkSarcu0/Sbtsm5bz+P2nJv7dLkiRJxrw86fP7v5Zefu0bp/POjJ8gLfn3dim1V2/p7LbdTr+n9uqt/JVWGRx+yyjPUH67ePq8lNqrt9O55++aJBV9/rmU2qu3NPzb4dJbB96SLpRfkE5dHi9JkiRlPfa4dHLgQKn/F/2l1F69pTf2vq7EkzV7tmSprpZSe/WWdCkpkiE9XTJrtVLF7j+kszfcKFmqqqRTw4ZLkiRJ5ooK5ZqSJEmWykrJajI52CO+nx51pRLWXFEhFX32uWTMyZGM2dmSLiVFKlq+XMp48EE6x2p1iKNw2YeS1WqVTIWFktVikSyVlU73XZCYqMRvqa6WMqY+IFmqq5XfK3bulHTHj0uSJEnnptwvmcvKlOtcfOppyZCRoVy7cu9eqXzzZjpvxw7JarVK+jNnlPhNBQVS6U+rJFNxsRK/2c4m8Xnm6jGS1WSSSr77Tqo+fVpyhQhbM91E+ivpaDZLhcuWSZIkSYasiw7nCiwGg2SuqCR7tFpJkiTlnpUw1dWS1WqVqg4elIo++USyGo2SRa+XrEajZMzLl6xWq1S0fLlkLi+Xqg4elAwXLjg8j9RevSVjTo7Tvab26i2Zioqk8l9/lSwGW561WiySubRUkiRJ0qelSZIkSSXfr5QkSZJKV61W8trJQYMlq8EgaX/7Tao6dEiqSjpM9yHfT2qv3pKppEQq37JFOj/xTslqNJIt2dmS7uhRh3vUbt0qmSsqpZxXXpHy335bMhUXS6aSErKlvFwq+e47up7VKhlzcx3uo+D9DyRLdbVkvHhRSr/nXint+nFS5d59ktVqlczl5ZLVZJIKliyRJEmSqk+edP0cdDrJUl0tXXzySensDTdK+rNnpZOXDVDC6s+dk0pXrZbT+lPJUlUlmYqLpZIVKyTdkSNS1cGDlHZyupf9/LND/GatVipbv0GqPn1aMpWUUJh16yVJkqS0a66VJEmSTo4bL519baFUfeqUVP77DqlgyRIp739v0nOQ87JFp5MkSZLO3XGHZNHrpdRevaWiz6jeuDh3nmTIyJBKf1pFYfV6qfLPP10+d6vJJGX/Z75UdeCAg43G/HwljLmiUjJkZkpWk0k6P+luqXzTZqn4q6+lrMefUO7VotdL2c8/73CvhqwsyWqxSMbcXOncLbdI2t9+k/IXL5YMmZlKntMdPSpZLRap+NtvKS3WrpUkSZJyXnhB0m7/TbrwyCOSdts2SZIk6cKMRxzs1m7bJpnLyqTKI8lS4arVUvGXX0kX586TLJWV0rkJt0qla9Yo95r/9tuUtv0vk6xWq5Taq7d07pYJkvb33yVLVRXdQ1WVZDWZpNIff5QkSZKMeflKWit5yGCQMqY+IGXcP1Wy6PXS2XE3OKRp2rXXSeaKCin/rbckS3W1UjdVnzghGXNzJYteL+UvelcyZGRIF596mtK7opLK9YEDUvWpU1LG1Aeksg0bJLNWK+nT0iSr2aw8S1G2cl5+WTKkp0tFn3xCz8Bkkszl5ZIuJUU6Nfhyh3jLf/1VkiRJ0h07TvW8nDcter3SDjQF9W2/WRDVQVMKonfunS5ZLFbJmJ8vFS5bJp1ZsEgRRLWR88or0sbrH3eqSAVC8JSt3+D0W25lrvT5hD7UYBpM0sY/HRvakhUrJHNZmfK9/xf9pf5f9JcKdYVOcfX/or903093SharRSrb4Hit0tVrJLNdmpkrKiRdcrJLe0XFWhuiABW8916dYT3BajQ2SjzeRlSyNXGXN+obprHRnz/f6HEasi5KhvR0z8JmZCgNXsWOHbWGrT51StKfO+d0XHfkiNJgCaxms1M4q9UqZT/zrFR9yrWYtQ/n8rjRKFktFodjFbt2e1Re/iq65GRFsEmSexvtEeLKarW6DG8uLZUq/vjD4/jckX7PvVLZhg3UuTEY6j5BpuY1PU1Hq8nkdG7JypVOz8YVFoNBEXY17TAVFzf4WVqt1n9MHdaU1Lf9bhEbM/r6+qK/7IYcMmQIli+v+wV+gvpu7FQfFt03HY99/Qk0ah/kL1yIC6crcTDgWiR8eE2t5+kOH8aF+2iooM+pk06/Z82ejcpt213+VlxdjDE/jMHh6zdDE1v3csjkgmRM/XUqDk45iABfR9fwZV/SZM9j0zx/ESbTPOhPn1aGTdwhmUxQaeqecM8wlxKFHyxB8KiRCLrc89VwTMukvu13i3h1R0REBJKTk71thhM+vu1hsUqQF3fA0q4j4MFqblfj2/Z0XLIE7nSuv/xCP0/EEAAMbD3Q4Tx7bu12K9adW+d0nPE+dYkhACyGmL8lreW5JwzT2LQIQXSpYo3QwKoIFxXydZ4tF1X50mPrsXuX+zA1JpgKXAmbWq+lUiHlgRSX8Q1vNxy9o3rXKz6GYRiGuRTx+iqzXbt2YcKECYiNjYVKpcLatWudwixduhRxcXEICAhAfHw8du+u3ysHtFot4uPjceWVV2Lnzp11n9BMqACYrTZPTq4+wrPz1GrEvPSisiqqPmjUGuy/b3+9zvFx8aZ7gDxEU/tOrbcNDMMwDHOp4XUPUVVVFQYOHIiHHnoId955p9PvK1euxJw5c7B06VKMGjUKH330EcaPH4/U1FR0kpfrxcfHw2Bw3kNhy5YtiI2NRUZGBmJjY3H8+HHcfPPNOHbsWKPPB2ooVjtBZIXn3puoWpZT1kWQpu5dTBmGYRimJeF1QTR+/HiMr2XzuUWLFmH69OmYIW8EtnjxYmzevBnLli3DwoULAQBJSUluzweAWHm+TP/+/dG3b1+cOXMGQ4a43v3TYDA4iCuttu6dOBuKSqWCxU4QqaUKWFQRTXY9hmEYhmFc4/Uhs9owGo1ISkrCuHHjHI6PGzcOe/a430zQntLSUkXgXLx4Eampqeja1f3bihcuXIjw8HDlr6O80VVTYZHnEJkLC6EylcLaCG9OZxiGYRimflzSgqioqAgWiwUxMY5b+8fExCAvL8+jOE6ePIkhQ4Zg4MCBuOWWW/Dee+8hKsr9W8fnz5+P8vJy5S8rK8tt2L+KClA8RNqNG9Gu4BwquvJwFsMwDMM0N14fMvOEmiucJElyu4qqJiNHjsSxY57vk+Pv7w9/f38kJiYiMTERFoul7pMaigoOQ2Z57Uehg+mS1qgMwzAM84/kkm59o6OjoVarnbxBBQUFTl6jxiYhIQGpqak4ePBgk11DBcBqtX2XAPh4KPQYhmEYhmk8LmlB5Ofnh/j4eGzdutXh+NatWzGylpcuNgaJiYno27cvhg4d2mTXUKlUyhwigMRRlakJPVIMwzAMw7jE60NmlZWVOHv2rPI9PT0dycnJiIqKQqdOnTB37lxMnToVQ4YMwRVXXIGPP/4YmZmZmDlzZpPalZCQgISEBGXr76ZBgsXOReRnrkRkTIcmuhbDMAzDMO7wuiA6dOgQxo4dq3yfO3cuAGDatGn44osvMHnyZBQXF+PVV19Fbm4u+vfvj40bN6Jz587eMrnRUEEFi92QWYeiPeh81bXeM4hhGIZhWiheF0Rjxoxx+94twaxZszBr1qxmsoho7knVnb/5GocWJ6NdhanprscwDMMwjEsu6TlE3qTZJlXLYtCirYA2pCuqivRNdj2GYRiGYVzDgsirqJR3mQUOHAAA0PjyI2EYhmGY5oZbXzc0zyoz25CZb6tWAFgQMQzDMIw34NbXDc09ZAYA+s5B6NjX/S7aDMMwDMM0DSyIvIz9TtXWYDX8AtQuw0mShHcm39JcZjEMwzBMi4IFkRep+bZ7SM6vKRFYm3K1G8MwDMO0cFgQuaE55hBJFitMdhsRBZytBAC898Cd2PnNZw5hdeVlAACz0dhk9jAMwzBMS4UFkRuaYw6RodgAs8XmIfIxSZAkwGww4ND61Q5hty1PBABkn05tMnsYhmEYpqXi9Y0ZWzr2HiKAVp7V5L2pd8JsNAAAygvym8MshmEYhmlRsIfIyxhrCCKLyXmnaiGGACD75PFa4+O5RgzDMAxTf1gQuaE55hCFtA1yGDIDAG1R7R6grNTaBdG79932l+1iGIZhmJYGCyI3NMs+RCrnITOrtfZ3mVUUFzb4egZdVYPPZRiGYZh/MiyIvIhKpYLJ6ugh0pU1fI5QZWkJAMBidi2qljw0ucFxMwzDMMw/GRZEXkQFwGR29BDlp59z+G612uYEDbt9ktu43pl8C/QVWgCAQadzG06yWt3+xjAMwzAtFRZEXsTVkJnFbEKf0WMBkLApvJABAJjy+iJ0vmxQrfH99sXHAIDkzRucfhPDZUa9/i9azTAMwzD/PFgQeRGVyva2e8HZA/tQmpsNAKgsKYa+ogIA0LZ7T0R36gIA+GT2ww7npO3fAwDIOnEUAJCbdtrpWlVlZQ5hGIZhGIaxwYLIDc3ytnsARnnITG+iobGK4kKU5pAgqtaWK+IIANS+tG2UtrDAIZ4/Vn7t8D0j5bDTtXLTTgEA8tPPurTFYjY7fLcfqmvpmPR6ZadwhmEY5p8JCyI3NNfb7sWQWYXeJkjE8NaJXdsR26sPrnl4JgBArfFzGU9Jdlad1xJCaN+q713+vnjK7coeRuUFeXj3XtfL9z948G78+cO3dV6voZzZ/ycu1rHXUnlBHiTJ7qW4Vgv0VZUexS9JkiL23E0+r8ne1d9j2b/u9yhsbZgMrocrtYUFjfriXvu0cYer/apqimJ3GHRVMLvYLwsAtn+2zMGGwgvp0FdW1mqXSR7GXbfoDY/30co7l+ZROG/jybPwBIvZhOxTnu9SX9dcQUmS/lbzCd2lY33S12I2Neo917y2J7Y05vXL8nJRWVLcaPG5oiH2uqobLGYzNi1dDADIP3+20cpFY8OCyIvYD5mVV9veUdZ/7PUAgOO/b8XXzz6O3z77EADgq9E0+FpnD+xz+9vhjT8DAEpyLgIALp484TassVqHfatWOBwTmfudybegKDNDOS6ER3lBntLg7/hqOSRJQuL0ewEAvyYuAgC8/8BdsJhNWL9oIVa+8h+X1xZxLH9sBi4cS1aOv3vvbUh8+B63Notzq8pKseOr5Xj33tugr6zE4il3AACWPjJFuX99VSVKcrIdKoL88zavmvAUleXnAQC+/s8TyE8/h+2ffejQSJuNRhz4+ScAwLfPPanco2S1YvOH7+PAzz9BX1WJjOQkXDhuu5cTO7cDgHLuBw9OwtFtm6AtKlDEoqgEhQhc8eLTAACTvIHnonsmYO1br+H84YPY/d0XDumQe5aGU2vuV3Xsty1Y9q8pjsd+3wLANsya9MtaSJKEJQ9NxpIHJyHnzEn8+N/nlOdpMZuQvPkXxYaqslJ89cxjOLFzG/LTz2HRPRMc4hdC6P1pd6GypBhp+/dAkqzIOXMSAOWrlK2/ovhiJta/+z8AQLW8cECkaUZykhJWX1WJ3LTTSNn6KyRJwk+vvwhXGHQ6lOXnIfN4Cs7s/xOn9+52EqSfz30UAHAuaT/0lZX47fOPcPHkcegrK5VFC+nytS8cTQYAGPXVAKhBsFotOPbbFvz2+UcAgGX/uh+SJGHTssUO11m/+E0AgLaoADptuXL84PrV+O3zj1BekIePEx5CZUkJvn/5GQDAV88+TucUFiiNfOGFdBh0VUr8i+69FQCQdnAvAGDHV5+gorhIEeV7fvxWCSPyzZdPz6a0lPO+trDAocE1GfQ4/vtWALayLcp+RnISJKsVK158GhUlRQ73KARxeQGVmW2fOormdybfgtyzp0mkycfS9u9BZUkxVi6gukDknUPrV0OnLUfm8RQYq3VYOv1epGz9FWajUZkqUPM9kO9MvgW5aaex5MHJ2PLxByi+mInygjxYzCbluZ89tB+u2L3iS6Tu/h1FWRdw4OefYLVa8MOrz6GiuAhfzJsFANiw+E1YzGbs+vZzHN2+CZ8+8QiSfqE6NemXtTCbTNCVl8FYrVPS/J3Jt8BYrcM7k2+ByaCH1WrBuaQD0JWX4fyRg0oYAMg7ewYAkHPmpJKWAPDnD98gSa67d3y1HPrKSuWcdybf4iB6v5n/JDZ/+D6KMjNwdPsmWK0W5Vlqi2jEIXnLRuVck9GA84cPYt2iNxzSw2TQo6qsVLlOWX4ejNU6lBfkI/N4CtKTk/De/XfAbDIpdQ1A5fbEzm2yLXMASYLZZHLKK96GX93hRVQqKBszFlfaBJFYPi8ICo9o8DV02nJ8/ezjLnsSaQf2oMewkfj9y08AAAUZ5xEQEopzLiqHJQ9NxvT3P3E6fv7IQaTt34PLb6IGtjDrgjLX6d17b0PcoHhknTgGgMRU0i9r0Wf0WOgraW5U6q7fEH/z7TAZ9Nj4wTtKvGajEWkH9yI0shVWLvgP5q3coBwHgL0/rQAkCa07xynn6CsrUZBxHtGdOmPZI1Pw+Ner8P7UO3HDo3MAAJ/PnQlDFXnfhJg4uG4VquWG6PMnZ+Kmx5/Gxvffwh3Pvoy23XsCkoSLqceUayz71/2Y8cGn+PTxGUj47HsUpJ/DN/95AgAQEByM4ouZOHtwH/pceTV2f/cFBt94i4NQOrJpPY7LQqOmWKmurMCmpe+i39XXYvd3X2DIhDtgrK7G1k+WOKX7vJUbkPjwPZi3coMiIN6feiee+GYNAODcoX04d4hEcNtuPbFu0RuYt3IDvnt+npKWBl0V8s6loV33ntjy0fv0/DIz8MeKL3HLk//Blg/fx2Vjx+GHV5/D3O/XY8dXy9F71NUAqMe35n8LoK+qxN6fvoO+ssIpjwkhdeDnn3Bw3Sol3RMfvgcJn32v2A/YepXaokKsePFpjHlgBnZ8tdzpvpfOuE85x2q1YNXCl/HgomX4QhYwUKkASYJao8GFo0dg0FVhyUOTMW/lBrwz+RYkfPY9Pn9ypssh0OoKLbJPn0TcoHiUZGfBYjZj7f/9F8Nun4Qjm9bjyKb1StgH31mK1QtfxqxPV+Cn11/AvJUb8MG0SZi3cgPeu/8OxA2KVwTTwOvHQ1dehj++/wondmzDjY/Owaal7+LGWU/izN7dsD7+FD5JoHmBYa1joC20bb1x8eRxVBQVQuVD7/SRJAmFGeeh05bjk9kP487nXsWqN14CAEyYOx8ndmzD9Y8kKOeve/t1PP7lT0j65Wf0GX0NPp71IG6Y+YTiKTbodFjy0N2Yt3KD0plZdO+teOyLH/DJ7IcR3akLijIzcOf8Bdi/9kdcPHkcPr6++HXJO5j21hJ8+fRszFu5AasWvowZHyxHzpmTqCwpRlVJCUpzs3H20H6c2fcHrp46HTu//hTzVm5AypZfcO3DM7Hongm4afY8AMB3z89Dj2EjkXZgD55c8TPWLXoD973+Di6mHlfEV1VZKXZ+8xlad+6Kn15/QbnHbcsTlXc9zlu5AYfWr8bV9z8MSZKgkt+FdP7wAZhNRhz/fSvyzqWhKDMDcYOHKHH8/NZ/MW/lBvz89mu4/l+PYdkjU9D3qmuQuus3AFCeZ6sOnZB14igkyap45k/v3Y3R9z2IQ+tXo233nijLy8W+1d+j5xWjsOOr5fBRq/Hb5x/h0Y+/ccjrWXK9snvFlzjyqy1vAcDc723fv31+Lh5Z8hlWvPg0OvUfiMzjKRjzwCM49edOANSBTvplLTr2G+AQh9VixuIpd2DY7ZOQfz4N+efTlLqnXfde2Pzhe+jYbwCWPzYd81ZuwPZPl2LQuJsAUF3iq/GD2WSEtqgQnyQ8pJTZh979SMmLnz4+w2VZPbjuJ+z54VvMW7kBSx6ejAfe/AAAFNG/b81K7JFHGnqOuBI9R1yJXldcCW/DgsjLSCBBtOZAFjrKx3qNuFLp+QJQBIY9Rn01/AIC64x/2SNT3P627p03lMYFAH5d8g469hsATUCAo42SRI2n3FOxJ3nzL0g/ckg5x/41I4CtFw3Yhjn+lOc8FV+kCqUsPxeA43vaUnf/hq0f24SAGM7Z+9N3dB2DQWkIBFs+eh9pB/Zg9H0PAgCMck9eXE+IIYAKLABkHD3iEEfRhXQAwJo3Fzjda1VZKQDb5phlebkOv+9bvdLumyx0szIdwhyTe2WuOJ90AICtx773pxVuw9YcIhQepYqiAqewopcnBIvoNV44egTr3/0fegwbqYT9SvYS/LmSKm/hxRFDWUc22fKLsOHMvj8B2J6n2DpCDP3aiw8hkrKOO07uz5S9ZHt/pOfrSgyV5uWQ/WI4LoOelSKG6EcAwL7V1OBXFDluZHr+8EG388Eyjx/FhsX/Q8KndK7waBxY+6NTWOGJuSiLfWGTSFv7fP/lUwlO8ZzYuR1jpj0CAMg5c0o5bi+GABpytEfEnyp7Erd89IHy2/pFCwHY8o1I/wI5jo0fvA0A2Pzhe8o5QkgI+yuKqcd+8o8dAKCIpFULX1bO+XUJdVzOyIs5BEVZFwAAZw/uc0ozEY8Ypi7IOA8AyD59UgmTdoDiE3kgRfZY6OQFIWIoPSfNdk5N7NNy0T0TlMbbvtwJW9KPHAJg84xbzGacPbgPA8fdDACKGAJsz1Pcl5jHKcSaqMNEHamvrMDHjz4IwJZvq+UFMlVyh1fk8ZpiCACyT5GXXtQ5oqzlnTsjn2vrnG6QvacirLi/7FMnHWy25/Cv6+jeZVEn6pzjdulkNlHn85OEhwBA8XaKOt5i14mpiRA7xdlZMFRVKc9dyb92aXtm3x84s+8P9LrCeXV0c8NDZl5GBerBnDhp6113jR/mEMZUXe10ntlohGS1KhXZgOtulCN08XZYABo34qnmvJasE0eVhhkg96nVQmJEVBwA9XJyzpxUKpUieXuALR++7/I6APDjf58HYKuIRME6vJEKZ/55myfFXgwBdpWYXDEVZDju1wTYKtQLR2lSuWgMXXnHqrU09JIpD72JIRIhLFwhhvdEI+VuThBgc8Gf2kO9ODHs5vrpEEkbyLsjKhp3870A4KNHpwGwVchCwIhK0RXCI3V6724AUIahRLq5smWz7Dna9e3nAID9a1Y6hS2+SKJv68fUOIv02bZ8qVPYde+QODu1ZxcAW8MinrdoiF2hLaCwe36kynbvKveCsVwe0lzxEg0ninIiGnNXbFhM6WEy0nM9sWOb27Ci4RPDDULMr3YhpGsi8uPSGfcBAArshmTd8ceKrwDYhjrFsJCrnetFHhACSHQiXM01FF6GzOMpAGjoFHD97GoiRECmLG7X/t9/AbhugAtkkfzL+28BAH5YMB8AkLJ1o1NY0bEQnSAxL22DPLy4p5Y5jCI9xHX+WPElAJsIccXnT86Uz/k/AMAqN0OtAFBVRvHsX/MDAFtnQExrcIUQPKLcLX9sOgDnDpU9olx8+O+pAGzTGowu2oJi+bmKcnxqz275c6fb+EVHcPX/XnGw8eD61W7PObn7dwDAfvn5Cm+9sM0V4rmLPC/up7Z79yYsiC4RWpXZJrRazCYMusE2p+Gq+x9yCi9ZrVh07634+e3XAEAZyrj7pTcQ3bGzU3iTvtrpfAA4JDd8tSG8A/a99uKsC8rcFcDWCwLg8QRh0ZiI3lBtHN9BPZeaHihXiAo6ecsvbsPUFAGeTEy/IFcioqe08+vP3AeWG+D0ZBJnYo+oQrs5VjUpVHp2dU+eNRsoHU79QZWeEK3u5l8BQKpcodUmOmpyWhYutVV6AjHUe/iXtXWGPbPvDwA0B8tTjm7fBMAmFF0N7dZENCBilaUn/PwWlanaxLFAlIlPH58BAA6eXXcIMSvKoBiyro36PDPRyz9/mOaiXKjhBXXFT6/REJQQT54gGsjfPncvBgQib4stQozV7jePFZTJdcrZg+7nP9ZElEkh9FyJfXek7a87rBC+YiXvL++RiLLvLLqjPmlbVcOLKeYWukLkI5H3RKfl2PbNbs+pLHacuyM6S57Ug2dkYVdzrpYrhA0/vPpcnWEvBVgQXSL4SzbfQWBoOMY8MAO9Rl4FAGjfu59TeDEMJBqFdj16AwD0FRWK67pmhX7dDJoEaNRXKy7S2ip9MYHv/QfuIhuDg5XfRG9NUNMLo3UxdFMT4S3wBDFZtzQ3p46QNmqrRBoDe4+WO0QFk3Pa8xVCa//vVY/DCq9VfRANZVNRm+iriZhL5glCRDUEe/FeF/keeGwYG8JD2Ng0ZCXhX3nX46XELg/EhrcR85FqI8tu/uXfARZElwj+PrZH4avRQO3ri5tmz0OnywYpEwPtEa5t+3MAoHWXrsqxmpN2rXJP4oNpk5RxeeFpcEXidMeVW/ZzcIS73B1ikijDMAzD/B1gQeSG5tiYEXZ7MfRpHeL0s49ajUkvvFavKH39aK8iV73c0Fatlf8/feIRh99UPn89K/yV1XAMwzBMyyT+lju8bQIAFkRuaY6NGe0nQFuz6h5T9wQftRqAvNdDDWpblXbPgjddzj2qD2279fhL53uLiLbtvG0CUwddL2/CjgkA9V/Y46u56NCnv7dN+McSEBrWLNfpPnREs1ynPvS6YrS3TcDVU5znyXoDFkRexGppnN06+1w5BgAwdtojtXp62nXv6fa32J598MBbzvvd1AexF1F9iIrt8Jeu2Ri4GpJ0R+cBgwG4X7Vnj5gD1mXg5fWO3y8wqM6wTS0SBK06dPI4bH28hD2HjwIARHqQB8SKo/5jx3kcv3hJsif4qGkHkrEP/ttjm2rS7+pr632Oq/mBNbl6Kq1Kqrn6tDbEVgqDb5xQR0gbI++mLTpEp8oTxC76foF1l4d2PWme461zaYJtWOs2dZ5z5b00AV2l8rypuvKeBzwOK16HdMNMeS+xkNA6z7l8PG2u6B8UXEdIG2Iqg1h63yaum9uwYpuVNl3ch3FHfWzqJL8sPKZrd4/PEbY1due3MUYoGoNLw4oWSnG2414yklT/bdIfSfwMYx6gFS6X33RbrV4gX3//WuOqjzBwRWAtvaya3icxfOcXVHfDLyotT3rIw++4G4CtIvWkMQ8KjwQA3Plc3ZOZRaM39NaJdYYNDKXKVTTiQgDUxq3zqLEQq3Auu8a9AKgtvWsiPCBT3ngXABDSKrrOc257ilYejZg4GQCcNn6zR/QyaxNp8Tff7hBvT3kjtlvnzq/Tlp4jKO1G30uNnSeCsf+Y6+oME9uzDwBbWsbIDVWPevTkB14/HoBNALuitdyQ3PTYUwCAOd+uBQDEe9CJ6Ho5CaGwaPcCQuy9JRgygfJnREzbOuN/eDGtmhQrVWvzGIRERgEA7nqehvKDwiIAuF4OLhB5b+Rd9zkcF+LAFaJjcPl4EnR3PPuS27CCGR/Qir/6eDxG3k2v5BGdxX5XX+M2bIe+VP8UZWUAAO7979t1xi86q9dM+xcA29xLsRzdFbc/LZe7O6nc1eZVEh2Q6x+h/cPufL7uOiysdQwAILZHLwBAuAd5RIxmdJLrgJGT3O9vJ4i/mfK26CiLvHMpw4LI29i/7V6qe0m5aJwA4PEvf0JYdBuHXrkQD4L4m2/HI4mf497/vuVW8Dz6ifO+Hne/TJu8id1chZdj7op1bm2r6R244z8v4875CxA3eAiunU77/IiNIMc+RBVE685xmP7+cjz25Y/KK0tmfboCva4YjZsffxqDbrhZERRXyBXqpBffwJ3zFyC2Zx/EdKWeysT/vAIftS+uuOs+PPrJt4i/6Ta06tAJkxfYVsMNmTARt857DrfMeRbte/fDvJUbMPbBf2N8wlzlHu9fuBiPf/UTbnrsKUxe8KaSNqLRExVc39HXIP7m2/DgO8uU+J9c8TMeevdDReyJBrKz3BPzDw7G1VOnY9KLrytC55Eln2HMA48o9ygEbce+l2HMAzNwzUMzoVL54IaZT2Deyg2Y+/16PPkdLYEXPbtRk2lvD01AIAKCQzBv5QalcRs383GMnDQFdzxLG+u17dYDASGhuFlumO0ZNXkq+l19ndLYiYq418irMOOD5Zj04utKD3Teyg3wDwrGkyvIlutmJOChdz/CgGtpP6w75y9QRPCMD5bj1qeeV4S7iDc4goRodMfO6D3qasQNHoJBN9yMtt16KDv1iso0OOL/27vz+CiqtF/gv053OgkkBEMgIQQCo2xhJ6CAyiKSEBFQuZegDgLKfWGIryBzmQFnRpCZFxhfRFwSBEV4r+/cAR1kuYgDcYwkgooEokjYAjEsSQhhyZ7uTtdz/2i6TZN0Fkh3Vejf9/PJB7r6VJ1znl7q6VOnqm5+mep06NQrGgPjJqDHsIcw4z/fha+f7aKg9vemPXHu0ncAAGDGzZFPe5IAAP/j5ty8p/9su17NrDW217FTr2jbNqL7OcraL4Ex8WXbJQ0m3kzg7CMqj8yyjZJUlZchqv8gTFy4xPGa2N/v019/Bz2GPeR4/+gNBgyMm4Cwe3/5dT7pf9uu02V/P/77Ztu1bkIiOqFDt3vRsbttpx0U2h6PzJoDg58ffr1yLQDg/sm2M0HnfWA7tbvDzRGJoND28NHr0XPESCQstV1n6X8l2a4pZd+J3tOxEwCgTaj9R4rtNa454mX/sXDvENtrF9V/IACgcx9bnMbM/DdHWfvZqKOfs81TfPFD22ng9u8QY0ArRPTojYefmeFYx/45XfC37fhVzP2O7RmMth9x9pGJoND2jlGvCfN/5xTj4A62Hbv9ELj9Ktgde/TCsCm2WwWNfcF2pu3Im4do7DvpgDa2hLjmPEv7OvaRmsdetH1mxv3bSzfrsyUW7aO6ITK6L6L6D0K3gTFO8RifaLvFjH007NGb9ddcZh/Rmv/Rp45+JG7cgvuGDr8Z4wHofv8IhHaOwrTl/+n0utivfm2/Dp3h5v0u7TEaMO4xPPMfbzjFyZ44RvWzJZ32HwWtb8aiU68+iJ1r66P98z1nne16Tvc/8T9tbb/Zd+CXH7v278oZq20X+7S//vbPvf1zNGj8REcCP/q52U36Yed2QvUqLi4WAFJcXNzs235z+p9k+Sc/iojIu3P+JW/P/lhWT51Q7zqXc87K6qkT6i1nf76uMjWfe2fW1FplVk+dIJdOnRARkeP7/yX5Z07J6qkT5PShg46yBeey5fDuHU51FJzLFhGRv7+6SL7cvEFWT50gpopyp23//dVFIiKybeVSERGpKi8XRVHq7a8riqKIxWwWEXG015Wy69ek4OyZ26pHRGTv+rcddYqIfLl5g9PzVeVlTo8tZrMoVquIiOT8cEQURZHPk9+Ubz/d6tR+c2Wl0+NreRdFROTskUNSdv1avW2yx+7Yl/tEURQxVZRLtcXsVObW+JcX33Bup8kkZlNVvfXc+v6wmM2OZfZ4nPr261plRESKLp6X/DOnnJ778OW5IiKSlfalU5zqc+Sf/09Ease5JnssczIzxGqtlozPdoiIiNVa7dTW/OzTknfmpFPfrNXVTv/ay5ZdvybFVwpFRByxzTl6WEREPlo8XxRFcWw/5f13nV6zyrJSOfL5LhEROXdzHbtb3/NXL12s9Xpfz8+rs59FF3KlsrTU9v43meosc/WS7X30zbYtUnL1iqT//b/k8O7tYjGb5UpujoiIpP6fD0REZEPi8yIikrFnp4iIrHl6suQe+0FS/+t9ydizSxSrVYou5DripSiKHN//LxGRWvVn7Nklu996XRRFkQMf/7eIiJQUXRERkbemT7GtYzY79d9iMknxlcsi8kv8b7Uh8XkpvnJZzKYqsVqrxVpdLSVXbdvd/vpyERHZ887qWuvV/I6wVlc73os13/OK1SrmKtt7J+/0STFVVkh58Q0xV1ZKtcUsZzMOOW3T/p75eutHolitUlFSLBaTSbLSvpSdq//D9lmsrBARkcO7tzv6LCKSe+wHMVdVSsaenXL+px/k9HcHZEPiLBGxfZ5rxqtmH+ry0eL58sG/zxYRkbT/u1lERD75yx/FYjbL/v/+UM4eOSSK1ep4f9r9kPK5iIhcOpUlIiLVFouIiBScPSPFVwql9NpVR9kTB/aLiEhlaamI2N7jIrbPu/37y2yqElNFufzwhW27SS88LSK/vH/PHfleRGzfoeeP/yi5xzLl4smset+/zamp+28mRA1wb0K0VP685aiI2BKiN5/7c4MJkYgt+aivXFZ6qqyeOkHys0/Xes5aXe1IZCrLSuXCiZ+cnl+d8Hid64jU3sGaTVW12pF3+qRcPJklGxfMabAf3sT+BdvS3JrQKIri+GJs6epLsO4mitXa5B8eda3TUPJstVY3WOZ23LpTV9OtCZKdoii39fm+3R+EWqW1/jR1/817malJp4POanXcVkCxuD6uXFNYt3sdh0Tq0uvBUbhvyLBa9yQDnCdM+rcOROQtkzp/W+Omgreuc+u8DV+jn+PwgV3Hm8elZ76R1EAvvEtdr0VLEH7LRHydTodHZye6KN2yNGUCakt2OxNW61rH11j/HEQfHz18jI2fkN1YPj7Nv83b5WqOnE6ng97Q9DMV73Tepta09P54xRyinJwcjBkzBtHR0ejXrx/Ka1xgUF0+MApgqrZPpm58fjrhJddX3tXpdPXugEM7R+HJxUtdPt8UriYKa+lLjIiIqCFeMUI0c+ZM/OUvf8HDDz+Ma9euwa+Bs608RQcf+EFQabbdK0ysnrnhXcKyv8LYquHTZImIiLzFXZ8QHT9+HL6+vnj4YdupmCEhWjr1Twc/UVBhsTqW2M/4cCf/wNpXxSYiIvJmqh8yS0tLw8SJExEREQGdTocdO3bUKpOcnIxu3brB398fMTExSE9Pb/T2z5w5g8DAQEyaNAmDBw/GihWNv6Go2+l8YKhSUGH65U73ET17q9ggIiIi76T6CFF5eTkGDBiAWbNmYcqUKbWe37p1KxYsWIDk5GQ8+OCDWL9+PeLj45GVlYUuXWwX3YuJiYGpjpuU7tu3DxaLBenp6cjMzESHDh0wfvx4DB06FOPGjXN73xrmA7lSgQrzLyNETbkiKxERETUP1ROi+Ph4xMfHu3x+zZo1eOGFFzB7tu3iTmvXrsXevXuxbt06rFxpu3hgRkaGy/UjIyMxdOhQdO7cGQDw2GOPITMz02VCZDKZnJKrkpKSJvep8XQICDU6EiKdvrXjgmdERETkOZoejjCbzcjIyEBsrPPtC2JjY3Hw4MFGbWPo0KG4fPkyrl+/DkVRkJaWht69XR+WWrlyJYKDgx1/9kTKHXo80BHBEa1RabEdMouMHoeI7r3cVh8RERHVTdMJUVFREaxWK8LCwpyWh4WFoaCgoFHbMBgMWLFiBUaOHIn+/fuje/fuePzxx12WX7JkCYqLix1/Fy5cuKM+1MdHr4evTsGVUtuIVEnhz26ri4iIiFxT/ZBZY9x6sScRadIFoBo6LFeTn58f/Pz8kJSUhKSkJFit1oZXuk0Xsm7A/2oRCocEwQ9A8eVMVJWXNeou0ERERNR8ND1CFBoaCr1eX2s0qLCwsNaoUXNLTExEVlYWvv/+e7fVYa0GqsvMTsvsd4YmIiIiz9F0QmQ0GhETE4OUlBSn5SkpKRgxYoRb605KSkJ0dDSGDq37Uu3NwddogGKuxpXSKgBAQJt7EBIR6bb6iIiIqG6qHzIrKytDdna243FOTg4yMzMREhKCLl26YOHChZg+fTqGDBmC4cOHY8OGDTh//jzmzp3r1nYlJiYiMTERJSUlCA4OdksdBj8DqsotuFpmRiSAypLrLf5eMERERC2R6gnR4cOHMWbMGMfjhQsXAgBmzJiBzZs3IyEhAVevXsXy5cuRn5+Pvn37Ys+ePYiKilKryc3G12hA6bVqmKoVGHu1QtU3areIiIjIO6meEI0ePdpxt3dX5s2bh3nz5nmoRTaemFRdXlwNxQqYqq3wsVa5rR4iIiKqn6bnEKnJE5OqO3QLBkSBqVqBD5SGVyAiIiK3YEKkoqjoUPQdFYGj528wISIiIlIREyIXPHGWmd5gAHS2w4VlBT+4rR4iIiKqHxMiFzxxyMzHoIditeLp+ztDX5bjtnqIiIiofkyIVKXD9YIyrHyqP8qv5ardGCIiIq/FhEhFlWXVyDt9rcGz7IiIiMi9mBC54Ik5RIFtAwAIRGFCREREpCYmRC54Yg6R3lcPQIHChIiIiEhVTIhUZAzwBUSBYrUlRAPGxavcIiIiIu/EhEhFBl9fSI1DZvd07KRyi4iIiLwTEyIVGfwMqHnILKJHb3UbRERE5KWYELngmQsz6gEISops9zFr076D2+oiIiIi15gQueCRSdV6AyAKyq7ZEiKjf4Db6iIiIiLXmBCpSOfjA0BBcAdbImQwGtVtEBERkZdiQqQiH4PttPtqi+3GrrYEiYiIiDyNe2AV6Q220+7NldXoNuhRtZtDRETktZgQqUhvMACw4ucfr6L06nW1m0NEROS1mBC54ImzzHwMBgisqCg2oeh8htvqISIiovoxIXLBE2eZGQy+gFhRUWpGePf+bquHiIiI6seESEW2SdSCG5crENwhQu3mEBEReS0mRBpQWWqBTqdTuxlEREReiwmRRjAhIiIiUg8TIo24dOpHtZtARETktZgQqSywrR8AoKTwosotISIi8l5MiFRmbGUAAIR0ulfllhAREXkvJkQueOI6RADQpp3tPmado6PdWg8RERG5xoTIBU9chwgALhxPBwDofDipmoiISC1MiFR235BhGDO9F/QGJkRERERqYUKkstxjmYh+kBdlJCIiUhMTIpX1enAkRFGQd+aU2k0hIiLyWkyIVKZYFVjMJuSfPql2U4iIiLwWEyKVXcu7CFN5OR54cqraTSEiIvJaTIhU1rF7T9woyMN32z9WuylERERey6B2A7xd5r49CAhqA/+gNmo3hYiIyGvd9SNEp06dwsCBAx1/AQEB2LFjh9rNchjz3GwEhYRi+JRpajeFiIjIa931I0Q9e/ZEZmYmAKCsrAxdu3bFuHHj1G1UDXmnT8JUUY7I3n3UbgoREZHXuutHiGratWsXxo4di9atW6vdFIf7hjyANqHtoTf4qt0UIiIir6V6QpSWloaJEyciIiICOp2uzsNZycnJ6NatG/z9/RETE4P09PTbquvjjz9GQkLCHba4eRlbtcblnLPQ+zIhIiIiUovqh8zKy8sxYMAAzJo1C1OmTKn1/NatW7FgwQIkJyfjwQcfxPr16xEfH4+srCx06dIFABATEwOTyVRr3X379iEiwnYV6JKSEhw4cABbtmyptz0mk8lpWyUlJXfSvQb5tWqFogu50BtUfymIiIi8lup74fj4eMTHx7t8fs2aNXjhhRcwe/ZsAMDatWuxd+9erFu3DitXrgQAZGRkNFjPzp07ERcXB39//3rLrVy5Eq+99loTenBngtqFIqhdKHz96m8XERERuY/qh8zqYzabkZGRgdjYWKflsbGxOHjwYJO21djDZUuWLEFxcbHj78KFC02qp6l8/QNQkH2aCREREZGKNJ0QFRUVwWq1IiwszGl5WFgYCgoKGr2d4uJiHDp0CHFxcQ2W9fPzQ5s2bfDRRx9h2LBhGDt2bJPb3RQ6ne0u9zq93q31EBERkWuaTojs7EmDnYjUWlaf4OBgXL58GUajsdHrJCYmIisrC99//32j17kTZdeKPFIPERER1abphCg0NBR6vb7WaFBhYWGtUaOWrku/gWo3gYiIyGtpOiEyGo2IiYlBSkqK0/KUlBSMGDHCrXUnJSUhOjoaQ4cOdWs9APDipo8REBjk9nqIiIiobqqfZVZWVobs7GzH45ycHGRmZiIkJARdunTBwoULMX36dAwZMgTDhw/Hhg0bcP78ecydO9et7UpMTERiYiJKSkoQHBzs1rr8WrVy6/aJiIiofqonRIcPH8aYMWMcjxcuXAgAmDFjBjZv3oyEhARcvXoVy5cvR35+Pvr27Ys9e/YgKirKre1KSkpCUlISrFarW+shIiIi9elERNRuhJbZR4iKi4vRpg3vSE9ERNQSNHX/rek5RERERESewISIiIiIvB4TIhc8eZYZERERqYtziBrAOUREREQtD+cQERERETUREyIXeMiMiIjIe/CQWQN4yIyIiKjl4SEzIiIioiZiQkRERERejwkREREReT0mRC5wUjUREZH34KTqBnBSNRERUcvT1P236ne71zp7vlhSUqJyS4iIiKix7Pvtxo77MCFqQGlpKQCgc+fOKreEiIiImqq0tBTBwcENluMhswYoioK8vDwEBQVBp9M123ZLSkrQuXNnXLhwgYfi3Iyx9gzG2TMYZ89gnD3DnXEWEZSWliIiIgI+Pg1PmeYIUQN8fHwQGRnptu23adOGHzYPYaw9g3H2DMbZMxhnz3BXnBszMmTHs8yIiIjI6zEhIiIiIq/HhEglfn5+WLp0Kfz8/NRuyl2PsfYMxtkzGGfPYJw9Q0tx5qRqIiIi8nocISIiIiKvx4SIiIiIvB4TIiIiIvJ6TIiIiIjI6zEhaqTk5GR069YN/v7+iImJQXp6er3l9+/fj5iYGPj7++NXv/oV3nvvvVpltm3bhujoaPj5+SE6Ohrbt29vcr0igmXLliEiIgIBAQEYPXo0jh8/fmedVZEW42yxWPD73/8e/fr1Q+vWrREREYHnnnsOeXl5d95hlWgxzreaM2cOdDod1q5d2+T+aYWW43zixAlMmjQJwcHBCAoKwrBhw3D+/Pnb76zKtBrrsrIyvPjii4iMjERAQAB69+6NdevW3VlnVaRGnNPS0jBx4kRERERAp9Nhx44dtbbRLPtCoQZt2bJFfH195f3335esrCyZP3++tG7dWnJzc+ssf+7cOWnVqpXMnz9fsrKy5P333xdfX1/5xz/+4Shz8OBB0ev1smLFCjlx4oSsWLFCDAaDfPvtt02qd9WqVRIUFCTbtm2TY8eOSUJCgnTs2FFKSkrcFxA30Wqcb9y4IY8++qhs3bpVTp48Kd9884088MADEhMT496AuIlW41zT9u3bZcCAARIRESFvvvlms8fAE7Qc5+zsbAkJCZFFixbJkSNH5OzZs7J79265fPmy+wLiRlqO9ezZs+Xee++V1NRUycnJkfXr14ter5cdO3a4LyBuolac9+zZI3/4wx9k27ZtAkC2b99eq67m2BcyIWqE+++/X+bOneu0rFevXrJ48eI6y//ud7+TXr16OS2bM2eODBs2zPF46tSpMn78eKcycXFxMm3atEbXqyiKhIeHy6pVqxzPV1VVSXBwsLz33ntN6KE2aDXOdTl06JAAcPlFoGVaj/PFixelU6dO8tNPP0lUVFSLTYi0HOeEhAT59a9/3bQOaZiWY92nTx9Zvny5U5nBgwfLH//4x0b0TFvUinNNdSVEzbUv5CGzBpjNZmRkZCA2NtZpeWxsLA4ePFjnOt98802t8nFxcTh8+DAsFku9ZezbbEy9OTk5KCgocCrj5+eHUaNGuWybVmk5znUpLi6GTqdD27ZtG9U/rdB6nBVFwfTp07Fo0SL06dPn9jqpAVqOs6Io+Oyzz9CjRw/ExcWhQ4cOeOCBB+o8DNESaDnWAPDQQw9h165duHTpEkQEqampOH36NOLi4m6vwypRK86N0Vz7QiZEDSgqKoLVakVYWJjT8rCwMBQUFNS5TkFBQZ3lq6urUVRUVG8Z+zYbU6/936a0Tau0HOdbVVVVYfHixXjmmWda3E0ftR7nv/71rzAYDHjppZdur4MaoeU4FxYWoqysDKtWrcL48eOxb98+PPnkk3jqqaewf//+2++0SrQcawB4++23ER0djcjISBiNRowfPx7Jycl46KGHbq/DKlErzo3RXPtC3u2+kXQ6ndNjEam1rKHyty5vzDabq0xLoeU4A7YJ1tOmTYOiKEhOTq6nJ9qmxThnZGTgrbfewpEjR1rs+/dWWoyzoigAgMmTJ+Pll18GAAwcOBAHDx7Ee++9h1GjRjXYLy3SYqwBW0L07bffYteuXYiKikJaWhrmzZuHjh074tFHH21Ez7RFrTi7o2234ghRA0JDQ6HX62tlmYWFhbWyUbvw8PA6yxsMBrRr167eMvZtNqbe8PBwAGhS27RKy3G2s1gsmDp1KnJycpCSktLiRocAbcc5PT0dhYWF6NKlCwwGAwwGA3Jzc/Hb3/4WXbt2ve0+q0HLcQ4NDYXBYEB0dLRTmd69e7fIs8y0HOvKykq88sorWLNmDSZOnIj+/fvjxRdfREJCAlavXn37nVaBWnFujObaFzIhaoDRaERMTAxSUlKclqekpGDEiBF1rjN8+PBa5fft24chQ4bA19e33jL2bTam3m7duiE8PNypjNlsxv79+122Tau0HGfgl2TozJkz+OKLLxwf5pZGy3GePn06fvzxR2RmZjr+IiIisGjRIuzdu/f2O60CLcfZaDRi6NChOHXqlFOZ06dPIyoqqok9VZ+WY22xWGCxWODj47yr1ev1jpG6lkKtODdGs+0LGz392ovZTzXcuHGjZGVlyYIFC6R169by888/i4jI4sWLZfr06Y7y9lMNX375ZcnKypKNGzfWOtXwwIEDotfrZdWqVXLixAlZtWqVy1M6XdUrYjvVMDg4WD799FM5duyYPP300y3+tHutxdliscikSZMkMjJSMjMzJT8/3/FnMpk8FJ3mo9U416Uln2Wm5Th/+umn4uvrKxs2bJAzZ87IO++8I3q9XtLT0z0Qmean5ViPGjVK+vTpI6mpqXLu3DnZtGmT+Pv7S3Jysgci07zUinNpaakcPXpUjh49KgBkzZo1cvTo0VqXoLnTfSETokZKSkqSqKgoMRqNMnjwYNm/f7/juRkzZsioUaOcyn/11VcyaNAgMRqN0rVrV1m3bl2tbX7yySfSs2dP8fX1lV69esm2bduaVK+I7XTDpUuXSnh4uPj5+cnIkSPl2LFjzdNpFWgxzjk5OQKgzr/U1NRm67snaTHOdWnJCZGItuO8ceNGue+++8Tf318GDBjQIq+LU5NWY52fny8zZ86UiIgI8ff3l549e8obb7whiqI0T8c9TI04p6am1vn9O2PGDEeZ5tgX6kRuznAiIiIi8lKcQ0RERERejwkREREReT0mREREROT1mBARERGR12NCRERERF6PCRERERF5PSZERERE5PWYEBEREZHXY0JERC3OsmXLMHDgQLWbQUR3EV6pmog0RafT1fv8jBkz8O6778JkMql2k93c3Fz06NEDV65cQZs2bVRpAxE1L4PaDSAiqik/P9/x/61bt+LVV191ujN7QEAAAgMDERgYqEbzAAA7d+7E6NGjmQwR3UV4yIyINCU8PNzxFxwcDJ1OV2vZrYfMZs6ciSeeeAIrVqxAWFgY2rZti9deew3V1dVYtGgRQkJCEBkZiQ8//NCprkuXLiEhIQH33HMP2rVrh8mTJ+Pnn39usI07d+7EpEmT6nzu+vXrePbZZ9G+fXsEBASge/fu2LRp052EhIg8gAkREd0VvvzyS+Tl5SEtLQ1r1qzBsmXL8Pjjj+Oee+7Bd999h7lz52Lu3Lm4cOECAKCiogJjxoxBYGAg0tLS8PXXXyMwMBDjx4+H2Wx2Wc+NGzeQnp7uMiH605/+hKysLHz++ec4ceIE1q1bh9DQULf0mYiaDw+ZEdFdISQkBG+//TZ8fHzQs2dPvP7666ioqMArr7wCAFiyZAlWrVqFAwcOYNq0adiyZQt8fHzwwQcfOOYtbdq0CW3btsVXX32F2NjYOuvZs2cP+vXrh86dO9f5/Pnz5zFo0CAMGTIEANC1a9fm7ywRNTsmRER0V+jTpw98fH4Z9A4LC0Pfvn0dj/V6Pdq1a4fCwkIAQEZGBrKzsxEUFOS0naqqKpw9e9ZlPfUdLgOA3/zmN5gyZQqOHDmC2NhYPPHEExgxYsTtdouIPIQJERHdFXx9fZ0e63S6OpcpigIAUBQFMTEx+Nvf/lZrW+3bt6+zDovFgn/+859YsmSJy3bEx8cjNzcXn332Gb744guMHTsWiYmJWL16dVO7REQexISIiLzS4MGDsXXrVnTo0KHRZ4ulpqaibdu2DV4DqX379pg5cyZmzpyJhx9+GIsWLWJCRKRxnFRNRF7p2WefRWhoKCZPnoz09HTk5ORg//79mD9/Pi5evFjnOrt27ar3cBkAvPrqq9i5cyeys7Nx/Phx7N69G71793ZHF4ioGTEhIiKv1KpVK6SlpaFLly546qmn0Lt3bzz//POorKx0OWK0a9cuTJ48ud7tGo1GLFmyBP3798fIkSOh1+uxZcsWd3SBiJoRr1RNRNQIR44cwSOPPIIrV67UmptERC0fR4iIiBqhuroa77zzDpMhorsUR4iIiIjI63GEiIiIiLweEyIiIiLyekyIiIiIyOsxISIiIiKvx4SIiIiIvB4TIiIiIvJ6TIiIiIjI6zEhIiIiIq/HhIiIiIi83v8HsUu5g5Qc3JkAAAAASUVORK5CYII=\n", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Plot data ###\n", + "plt.semilogy(res_e[:,0], res_e[:,1], label = '$e$', linewidth = 0.4);\n", + "plt.semilogy(res_k[:,0], res_k[:,1], label = '$k$', linewidth = 0.4);\n", + "plt.semilogy(res_o[:,0], res_o[:,1], label = '$\\omega$', linewidth = 0.4);\n", + "plt.semilogy(res_p[:,0], res_p[:,1], label = '$p$', linewidth = 0.4);\n", + "plt.semilogy(res_Uy[:,0], res_Uy[:,1], label = '$U_y$', linewidth = 0.4);\n", + "plt.semilogy(res_Uz[:,0], res_Uz[:,1], label = '$U_z$', linewidth = 0.4);\n", + "plt.xlabel('Time / s');\n", + "plt.ylabel('Residuals');\n", + "plt.legend();\n", + "\n", + "plt.savefig('./Output/5-a_Residuals.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "markdown", + "id": "c6f02ca3", + "metadata": {}, + "source": [ + "# 5.b) Mass flow rate" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "56be544f", + "metadata": {}, + "outputs": [], + "source": [ + "### Load data ###\n", + "path_mass = './Tutorials/Meas_Cyl/postProcessing/massFlowRate/0/';\n", + "mass = np.loadtxt(path_mass + 'surfaceFieldValue.dat', delimiter='\\t', skiprows = 5);" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "cb6e92f3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGwCAYAAABWwkp7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+uUlEQVR4nO3de1yUZf7/8fdw9oiKirGSYiclMxWKpFDbCg+VUu6KbUuZ1cZ366dCB8+5625Bh6+5lodMra22ZItMKiuxFE9YG6KWsmmJYgZfhApsSzndvz9cJ0cYnKGZuWfi9Xw85rHNPdfc9+e+tOa9133d120xDMMQAAAAGvEzuwAAAABvRVACAACwg6AEAABgB0EJAADADoISAACAHQQlAAAAOwhKAAAAdgSYXYCvamho0Ndff60OHTrIYrGYXQ4AAHCAYRg6duyYIiIi5Od39vEiglILff3114qMjDS7DAAA0AKHDx9Wz549z9qOoNRCHTp0kHSyozt27GhyNQAAwBHV1dWKjIy0/o6fDUGphU5dbuvYsSNBCQAAH+PotBkmcwMAANhBUAIAALCDoAQAAGAHQQkAAMAOghIAAIAdpgelxYsXKyoqSiEhIYqJidHmzZubbZ+Xl6eYmBiFhISoT58+Wrp0qc3ne/bs0bhx49S7d29ZLBYtWLDAJccFAACtj6lBKSsrS1OnTtWsWbNUWFiohIQEjRo1SiUlJU22Ly4u1ujRo5WQkKDCwkLNnDlTkydPVnZ2trXNDz/8oD59+igzM1M9evRwyXEBAEDrZDEMwzDr4HFxcRo8eLCWLFli3davXz8lJSUpIyOjUftp06YpJydHRUVF1m2pqanatWuX8vPzG7Xv3bu3pk6dqqlTp/6s4zalurpaoaGhqqqqYh0lAAB8hLO/36aNKNXU1KigoECJiYk22xMTE7Vt27Ymv5Ofn9+o/YgRI/TJJ5+otrbWbceVpBMnTqi6utrmBQAAftlMC0oVFRWqr69XeHi4zfbw8HCVlZU1+Z2ysrIm29fV1amiosJtx5WkjIwMhYaGWl885w0AgF8+0ydzn7mEuGEYzS4r3lT7pra7+rgzZsxQVVWV9XX48GGnjgcAAHyPac9669q1q/z9/RuN4pSXlzca7TmlR48eTbYPCAhQWFiY244rScHBwQoODnboGAAA4JfBtBGloKAgxcTEKDc312Z7bm6u4uPjm/zOkCFDGrVft26dYmNjFRgY6LbjeoMfa+rNLgEAgFbH1Etv6enpWr58uVauXKmioiKlpaWppKREqampkk5e7rrtttus7VNTU3Xo0CGlp6erqKhIK1eu1IoVK/TAAw9Y29TU1Gjnzp3auXOnampqdOTIEe3cuVNffPGFw8f1Nmt2HlG/h9/T6wVfmV0KAACtiqnLA0gnF358/PHHVVpaqv79++upp57S0KFDJUkTJ07UwYMHtXHjRmv7vLw8paWlac+ePYqIiNC0adNsAs7BgwcVFRXV6DjDhg2z2U9zx3WEJ5cH6D39Hes/H8y83q3HAgDgl8zZ32/Tg5KvIigBAOB7fGYdJQAAAG9HUPIBTq58AAAAXISg5ANOz0lVPzq2AjkAAPj5CEo+wO+0IaWrMj80sRIAAFoXgpIPOD0oHTtRZ2IlAAC0LgQlH8AcJQAAzEFQ8gF+JCUAAExBUPIBfuQkAABMQVDyAZYzRpSWbz5gUiUAALQuBCUfcOaVt7++U6Svvv3BnGIAAGhFCEo+oKk5St/9wHpKAAC4G0HJBzQ1l/uGp7eotOpHzxcDAEArEmB2ATg7e3O5h2ScXHxy2IXdFH9emCI6tVHPzm0U6O+nDiEn/2gbeORxs5gnf3bcdNk8C3+LmsXfH/wcbYP8FdY+2NQaCEo+4MzJ3GfK23dUefuOeqgaAAA8Y8ylEVp4yyBTayAo+QBn/w+Zn0UK9PeTn8WiANYWsIvBtrMzDHqpOfRO8/jrc3YGf4uaFehv/gwhgpIPaG5AKSjATwsnDNTFEaE6JzREAV7wlwoAgF8KgpJPaDopvXnvlRoY2cmzpQAA0Iow/OADmhpRWnLrYEISAABuRlDyAU2NJ4265ByP1wEAQGtDUPIB3F4LAIA5CEpebvuBSv1f9Qmbbf7cyQYAgEcQlLzchGXbG217849XmlAJAACtD0HJx9ydEKVLeoaaXQYAAK0CQcnH+PvxRwYAgKfwq+tjAv2ZnwQAgKcQlHwME7kBAPAcgpKP4dltAAB4DkHJx/AsNwAAPIdfXR/DiBIAAJ5DUPIxgYwoAQDgMfzq+hgmcwMA4DkEJR+zef9Rs0sAAKDVICj5mFH9zzG7BAAAWg2Cko/p/6uOZpcAAECrQVDyMcEB/maXAABAq0FQ8jHBAfyRAQDgKfzq+ph2wQFmlwAAQKtBUPIhNw/6FUEJAAAPIij5kBsHRphdAgAArQpByYew1CQAAJ5FUPIhfhaiEgAAnkRQ8iEEJQAAPIug5EPISQAAeBZByYcQlAAA8CyCkg/h0hsAAJ5FUPIhxCQAADyLoORD/PyISgAAeBJByYeQkwAA8CyCkk8hKQEA4EkEJR/CiBIAAJ5FUPIh3PUGAIBnEZR8CDkJAADPIij5EEaUAADwLIKSDyEnAQDgWQQlH2LhrjcAADyKoORD/PjTAgDAo/jp9SHMUQIAwLMISj6EmAQAgGeZHpQWL16sqKgohYSEKCYmRps3b262fV5enmJiYhQSEqI+ffpo6dKljdpkZ2crOjpawcHBio6O1urVq20+r6ur0+zZsxUVFaU2bdqoT58+mjdvnhoaGlx6bq5mYUQJAACPMjUoZWVlaerUqZo1a5YKCwuVkJCgUaNGqaSkpMn2xcXFGj16tBISElRYWKiZM2dq8uTJys7OtrbJz89XcnKyUlJStGvXLqWkpGj8+PH66KOPrG0ee+wxLV26VM8884yKior0+OOP64knntDTTz/t9nP+OViZGwAAz7IYhmGYdfC4uDgNHjxYS5YssW7r16+fkpKSlJGR0aj9tGnTlJOTo6KiIuu21NRU7dq1S/n5+ZKk5ORkVVdX691337W2GTlypDp37qxXX31VknTDDTcoPDxcK1assLYZN26c2rZtq5deeqnJWk+cOKETJ05Y31dXVysyMlJVVVXq2LFjC3vg7HpPf8f6zxseGK6oru3cdiwAAH7pqqurFRoa6vDvt2kjSjU1NSooKFBiYqLN9sTERG3btq3J7+Tn5zdqP2LECH3yySeqra1tts3p+7zqqqv0wQcfaN++fZKkXbt2acuWLRo9erTdejMyMhQaGmp9RUZGOn6yLsKIEgAAnhVg1oErKipUX1+v8PBwm+3h4eEqKytr8jtlZWVNtq+rq1NFRYXOOeccu21O3+e0adNUVVWlvn37yt/fX/X19XrkkUd0yy232K13xowZSk9Pt74/NaLkSdz1BgCAZ5kWlE45c4KyYRjNTlpuqv2Z28+2z6ysLL388st65ZVXdPHFF2vnzp2aOnWqIiIidPvttzd53ODgYAUHBzt2UgAA4BfBtKDUtWtX+fv7Nxo9Ki8vbzQidEqPHj2abB8QEKCwsLBm25y+zwcffFDTp0/XhAkTJEmXXHKJDh06pIyMDLtByRv4ce0NAACPMm2OUlBQkGJiYpSbm2uzPTc3V/Hx8U1+Z8iQIY3ar1u3TrGxsQoMDGy2zen7/OGHH+R3xjLX/v7+Xr88ADkJAADPMvXSW3p6ulJSUhQbG6shQ4Zo2bJlKikpUWpqqqST84KOHDmiF198UdLJO9yeeeYZpaen6+6771Z+fr5WrFhhvZtNkqZMmaKhQ4fqscce09ixY7VmzRqtX79eW7Zssba58cYb9cgjj+jcc8/VxRdfrMLCQs2fP1+TJk3ybAc4iWe9AQDgWaYGpeTkZFVWVmrevHkqLS1V//79tXbtWvXq1UuSVFpaarOmUlRUlNauXau0tDQtWrRIERERWrhwocaNG2dtEx8fr1WrVmn27NmaM2eOzjvvPGVlZSkuLs7a5umnn9acOXP0xz/+UeXl5YqIiNA999yjhx9+2HMn3wKMKAEA4FmmrqPky5xdh6GlTl9H6V+zrlW3DkwoBwCgpXxmHSU4j9UBAADwLIKSD2EdJQAAPIug5EOYowQAgGcRlHwId70BAOBZBCUfYuFPCwAAj+Kn14cwRwkAAM8iKPkQYhIAAJ5FUPIhjCgBAOBZBCUfQk4CAMCznA5KO3bs0Keffmp9v2bNGiUlJWnmzJmqqalxaXGwRVACAMCznA5K99xzj/bt2ydJOnDggCZMmKC2bdvqtdde00MPPeTyAvETLr0BAOBZTgelffv2aeDAgZKk1157TUOHDtUrr7yiF154QdnZ2a6uD6chKAEA4FlOByXDMNTQ0CBJWr9+vUaPHi1JioyMVEVFhWurgw1iEgAAnuV0UIqNjdVf//pXvfTSS8rLy9P1118vSSouLlZ4eLjLC8RPGFACAMCznA5KCxYs0I4dO3Tfffdp1qxZOv/88yVJr7/+uuLj411eIH5iISkBAOBRAY423Ldvny688EINGDDA5q63U5544gn5+/u7tDgAAAAzOTyiNGjQIPXr10/Tpk1Tfn5+o89DQkIUGBjo0uIAAADM5HBQqqys1OOPP67KykrddNNNCg8P15133qmcnBwdP37cnTUCAACYwuGgFBISohtvvFHLly9XaWmpVq9erW7dumn69OkKCwvT2LFjtXLlSpWXl7uzXgAAAI9p0SNMLBaL4uPjlZmZqb1792rnzp0aOnSoXnjhBUVGRmrRokWurhMAAMDjHJ7M3ZwLLrhA999/v+6//35VVlbqm2++ccVuAQAATOV0UMrJyWlyu8ViUUhIiC644AJdcMEFP7swAAAAszkdlJKSkmSxWGQYhs32U9ssFouuuuoqvfnmm+rcubPLCgUAAPA0p+co5ebm6rLLLlNubq6qqqpUVVWl3NxcXX755Xr77be1adMmVVZW6oEHHnBHvQAAAB7j9IjSlClTtGzZMptVuK+55hqFhIToD3/4g/bs2aMFCxZo0qRJLi0UAADA05weUfryyy/VsWPHRts7duyoAwcOSDo5uZsH5AIAAF/ndFCKiYnRgw8+qKNHj1q3HT16VA899JAuu+wySdL+/fvVs2dP11UJAABgAqcvva1YsUJjx45Vz549FRkZKYvFopKSEvXp00dr1qyRJH3//feaM2eOy4sFAADwJKeD0kUXXaSioiK9//772rdvnwzDUN++fXXdddfJz+/kAFVSUpKr6wQAAPA4p4PS4cOHFRkZqZEjR2rkyJE2n23fvl1XXHGFy4oDAAAwk9NzlK677jpVVlY22r5169ZGwQkAAMCXOR2UEhISlJiYqGPHjlm3bdq0SaNHj9bcuXNdWhwAAICZnA5Ky5YtU1RUlK6//nodP35cGzZs0PXXX6958+YpLS3NHTUCAACYwumgZLFY9OqrryokJETXXHONxowZo4yMDE2ZMsUd9QEAAJjGocncu3fvbrRt7ty5uuWWW/T73/9eQ4cOtbYZMGCAaysEAAAwiUNBaeDAgY0ehHvq/bPPPqtly5ZZH4hbX1/vtmIBAAA8yaGgVFxc7O46AAAAvI5DQalXr17urgN2tAn014+19Xr6lkFmlwIAQKvj9GRueJbFcvJ/L+3ZydQ6AABojQhKPuJUYAIAAJ5DUAIAALDD4aC0b98+d9YBO0670RAAAHiYw0Fp0KBB6tevn6ZNm6Zt27a5syYAAACv4HBQqqys1OOPP67KykrdfPPNCg8P15133qmcnBwdP37cnTW2aoYYUgIAwCwOB6WQkBDdeOONWr58uUpLS7V69Wp169ZN06dPV1hYmMaOHauVK1eqvLzcnfW2WkzmBgDA81o0mdtisSg+Pl6ZmZnau3evdu7cqaFDh+qFF15QZGSkFi1a5Oo6Wy3mKAEAYB6HFpw8mwsuuED333+/7r//flVWVuqbb75xxW5xGgtDSgAAeJxLgtLpwsLCFBYW5urdtloMKAEAYB7WUfIRjCcBAOB5BCUAAAA7CErejmtvAACYpkVB6bvvvtPy5cs1Y8YM68TtHTt26MiRIy4tDj9hLjcAAJ7n9GTu3bt369prr1VoaKgOHjyou+++W126dNHq1at16NAhvfjii+6os9ViwUkAAMzj9IhSenq6Jk6cqP379yskJMS6fdSoUdq0aZNLi8NPLEznBgDA45wOSv/61790zz33NNr+q1/9SmVlZS4pCj9hwUkAAMzjdFAKCQlRdXV1o+2ff/65unXr5pKi0BhzlAAA8Dyng9LYsWM1b9481dbWSjq5YnRJSYmmT5+ucePGubzA1o4BJQAAzON0UHryySd19OhRde/eXT/++KOGDRum888/Xx06dNAjjzzidAGLFy9WVFSUQkJCFBMTo82bNzfbPi8vTzExMQoJCVGfPn20dOnSRm2ys7MVHR2t4OBgRUdHa/Xq1Y3aHDlyRL///e8VFhamtm3bauDAgSooKHC6fk9hQAkAAM9z+q63jh07asuWLfrwww+1Y8cONTQ0aPDgwbr22mudPnhWVpamTp2qxYsX68orr9Szzz6rUaNGae/evTr33HMbtS8uLtbo0aN199136+WXX9bWrVv1xz/+Ud26dbOOZuXn5ys5OVl/+ctfdNNNN2n16tUaP368tmzZori4OEnSt99+qyuvvFJXX3213n33XXXv3l1ffvmlOnXq5PQ5uJvBJCUAAExjMZz8JX7xxReVnJys4OBgm+01NTVatWqVbrvtNof3FRcXp8GDB2vJkiXWbf369VNSUpIyMjIatZ82bZpycnJUVFRk3Zaamqpdu3YpPz9fkpScnKzq6mq9++671jYjR45U586d9eqrr0qSpk+frq1bt5519Op0J06c0IkTJ6zvq6urFRkZqaqqKnXs2NHh/Tirz4x31GBIH8+6Rt07hJz9CwAAwK7q6mqFhoY6/Pvt9KW3O+64Q1VVVY22Hzt2THfccYfD+6mpqVFBQYESExNtticmJmrbtm1Nfic/P79R+xEjRuiTTz6xzpmy1+b0febk5Cg2Nla//e1v1b17dw0aNEjPPfdcs/VmZGQoNDTU+oqMjHT4XAEAgG9yOigZhiFLE7dgffXVVwoNDXV4PxUVFaqvr1d4eLjN9vDwcLvLDJSVlTXZvq6uThUVFc22OX2fBw4c0JIlS3TBBRfo/fffV2pqqiZPntzsYpkzZsxQVVWV9XX48GGHz/Xn4MIbAADmcXiO0qBBg2SxWGSxWHTNNdcoIOCnr9bX16u4uFgjR450uoAzQ5e9INZc+zO3n22fDQ0Nio2N1aOPPirp5Lnt2bNHS5YssXvpMDg4uNHlRk9iwUkAADzP4aCUlJQkSdq5c6dGjBih9u3bWz8LCgpS7969nVoeoGvXrvL39280elReXt5oROiUHj16NNk+ICBAYWFhzbY5fZ/nnHOOoqOjbdr069dP2dnZDtfvKczlBgDAPA4Hpblz50qSevfureTkZJvHl7REUFCQYmJilJubq5tuusm6PTc3V2PHjm3yO0OGDNFbb71ls23dunWKjY1VYGCgtU1ubq7S0tJs2sTHx1vfX3nllfr8889t9rNv3z716tXrZ52TO7HgJAAAJjBMtGrVKiMwMNBYsWKFsXfvXmPq1KlGu3btjIMHDxqGYRjTp083UlJSrO0PHDhgtG3b1khLSzP27t1rrFixwggMDDRef/11a5utW7ca/v7+RmZmplFUVGRkZmYaAQEBxvbt261tPv74YyMgIMB45JFHjP379xv/+Mc/jLZt2xovv/yyw7VXVVUZkoyqqioX9IR9vaa9bfSa9rZx9Nhxtx4HAIDWwNnfb6eDUl1dnfHEE08Yl112mREeHm507tzZ5uWsRYsWGb169TKCgoKMwYMHG3l5edbPbr/9dmPYsGE27Tdu3GgMGjTICAoKMnr37m0sWbKk0T5fe+0146KLLjICAwONvn37GtnZ2Y3avPXWW0b//v2N4OBgo2/fvsayZcucqtvTQamCoAQAwM/m7O+30+soPfzww1q+fLnS09M1Z84czZo1SwcPHtSbb76phx9+WJMnT3bHwJfXcXYdhpYwDENRM9ZKkgpmX6uw9uZNJgcA4JfA7eso/eMf/9Bzzz2nBx54QAEBAbrlllu0fPlyPfzww9q+fXuLisbZNXcnIAAAcA+ng1JZWZkuueQSSVL79u2ti0/ecMMNeuedd1xbHQAAgImcDko9e/ZUaWmpJOn888/XunXrJEn/+te/TF1n6JeIpQEAADCX00Hppptu0gcffCBJmjJliubMmaMLLrhAt912myZNmuTyAnESF94AAPA8h9dROiUzM9P6z7/5zW8UGRmprVu36vzzz9eYMWNcWlxrx4ASAADmcioo1dbW6g9/+IPmzJmjPn36SJLi4uIUFxfnluLwE+ZyAwDgeU5degsMDNTq1avdVQvO4OTKDQAAwMVaNEfpzTffdEMpaA4PxQUAwPOcnqN0/vnn6y9/+Yu2bdummJgYtWvXzubz1rLgpCcwngQAgLmcDkrLly9Xp06dVFBQoIKCApvPLBYLQcldGFACAMDjnA5KxcXF7qgDTWCKEgAA5nJ6jhLMwV1vAAB4HkEJAADADoKSFzOYzg0AgKkISj6CK28AAHgeQcmLMZkbAABzOX3X25VXXqlhw4Zp+PDhuvLKKxutowT3sDCbGwAAj3N6ROmGG27Qjh079Jvf/EadO3fWkCFDNH36dL333nv6/vvv3VEjAACAKZwOSjNmzNB7772nb7/9Vps2bdLYsWO1c+dOjRkzRmFhYe6oEWKOEgAAZnD60tsp+/fv165du7Rr1y7t3r1bHTt2VEJCgitra/WYowQAgLmcDkrJycnatGmTGhoaNHToUA0dOlQzZszQgAED3FEf/ospSgAAeJ7TQem1115T165dNXHiRF199dVKSEhQ+/bt3VEbAACAqZyeo/TNN99o+fLlqqur0+zZs9W1a1fFxcVp2rRpevfdd91RY6vFgpMAAJjL6aDUqVMnjRkzRvPnz1dBQYH27Nmj6OhozZ8/XzfccIM7aoQkC9O5AQDwOKcvvX3zzTfKy8vTxo0btXHjRu3Zs0ddunTR2LFjdfXVV7ujxlaLydwAAJjL6aDUrVs3de3aVQkJCbr77rs1fPhw9e/f3x214TRM5gYAwPOcDkq7du0iGHkIA0oAAJjL6aB0KiQdPXpUn3/+uSwWiy688EJ169bN5cUBAACYyenJ3P/5z380adIknXPOORo6dKgSEhIUERGhO++8Uz/88IM7amy1DCYpAQBgKqeDUnp6uvLy8vTWW2/pu+++03fffac1a9YoLy9P999/vztqhJijBACAGZy+9Jadna3XX39dw4cPt24bPXq02rRpo/Hjx2vJkiWurK9VYzwJAABzOT2i9MMPPyg8PLzR9u7du3PpzY1YRwkAAM9zOigNGTJEc+fO1fHjx63bfvzxR/35z3/WkCFDXFocAACAmZy+9Pa3v/1NI0eOVM+ePXXppZfKYrFo586dCgkJ0fvvv++OGlst5nIDAGCuFi0PsH//fr388sv697//LcMwNGHCBN16661q06aNO2qEmMwNAIAZnA5KktSmTRvdfffdrq4FZ2JECQAAUzkUlHJychze4ZgxY1pcDOxjQAkAAM9zKCglJSU5tDOLxaL6+vqfUw9OYzCkBACAqRwKSg0NDe6uA2dhYZISAAAe59DyAF26dFFlZaUkadKkSTp27Jhbi8JJ3PUGAIC5HApKNTU1qqqqkiT9/e9/t1lDCZ7BeBIAAJ7n0KW3IUOGKCkpSTExMTIMQ5MnT7a7FMDKlStdWiAAAIBZHApKL7/8sp566il9+eWXslgsqqqqYlTJA7jyBgCAuRwKSuHh4crMzJQkRUVF6aWXXlJYWJhbC4Mt5nIDAOB5Ti84WVxc7I460ASD2dwAAJjK6YfiwhwsDwAAgOcRlLwY40kAAJiLoAQAAGAHQcmLMUUJAABzOR2UduzYoU8//dT6fs2aNUpKStLMmTNVU1Pj0uJwEtOTAAAwh9NB6Z577tG+ffskSQcOHNCECRPUtm1bvfbaa3rooYdcXmBrxkNxAQAwl9NBad++fRo4cKAk6bXXXtPQoUP1yiuv6IUXXlB2drar64N4fAkAAGZxOigZhqGGhgZJ0vr16zV69GhJUmRkpCoqKlxbHQAAgImcDkqxsbH661//qpdeekl5eXm6/vrrJZ1ciDI8PNzlBbZqXHkDAMBUTgelBQsWaMeOHbrvvvs0a9YsnX/++ZKk119/XfHx8S4vECw2CQCAWZx+hMmAAQNs7no75YknnpC/v79LisJJDCgBAGAup0eUDh8+rK+++sr6/uOPP9bUqVP14osvKjAw0KXF4STGkwAAMIfTQel3v/udNmzYIEkqKyvTddddp48//lgzZ87UvHnznC5g8eLFioqKUkhIiGJiYrR58+Zm2+fl5SkmJkYhISHq06ePli5d2qhNdna2oqOjFRwcrOjoaK1evdru/jIyMmSxWDR16lSna3c3FpwEAMBcTgelzz77TJdffrkk6Z///Kf69++vbdu2WZcIcEZWVpamTp2qWbNmqbCwUAkJCRo1apRKSkqabF9cXKzRo0crISFBhYWFmjlzpiZPnmyzLEF+fr6Sk5OVkpKiXbt2KSUlRePHj9dHH33UaH//+te/tGzZMg0YMMCpuj2NKUoAAJjD6aBUW1ur4OBgSSeXBxgzZowkqW/fviotLXVqX/Pnz9edd96pu+66S/369dOCBQsUGRmpJUuWNNl+6dKlOvfcc7VgwQL169dPd911lyZNmqQnn3zS2mbBggW67rrrNGPGDPXt21czZszQNddcowULFtjs6/vvv9ett96q5557Tp07d3aqbk9hwUkAAMzldFC6+OKLtXTpUm3evFm5ubkaOXKkJOnrr79WWFiYw/upqalRQUGBEhMTbbYnJiZq27ZtTX4nPz+/UfsRI0bok08+UW1tbbNtztznvffeq+uvv17XXnutQ/WeOHFC1dXVNi9PsTBLCQAAUzgdlB577DE9++yzGj58uG655RZdeumlkqScnBzrJTlHVFRUqL6+vtHaS+Hh4SorK2vyO2VlZU22r6ursy52aa/N6ftctWqVCgoKlJGR4XC9GRkZCg0Ntb4iIyMd/i4AAPBNTi8PMHz4cFVUVKi6utrmktUf/vAHtW3b1ukCzlwjyDCMZtcNaqr9mdub2+fhw4c1ZcoUrVu3TiEhIQ7XOWPGDKWnp1vfV1dXuz0sMZkbAABzOR2UJMnf37/RvJ7evXs7tY+uXbvK39+/0ehReXm53RW+e/To0WT7gIAA62U/e21O7bOgoEDl5eWKiYmxfl5fX69NmzbpmWee0YkTJ5pcDyo4ONg6N8vjuPIGAIApWhSUXn/9df3zn/9USUmJampqbD7bsWOHQ/sICgpSTEyMcnNzddNNN1m35+bmauzYsU1+Z8iQIXrrrbdstq1bt06xsbHWNZyGDBmi3NxcpaWl2bQ5tWr4Nddc02jBzDvuuEN9+/bVtGnTvGrRTAaUAAAwl9NzlBYuXKg77rhD3bt3V2FhoS6//HKFhYXpwIEDGjVqlFP7Sk9P1/Lly7Vy5UoVFRUpLS1NJSUlSk1NlXTyctdtt91mbZ+amqpDhw4pPT1dRUVFWrlypVasWKEHHnjA2ubUZbXHHntM//73v/XYY49p/fr11nWSOnTooP79+9u82rVrp7CwMPXv39/Z7vAIBpQAADCH0yNKixcv1rJly3TLLbfo73//ux566CH16dNHDz/8sL755hun9pWcnKzKykrNmzdPpaWl6t+/v9auXatevXpJkkpLS23WVIqKitLatWuVlpamRYsWKSIiQgsXLtS4ceOsbeLj47Vq1SrNnj1bc+bM0XnnnaesrCzFxcU5e6qmM5ikBACAqSyGk7/Gbdu2VVFRkXr16qXu3bsrNzdXl156qfbv368rrrhClZWV7qrVq1RXVys0NFRVVVXq2LGjW47x1bc/6KrHNigk0E///otzo3UAAKAxZ3+/nb701qNHD2sY6tWrl7Zv3y7p5KrZjIC4Ft0JAIC5nA5Kv/71r60Tqu+8806lpaXpuuuuU3Jyss2kbLgOC04CAGAOp+coLVu2TA0NDZJOTq7u0qWLtmzZohtvvNE6CRsAAOCXwOmg5OfnJz+/nwaixo8fr/Hjx7u0KNjiobgAAJijResoHT9+XLt371Z5ebl1dOmUUw/JBQAA8HVOB6X33ntPt912m/XZaqezWCyqr693SWFgMjcAAGZzejL3fffdp9/+9rcqLS1VQ0ODzYuQ5B5ceQMAwBxOB6Xy8nKlp6fbfR4bXMfgISYAAJjK6aD0m9/8Rhs3bnRDKbDHwmxuAABM4fQcpWeeeUa//e1vtXnzZl1yySXWh9GeMnnyZJcV19oxRwkAAHM5HZReeeUVvf/++2rTpo02btxoM9phsVgISm7AeBIAAOZwOijNnj1b8+bN0/Tp023WU4LrMaAEAIC5nE46NTU1Sk5OJiR5EkNKAACYwum0c/vttysrK8sdtQAAAHgVpy+91dfX6/HHH9f777+vAQMGNJrMPX/+fJcV19oZzOYGAMBUTgelTz/9VIMGDZIkffbZZzafcRu7e9CrAACYw+mgtGHDBnfUgSYwngQAgLmYke0DGKkDAMAcBCUvxhQlAADMRVDyAQwoAQBgDoKSV2NICQAAMzkdlDZt2qS6urpG2+vq6rRp0yaXFAVbDCgBAGAOp4PS1VdfrW+++abR9qqqKl199dUuKQonMUcJAABzOR2UDMNo8i6syspKtWvXziVFwRZ3vQEAYA6H11G6+eabJZ380Z44caKCg4Otn9XX12v37t2Kj493fYUAAAAmcTgohYaGSjo5otShQwe1adPG+llQUJCuuOIK3X333a6vsBXjyhsAAOZyOCg9//zzkqTevXvrgQce4DKbB3HhDQAAczg9R2nu3LkKDg7W+vXr9eyzz+rYsWOSpK+//lrff/+9ywtszZjMDQCAuZx+1tuhQ4c0cuRIlZSU6MSJE7ruuuvUoUMHPf744zp+/LiWLl3qjjpbNeZyAwBgDqdHlKZMmaLY2Fh9++23NvOUbrrpJn3wwQcuLa61M5ilBACAqZweUdqyZYu2bt2qoKAgm+29evXSkSNHXFYYTseQEgAAZnB6RKmhoUH19fWNtn/11Vfq0KGDS4rCScxRAgDAXE4Hpeuuu04LFiywvrdYLPr+++81d+5cjR492pW14b+YowQAgDmcvvT21FNP6eqrr1Z0dLSOHz+u3/3ud9q/f7+6du2qV1991R01tlqMKAEAYC6ng1JERIR27typV199VTt27FBDQ4PuvPNO3XrrrTaTu+E6DCgBAGAOp4OSJLVp00aTJk3SpEmTXF0PAACA13AoKOXk5Di8wzFjxrS4GNhieQAAAMzlUFBKSkpyaGcWi6XJO+Lw8zCZGwAAczgUlBoaGtxdB5rAZG4AAMzl9PIA8DwL07kBADBFiyZzf/DBB/rggw9UXl7eaLRp5cqVLikMAADAbE4HpT//+c+aN2+eYmNjdc4558jCBBq3o4sBADCH00Fp6dKleuGFF5SSkuKOenAa5igBAGAup+co1dTUKD4+3h21wA4GlAAAMIfTQemuu+7SK6+84o5aAAAAvIrTl96OHz+uZcuWaf369RowYIACAwNtPp8/f77LimvtWHASAABzOR2Udu/erYEDB0qSPvvsM5vPmNjtHvQrAADmcDoobdiwwR11oAlM5gYAwFwsOAkAAGCHwyNKN998s0Pt3njjjRYXA1sMKAEAYC6Hg1JoaKg760AzmKIEAIA5HA5Kzz//vDvrQBMMJikBAGAq5ij5AEaUAAAwB0HJizGeBACAuQhKPsDCQ0wAADAFQQkAAMAOgpIXYy43AADmMj0oLV68WFFRUQoJCVFMTIw2b97cbPu8vDzFxMQoJCREffr00dKlSxu1yc7OVnR0tIKDgxUdHa3Vq1fbfJ6RkaHLLrtMHTp0UPfu3ZWUlKTPP//cpeflSkzmBgDAHKYGpaysLE2dOlWzZs1SYWGhEhISNGrUKJWUlDTZvri4WKNHj1ZCQoIKCws1c+ZMTZ48WdnZ2dY2+fn5Sk5OVkpKinbt2qWUlBSNHz9eH330kbVNXl6e7r33Xm3fvl25ubmqq6tTYmKi/vOf/7j9nJ3DkBIAAGayGCYu1hMXF6fBgwdryZIl1m39+vVTUlKSMjIyGrWfNm2acnJyVFRUZN2WmpqqXbt2KT8/X5KUnJys6upqvfvuu9Y2I0eOVOfOnfXqq682WcfRo0fVvXt35eXlaejQoQ7VXl1drdDQUFVVValjx44OfcdZBYe+0bgl+eod1lYbH7zaLccAAKA1cfb327QRpZqaGhUUFCgxMdFme2JiorZt29bkd/Lz8xu1HzFihD755BPV1tY228bePiWpqqpKktSlSxe7bU6cOKHq6mqbl7sxRwkAAHOZFpQqKipUX1+v8PBwm+3h4eEqKytr8jtlZWVNtq+rq1NFRUWzbezt0zAMpaen66qrrlL//v3t1puRkaHQ0FDrKzIy8qzn6CoWJikBAGAK0ydznxkCDMNoNhg01f7M7c7s87777tPu3bvtXpY7ZcaMGaqqqrK+Dh8+3Gx7V2BACQAAczn8rDdX69q1q/z9/RuN9JSXlzcaETqlR48eTbYPCAhQWFhYs22a2uf/+3//Tzk5Odq0aZN69uzZbL3BwcEKDg4+63m5A+NJAACYw7QRpaCgIMXExCg3N9dme25uruLj45v8zpAhQxq1X7dunWJjYxUYGNhsm9P3aRiG7rvvPr3xxhv68MMPFRUV5YpTAgAAvzCmjShJUnp6ulJSUhQbG6shQ4Zo2bJlKikpUWpqqqSTl7uOHDmiF198UdLJO9yeeeYZpaen6+6771Z+fr5WrFhhc9lsypQpGjp0qB577DGNHTtWa9as0fr167VlyxZrm3vvvVevvPKK1qxZow4dOlhHoEJDQ9WmTRsP9kDzmMwNAIC5TA1KycnJqqys1Lx581RaWqr+/ftr7dq16tWrlySptLTUZk2lqKgorV27VmlpaVq0aJEiIiK0cOFCjRs3ztomPj5eq1at0uzZszVnzhydd955ysrKUlxcnLXNqeUIhg8fblPP888/r4kTJ7rvhFuKa28AAJjC1HWUfJkn1lH66EClkpdtV59u7fTh/cPdcgwAAFoTn1lHCY5jQAkAAHMQlLwYQ30AAJiLoOQDWHASAABzEJS8GLPHAAAwF0HJBzCeBACAOQhKXsxglhIAAKYiKPkApigBAGAOghIAAIAdBCVvxpU3AABMRVDyARamcwMAYAqCkhdjQAkAAHMRlHwAk7kBADAHQcmLseAkAADmIigBAADYQVDyYiw4CQCAuQhKPoCH4gIAYA6CEgAAgB0EJS/GZG4AAMxFUPIBXHgDAMAcBCUvxoASAADmIih5MeO/196Yyw0AgDkISj6AoAQAgDkISl6MS28AAJiLoOTN/puULEznBgDAFAQlL3ZqZW4uvQEAYA6Ckg8gJwEAYA6CkhdjwUkAAMxFUPJi1qDEtTcAAExBUPIBxCQAAMxBUPJiXHkDAMBcBCUvxsrcAACYi6DkxaxTlEytAgCA1oug5AMsDCkBAGAKgpIXY3kAAADMRVDyav+do2RyFQAAtFYEJS92akSJK28AAJiDoOQDeCguAADmICh5MaYoAQBgLoKSFzNYHwAAAFMRlHwAOQkAAHMQlLyYwcU3AABMRVDyYtz1BgCAuQhKXuynKUokJQAAzEBQ8gGMKAEAYA6CkhczeIYJAACmIij5AEaUAAAwB0HJBzBHCQAAcxCUvBhX3gAAMBdByYudWkeJS28AAJiDoOTFGFECAMBcBCUfYGFICQAAUxCUvBgjSgAAmIug5MV+WpkbAACYgaDkA7jyBgCAOQhKXqzhv9feyEkAAJiDoOTFGhpOBiV/P6ISAABmICh5sfr/jij5ce0NAABTmB6UFi9erKioKIWEhCgmJkabN29utn1eXp5iYmIUEhKiPn36aOnSpY3aZGdnKzo6WsHBwYqOjtbq1at/9nHNwIgSAADmMjUoZWVlaerUqZo1a5YKCwuVkJCgUaNGqaSkpMn2xcXFGj16tBISElRYWKiZM2dq8uTJys7OtrbJz89XcnKyUlJStGvXLqWkpGj8+PH66KOPWnxcs9T/Nyj5EZQAADCFxTDMW60nLi5OgwcP1pIlS6zb+vXrp6SkJGVkZDRqP23aNOXk5KioqMi6LTU1Vbt27VJ+fr4kKTk5WdXV1Xr33XetbUaOHKnOnTvr1VdfbdFxm1JdXa3Q0FBVVVWpY8eOzp14M47X1uub/9Tox9p6Ldrwhd7YcURjLo3QwlsGuewYAAC0Vs7+fps2olRTU6OCggIlJibabE9MTNS2bdua/E5+fn6j9iNGjNAnn3yi2traZtuc2mdLjitJJ06cUHV1tc3LHdZ+Wqr4zA91zf/m6Y0dRyRJIYGmXyEFAKBVMu0XuKKiQvX19QoPD7fZHh4errKysia/U1ZW1mT7uro6VVRUNNvm1D5bclxJysjIUGhoqPUVGRnp2Ik6KSTQX0H+fuoYEqDwjsG6MLy9xg3u6ZZjAQCA5gWYXcCZzzEzDKPZZ5s11f7M7Y7s09njzpgxQ+np6db31dXVbglLo/r30OhHRrl8vwAAwHmmBaWuXbvK39+/0ShOeXl5o9GeU3r06NFk+4CAAIWFhTXb5tQ+W3JcSQoODlZwcLBjJ/cz8ABcAAC8h2mX3oKCghQTE6Pc3Fyb7bm5uYqPj2/yO0OGDGnUft26dYqNjVVgYGCzbU7tsyXHBQAArZRholWrVhmBgYHGihUrjL179xpTp0412rVrZxw8eNAwDMOYPn26kZKSYm1/4MABo23btkZaWpqxd+9eY8WKFUZgYKDx+uuvW9ts3brV8Pf3NzIzM42ioiIjMzPTCAgIMLZv3+7wcR1RVVVlSDKqqqpc0BMAAMATnP39NnWOUnJysiorKzVv3jyVlpaqf//+Wrt2rXr16iVJKi0ttVnbKCoqSmvXrlVaWpoWLVqkiIgILVy4UOPGjbO2iY+P16pVqzR79mzNmTNH5513nrKyshQXF+fwcQEAACST11HyZe5aRwkAALiPz6yjBAAA4O0ISgAAAHYQlAAAAOwgKAEAANhBUAIAALCDoAQAAGAHQQkAAMAOghIAAIAdBCUAAAA7TH2EiS87taB5dXW1yZUAAABHnfrddvTBJASlFjp27JgkKTIy0uRKAACAs44dO6bQ0NCztuNZby3U0NCgr7/+Wh06dJDFYnHpvqurqxUZGanDhw/zHDk3op89g372DPrZM+hnz3FXXxuGoWPHjikiIkJ+fmefgcSIUgv5+fmpZ8+ebj1Gx44d+RfRA+hnz6CfPYN+9gz62XPc0deOjCSdwmRuAAAAOwhKAAAAdhCUvFBwcLDmzp2r4OBgs0v5RaOfPYN+9gz62TPoZ8/xlr5mMjcAAIAdjCgBAADYQVACAACwg6AEAABgB0EJAADADoLSz7R48WJFRUUpJCREMTEx2rx5c7Pt8/LyFBMTo5CQEPXp00dLly5t1CY7O1vR0dEKDg5WdHS0Vq9e7fRxDcPQn/70J0VERKhNmzYaPny49uzZ8/NO1kTe2M+1tbWaNm2aLrnkErVr104RERG67bbb9PXXX//8EzaRN/b1me655x5ZLBYtWLDA6fPzFt7cz0VFRRozZoxCQ0PVoUMHXXHFFSopKWn5yZrIW/v5+++/13333aeePXuqTZs26tevn5YsWfLzTtZEZvTzpk2bdOONNyoiIkIWi0Vvvvlmo3245LfQQIutWrXKCAwMNJ577jlj7969xpQpU4x27doZhw4darL9gQMHjLZt2xpTpkwx9u7dazz33HNGYGCg8frrr1vbbNu2zfD39zceffRRo6ioyHj00UeNgIAAY/v27U4dNzMz0+jQoYORnZ1tfPrpp0ZycrJxzjnnGNXV1e7rEDfx1n7+7rvvjGuvvdbIysoy/v3vfxv5+flGXFycERMT494OcSNv7evTrV692rj00kuNiIgI46mnnnJ5H3iCN/fzF198YXTp0sV48MEHjR07dhhffvml8fbbbxv/93//574OcRNv7ue77rrLOO+884wNGzYYxcXFxrPPPmv4+/sbb775pvs6xE3M6ue1a9cas2bNMrKzsw1JxurVqxsdyxW/hQSln+Hyyy83UlNTbbb17dvXmD59epPtH3roIaNv37422+655x7jiiuusL4fP368MXLkSJs2I0aMMCZMmODwcRsaGowePXoYmZmZ1s+PHz9uhIaGGkuXLnXiDL2Dt/ZzUz7++GNDkt3/QHg7b+/rr776yvjVr35lfPbZZ0avXr18Nih5cz8nJycbv//97507IS/lzf188cUXG/PmzbNpM3jwYGP27NkOnJl3MaufT9dUUHLVbyGX3lqopqZGBQUFSkxMtNmemJiobdu2Nfmd/Pz8Ru1HjBihTz75RLW1tc22ObVPR45bXFyssrIymzbBwcEaNmyY3dq8lTf3c1OqqqpksVjUqVMnh87Pm3h7Xzc0NCglJUUPPvigLr744padpBfw5n5uaGjQO++8owsvvFAjRoxQ9+7dFRcX1+QlDW/nzf0sSVdddZVycnJ05MgRGYahDRs2aN++fRoxYkTLTtgkZvWzI1z1W0hQaqGKigrV19crPDzcZnt4eLjKysqa/E5ZWVmT7evq6lRRUdFsm1P7dOS4p/7Xmdq8lTf385mOHz+u6dOn63e/+51PPizT2/v6scceU0BAgCZPntyyE/QS3tzP5eXl+v7775WZmamRI0dq3bp1uummm3TzzTcrLy+v5SdtAm/uZ0lauHChoqOj1bNnTwUFBWnkyJFavHixrrrqqpadsEnM6mdHuOq3MMDhlmiSxWKxeW8YRqNtZ2t/5nZH9umqNr7Cm/tZOjmxe8KECWpoaNDixYubORPv5419XVBQoL/97W/asWOHz/4dPpM39nNDQ4MkaezYsUpLS5MkDRw4UNu2bdPSpUs1bNiws56Xt/HGfpZOBqXt27crJydHvXr10qZNm/THP/5R55xzjq699loHzsy7mNXP7qjtTIwotVDXrl3l7+/fKJWWl5c3Sq+n9OjRo8n2AQEBCgsLa7bNqX06ctwePXpIklO1eStv7udTamtrNX78eBUXFys3N9cnR5Mk7+7rzZs3q7y8XOeee64CAgIUEBCgQ4cO6f7771fv3r1bfM5m8OZ+7tq1qwICAhQdHW3Tpl+/fj5315s39/OPP/6omTNnav78+brxxhs1YMAA3XfffUpOTtaTTz7Z8pM2gVn97AhX/RYSlFooKChIMTExys3Ntdmem5ur+Pj4Jr8zZMiQRu3XrVun2NhYBQYGNtvm1D4dOW5UVJR69Ohh06ampkZ5eXl2a/NW3tzP0k8haf/+/Vq/fr31X3Jf5M19nZKSot27d2vnzp3WV0REhB588EG9//77LT9pE3hzPwcFBemyyy7T559/btNm37596tWrl5Nnai5v7ufa2lrV1tbKz8/2J9jf3986qucrzOpnR7jst9Dhad9o5NQtkStWrDD27t1rTJ061WjXrp1x8OBBwzAMY/r06UZKSoq1/albItPS0oy9e/caK1asaHRL5NatWw1/f38jMzPTKCoqMjIzM+3eemrvuIZx8pbI0NBQ44033jA+/fRT45ZbbvH55QG8rZ9ra2uNMWPGGD179jR27txplJaWWl8nTpzwUO+4lrf2dVN8+a43b+7nN954wwgMDDSWLVtm7N+/33j66acNf39/Y/PmzR7oGdfy5n4eNmyYcfHFFxsbNmwwDhw4YDz//PNGSEiIsXjxYg/0jGuZ1c/Hjh0zCgsLjcLCQkOSMX/+fKOwsLDRUjk/97eQoPQzLVq0yOjVq5cRFBRkDB482MjLy7N+dvvttxvDhg2zab9x40Zj0KBBRlBQkNG7d29jyZIljfb52muvGRdddJERGBho9O3b18jOznbquIZx8rbIuXPnGj169DCCg4ONoUOHGp9++qlrTtoE3tjPxcXFhqQmXxs2bHDZuXuaN/Z1U3w5KBmGd/fzihUrjPPPP98ICQkxLr30Up9c2+cUb+3n0tJSY+LEiUZERIQREhJiXHTRRcb//u//Gg0NDa45cQ8zo583bNjQ5H9/b7/9dmsbV/wWWgzjvzOoAAAAYIM5SgAAAHYQlAAAAOwgKAEAANhBUAIAALCDoAQAAGAHQQkAAMAOghIAAIAdBCUAAAA7CEoAflH+9Kc/aeDAgWaXAeAXgpW5AfgMi8XS7Oe33367nnnmGZ04ccK0BxQfOnRIF154oY4ePaqOHTuaUgMA1wkwuwAAcFRpaan1n7OysvTwww/bPOm+TZs2at++vdq3b29GeZKkNWvWaPjw4YQk4BeCS28AfEaPHj2sr9DQUFkslkbbzrz0NnHiRCUlJenRRx9VeHi4OnXqpD//+c+qq6vTgw8+qC5duqhnz55auXKlzbGOHDmi5ORkde7cWWFhYRo7dqwOHjx41hrXrFmjMWPGNPnZt99+q1tvvVXdunVTmzZtdMEFF+j555//OV0CwM0ISgB+8T788EN9/fXX2rRpk+bPn68//elPuuGGG9S5c2d99NFHSk1NVWpqqg4fPixJ+uGHH3T11Verffv22rRpk7Zs2aL27dtr5MiRqqmpsXuc7777Tps3b7YblObMmaO9e/fq3XffVVFRkZYsWaKuXbu65ZwBuAaX3gD84nXp0kULFy6Un5+fLrroIj3++OP64YcfNHPmTEnSjBkzlJmZqa1bt2rChAlatWqV/Pz8tHz5cuu8qOeff16dOnXSxo0blZiY2ORx1q5dq0suuUSRkZFNfl5SUqJBgwYpNjZWktS7d2/XnywAlyIoAfjFu/jii+Xn99MAenh4uPr372997+/vr7CwMJWXl0uSCgoK9MUXX6hDhw42+zl+/Li+/PJLu8dp7rKbJP3P//yPxo0bpx07digxMVFJSUmKj49v6WkB8ACCEoBfvMDAQJv3FoulyW0NDQ2SpIaGBsXExOgf//hHo31169atyWPU1tbqvffe04wZM+zWMWrUKB06dEjvvPOO1q9fr2uuuUb33nuvnnzySWdPCYCHEJQA4AyDBw9WVlaWunfv7vDdaxs2bFCnTp3OuoZTt27dNHHiRE2cOFEJCQl68MEHCUqAF2MyNwCc4dZbb1XXrl01duxYbd68WcXFxcrLy9OUKVP01VdfNfmdnJycZi+7SdLDDz+sNWvW6IsvvtCePXv09ttvq1+/fu44BQAuQlACgDO0bdtWmzZt0rnnnqubb75Z/fr106RJk/Tjjz/aHWHKycnR2LFjm91vUFCQZsyYoQEDBmjo0KHy9/fXqlWr3HEKAFyElbkB4GfasWOHfv3rX+vo0aON5j4B8G2MKAHAz1RXV6enn36akAT8AjGiBAAAYAcjSgAAAHYQlAAAAOwgKAEAANhBUAIAALCDoAQAAGAHQQkAAMAOghIAAIAdBCUAAAA7CEoAAAB2/H9va9+/Ir+bQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### Plot data ###\n", + "alpha = 5;\n", + "\n", + "### MFR ###\n", + "plt.plot(mass[:,0], -360/alpha * mass[:,1], 'tab:blue');\n", + "plt.xlabel('Time / s');\n", + "plt.ylabel('Inlet mass flow rate / kg/s');\n", + "\n", + "plt.savefig('./Output/5-b_MFR.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "839f84be", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAGwCAYAAAAT5rDQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwUxd0//p6ZPVl2OZZTQQ5BDhNAIEbwiopoBIPxAGOCPip5NCbxIJqId/Tx8YgxPP7wBgU0EVTEA/kCiyiHXHKKnHKfy+7Csid7zEz//pip7k9VV3X3zM6ys2y9X6997UxPdVV1dR2f++MzDMOAhoaGhoaGhoaGhoaGRpOCv6E7oKGhoaGhoaGhoaGhoXHqoZlBDQ0NDQ0NDQ0NDQ2NJgjNDGpoaGhoaGhoaGhoaDRBaGZQQ0NDQ0NDQ0NDQ0OjCUIzgxoaGhoaGhoaGhoaGk0QmhnU0NDQ0NDQ0NDQ0NBogtDMoIaGhoaGhoaGhoaGRhNESkN3QCMxCIfDOHz4MLKzs+Hz+Rq6OxoaGhoaGhoaGhoaDQTDMFBWVoYzzjgDfr9a/6eZwdMEhw8fRufOnRu6GxoaGhoaGhoaGhoaSYIDBw6gU6dOyt81M3iaIDs7G0Dkhefk5DRwbzQ0NDQ0NDQ0NDQ0GgqlpaXo3LmzySOooJnB0wTMNDQnJ0czgxoaGhoaGhoaGhoaru5jOoCMhoaGhoaGhoaGhoZGE4RmBjU0NDQ0NDQ0NDQ0NJogNDOooaGhoaGhoaGhoaHRBKF9BpsQwuEwampqGrobGg2A1NRUBAKBhu6GhoaGhoaGhoZGEkEzg00ENTU12LNnD8LhcEN3RaOB0LJlS3To0EHnodTQ0NDQ0NDQ0ACgmcEmAcMwcOTIEQQCAXTu3Nkx8aTG6QfDMFBZWYmCggIAQMeOHRu4RxoaGhoaGhoaGskAzQw2AQSDQVRWVuKMM85As2bNGro7Gg2AzMxMAEBBQQHatWunTUY1NDQ0NDQ0NDR0AJmmgFAoBABIS0tr4J5oNCSYIKC2traBe6KhoaGhoaGhoZEM0MxgE4L2FWva0O9fQ0NDQ0NDQ0ODQjODGhoaGhoaGhoaGhoaTRANzgy+9tpr6NatGzIyMjBo0CAsXbrUsfzixYsxaNAgZGRkoHv37njjjTdsZWbNmoW+ffsiPT0dffv2xezZs7nfy8rKcP/996NLly7IzMzE0KFD8d1333FlnnrqKfTu3RtZWVlo1aoVhg0bhlWrVnFl8vPzMXbsWHTo0AFZWVkYOHAgPv74Y67Mjh07MGrUKLRp0wY5OTm48MIL8fXXX9v6PHXqVPTr1w8ZGRno0KED/vSnPzmOg4aGhoaGhoaGhoaGRl3QoMzgzJkzcf/99+PRRx/F+vXrcfHFF+OXv/wl9u/fLy2/Z88eXHPNNbj44ouxfv16PPLII7j33nsxa9Yss8yKFSswZswYjB07Fhs3bsTYsWMxevRojpEbN24c8vLy8N5772HTpk0YPnw4hg0bhkOHDpllzjnnHEyaNAmbNm3CsmXL0LVrVwwfPhyFhYVmmbFjx2L79u34/PPPsWnTJlx//fUYM2YM1q9fb5YZMWIEgsEgFi1ahLVr12LAgAEYOXIk8vPzzTIvv/wyHn30UTz88MPYvHkzvvrqK1x11VUJGWONxoH/+q//wnXXXdfQ3dDQ0NDQ0NDQ0GhKMBoQ559/vnH33Xdz13r37m08/PDD0vJ//etfjd69e3PX7rrrLuOCCy4wv48ePdq4+uqruTJXXXWVcfPNNxuGYRiVlZVGIBAw5syZw5Xp37+/8eijjyr7WlJSYgAwFi5caF7Lysoypk+fzpVr3bq1MXnyZMMwDKOwsNAAYCxZssT8vbS0lKvn+PHjRmZmJldvPGD9Kykpsf128uRJY8uWLcbJkyfr1Mapxm233WYAMO666y7bb3/4wx8MAMZtt9126jtWD7jtttuMUaNG1WsbjXUeaGhoaGjEjppgyDhZE1T+Xl5Vewp7k1iEw2Gjslr9bBoaGs68AUWDaQZramqwdu1aDB8+nLs+fPhwLF++XHrPihUrbOWvuuoqrFmzxoyQqCrD6gwGgwiFQsjIyODKZGZmYtmyZcq+vvXWW2jRogX69+9vXr/oooswc+ZMHD9+HOFwGDNmzEB1dTV+8YtfAAByc3PRp08fTJ8+HRUVFQgGg3jzzTfRvn17DBo0CACQl5eHcDiMQ4cOoU+fPujUqRNGjx6NAwcOOA0fqqurUVpayv2djujcuTNmzJiBkydPmteqqqrwwQcf4KyzzmrAnmloaGhoaCQnDMPAtf/fMlz0wiKUVdkjSM/fnI+fPjUfU5btaYDe1R0PzNyAQf+Th8MnTroX1tDQcESDMYNFRUUIhUJo3749d719+/acCSVFfn6+tHwwGERRUZFjGVZndnY2hgwZgmeeeQaHDx9GKBTC+++/j1WrVuHIkSPcfXPmzEHz5s2RkZGBf/3rX8jLy0ObNm3M32fOnIlgMIjc3Fykp6fjrrvuwuzZs3H22WcDiERvzMvLw/r165GdnW3WM2/ePLRs2RIAsHv3boTDYfzv//4vJk6ciI8//hjHjx/HlVdeiZqaGuX4Pffcc2jRooX517lzZ2VZGwwDqKhomD/D8N5PAAMHDsRZZ52FTz75xLz2ySefoHPnzjjvvPOExzLw4osvonv37sjMzET//v05H85QKIQ777wT3bp1Q2ZmJnr16oX/+7//4+pg5povvfQSOnbsiNzcXPzxj39UpmPYvn07fD4ftm3bxl1/+eWX0bVrVxiG4aldEV27dsXEiRO5awMGDMBTTz1lfi8pKcF///d/o127dsjJycHll1+OjRs3OtaroaGhoXH6o6o2jG35ZSgqr8GmQyW235/6fDPCBvDMnC0N0Lu649MNh1FZE8KstQcbuisaGo0eDR5ARgx3bxiGYwh8WXnxulud7733HgzDwJlnnon09HS88soruOWWW2yJuC+77DJs2LABy5cvx9VXX43Ro0ejoKDA/P2xxx5DcXExFi5ciDVr1mD8+PG46aabsGnTJrPde+65B+3atcPSpUuxevVqjBo1CiNHjjQZz3A4jNraWrzyyiu46qqrcMEFF+CDDz7Ajz/+KA00wzBhwgSUlJSYf26aRA6VlUDz5g3zV1npvZ9R3H777Xj33XfN7++88w7uuOMOW7nHHnsM7777Ll5//XVs3rwZDzzwAH73u99h8eLFACJj3alTJ3z44YfYsmULnnjiCTzyyCP48MMPuXq+/vpr7Nq1C19//TWmTZuGqVOnYurUqdK+9erVC4MGDcK///1v7vp//vMf3HLLLfD5fJ7bjQWGYWDEiBHIz8/H3LlzsXbtWgwcOBBXXHEFjh8/Hne9GhoaGhqNHzWhsPk5v6TK9vvxCrWwWUNDo2khpaEabtOmDQKBgE0LWFBQYNPsMXTo0EFaPiUlBbm5uY5laJ1nn302Fi9ejIqKCpSWlqJjx44YM2YMunXrxt2XlZWFHj16oEePHrjgggvQs2dPTJkyBRMmTMCuXbswadIk/PDDDzj33HMBAP3798fSpUvx6quv4o033sCiRYswZ84cFBcXIycnB0AkempeXh6mTZuGhx9+GB07dgQA9O3b12y3bdu2aNOmjTKQDgCkp6cjPT1d+fvphLFjx2LChAnYu3cvfD4fvv32W8yYMQPffPONWaaiogIvv/wyFi1ahCFDhgAAunfvjmXLluHNN9/EpZdeitTUVPz973837+nWrRuWL1+ODz/8EKNHjzavt2rVCpMmTUIgEEDv3r0xYsQIfPXVV/j9738v7d9vf/tbTJo0Cc888wyASATZtWvXYvr06QDgud1Y8PXXX2PTpk0oKCgw58FLL72ETz/9FB9//DH++7//O656NTQ0NDQaP4KEGUxLscv9Y7PRSV4EAjp/roZGXdFgzGBaWhoGDRqEvLw8/PrXvzav5+XlYdSoUdJ7hgwZgi+++IK7tmDBAgwePBipqalmmby8PDzwwANcmaFDh9rqy8rKQlZWFoqLizF//ny8+OKLjn02DAPV1dUAgMqohsvv5zfZQCCAcDjsWMbv95tlLrzwQgARc8NOnToBAI4fP46ioiJ06dLFsT9xo1kzoLy8fur20naMaNOmDUaMGIFp06aZGjFqrgsAW7ZsQVVVFa688kruek1NDWdO+sYbb2Dy5MnYt28fTp48iZqaGgwYMIC759xzz+W0xB07djS1vTLcfPPNeOihh7By5UpccMEF+Pe//40BAwZwDL6XdmPB2rVrUV5ebgpBGE6ePIldu3bFXa+GhoaGRuNHbchi94IhO+tXS5jFxoyAgyWZhoaGNzQYMwgA48ePx9ixYzF48GAMGTIEb731Fvbv34+7774bQMQU8tChQ6aG5e6778akSZMwfvx4/P73v8eKFSswZcoUfPDBB2ad9913Hy655BK88MILGDVqFD777DMsXLiQCw4zf/58GIaBXr16YefOnXjooYfQq1cv3H777QAiWqZnn30Wv/rVr9CxY0ccO3YMr732Gg4ePIibbroJANC7d2/06NEDd911F1566SXk5ubi008/RV5eHubMmQMgwpi2atUKt912G5544glkZmbi7bffxp49ezBixAgAkRQWo0aNwn333Ye33noLOTk5mDBhAnr37o3LLrusfgbe5wOysuqn7nrCHXfcYeZefPXVV22/M+b6yy+/xJlnnsn9xjRnH374IR544AH885//xJAhQ5CdnY1//OMftvyRTLDAwEw9VejYsSMuu+wy/Oc//zHNfO+66y7zd6/tUvj9ftMEmoH6LYbDYXTs2JHTjjIwf1QNDQ0NjaYJyuzJGL8Y3feTFgG/ZgY1NOqKBmUGx4wZg2PHjuHpp5/GkSNH8JOf/ARz5841NWJHjhzhTCW7deuGuXPn4oEHHsCrr76KM844A6+88gpuuOEGs8zQoUMxY8YMPPbYY3j88cdx9tlnY+bMmfj5z39ulikpKcGECRNw8OBBtG7dGjfccAOeffZZkwkIBALYtm0bpk2bhqKiIuTm5uJnP/sZli5dapqEpqamYu7cuXj44Ydx7bXXory8HD169MC0adNwzTXXAIhotObNm4dHH30Ul19+OWpra3Huuefis88+46KSTp8+HQ888ABGjBgBv9+PSy+9FPPmzbMxJU0ZV199tRlQR5aDsW/fvkhPT8f+/ftx6aWXSutYunQphg4dinvuuce8ligt2m9/+1v87W9/w29+8xvs2rULN998c53abdu2LRfQqLS0FHv2WFHfBg4ciPz8fKSkpKBr164JeQYNDQ0NjdMDPDNo5/x8vtODIUzRzKCGRp3RoMwgANxzzz0ckUwhC9px6aWXYt26dY513njjjbjxxhuVv48ePdrRVysjI4OLXqlCz549uYT3MgwePBjz5893LJOTk4MpU6ZgypQprm02VQQCAWzdutX8LCI7OxsPPvggHnjgAYTDYVx00UUoLS3F8uXL0bx5c9x2223o0aMHpk+fjvnz56Nbt25477338N1339l8RePB9ddfjz/84Q/4wx/+gMsuu4zTTsbT7uWXX46pU6fi2muvRatWrfD4449zzz1s2DAMGTIE1113HV544QX06tULhw8fxty5c3Hddddh8ODBdX4mDQ0NDY3GicqakPk5KLFs8ft8CDVSbpBazWjNoIZG3dHg0UQ1NLwiJyfHDMQjwzPPPIMnnngCzz33HPr06YOrrroKX3zxhcl03X333bj++usxZswY/PznP8exY8eUgoh4+nbttddi48aN+O1vf8v9Fk+7EyZMwCWXXIKRI0fimmuuwXXXXWemLAEipqtz587FJZdcgjvuuAPnnHMObr75Zuzdu1cZgElDQ0NDo2mAutLtLqyw/d6YeahQ2GIGZcFxNDQ0YoPPEB2TNBolSktL0aJFC5SUlNgYpqqqKuzZswfdunVDRkZGA/VQo6Gh54GGhoZG08APh0ow8v+LxEp46Kpe+ONlPbjfuz78pfl57/MjTmnf6oqq2hB6Pz4PAPDijf0wenAMeZY1NJoQnHgDCi1S0dDQ0NDQ0NA4jeAm5s/OaHAvobhBNYN+HU1UQ6PO0MyghoaGhoaGhsZphDDhBmUGYI2ZiaKpMhqzuauGRrJAM4MaGhoaGhoaGqcRKPsXlmgJG3PgFRoQpzEztRoayQLNDDYhaPfQpg39/jU0NDSaBnjNoP33xsxEhWTcrYaGRtzQzGATAEtJwPL0aTRNVFZWAoDOX6mhoaFxmoMK/8ISbjDQiKm/YNj52TQaDlsOl+L/Fv6I0qrahu6KRgxovB7EGp6RkpKCZs2aobCwEKmpqfD7G/EpoBEzDMNAZWUlCgoK0LJlS2meRg0NDQ2N0weUR5KxS42ZhwpxzGADdkTDhnv+vRZ7j1WiJhTCQ1f1bujuaHiEZgabAHw+Hzp27Ig9e/Zg3759Dd0djQZCy5Yt0aFDh4buhoaGhkZCEQyF8Zu3V6ImZKCqJoRLzmmDR0f0behuNSgokyRzEWjM+fmqakPmZ60ZTC7sPRaxQFq1+3gD90QjFmhmsIkgLS0NPXv2bHKmojXBEH44VIpzz8hBemrT1YilpqZqjaCGhsZpiUMnTuK7vcXm9+1HyzQz6OIz2IhdBjlNp/aFT040Zp/UpgjNDDYh+P3+Jpds/LUF2/HKop245xdn469Xa5MFDQ0NjdMNtSHNEIjgzUTt4+ND4yXWqZmo5gWTE5oXbFxovHYCGhoe8MqinQCA177Z1cA90dDQ0NCoD9SGwu6Fmhj4ADL232lmiXAjc7zTPoPJD80MNi5oZlBDQ0NDQ0Oj0SKoNYM28D6D9t99hFoPNTL1WkhHE016aDPRxgXNDGpoaGhoaGg0WtSGtWZQBDUNlfnVUVK9seXtC4adn02j4aF5wcYFzQxqaGhoaGhoNFrUBDUzKILTDMoKEGK9sTGDYRcTWI2Gh5bPNC5oZlBDQ0NDQ0Oj0eJ4RdOKku0FHMMk4Zio4ibYyDgqahasNYPJifRUzV40Jui3paGhoaGhodFokRrQpIwNLppB6jPY2ALIaM1g8mNPUUVDd0EjBugdVENDQ0NDQ6PRIqijidrglmeQatQanWZQB5BJSlChQo+2zRuwJxqxQjODGhoaGhoaGo0WNRJmsLFpuxIN+vgyhslw+T2ZEdZ5BpMS1cR3NyWgI8g0JmhmUENDQ0NDQ6PRQpZaorGlS0g03HzpdhMzPq0Z1EgETpy0fHfTUwIN2BONWKGZQQ2NJEBTl2JraGhoxIugJHRhY4uQmWi4aQZbNks1Pze2aKz03Tbtt5xcKCitNj83dWFMY4NmBjU0GhgTPtmEC19YhJKTtQ3dFQ0NDY1Ghw0HTtiuNXWNkeHiM5hGgu40NoO+grIq83NTf8/JBPouQhJtvUbyQjODGhoNjA9W78eRkip8tuFQQ3dFQ0NDo9GhWqLZauqaQfr0MoapMZta5mRYWs1Edb0mGMbcTUdQWFbtXlhDCrrmGpvpcVOHZgY1NJIE5dXBhu6ChoaGRqODjIBvbKaPiQYXTVTyO43A2tjodoM8UaJcLGauOYB7/r0OD8/6PiH1NUVQZjCks843KmhmUEMjSdC2eXpDd0FDQ0Oj0SEnM9V2ran7LFEeSTYUnN9dIxsrymckipGdsXo/AOCrbQWJqbAJgs6pr7cXNmBPNGKFZgY1NJIENAmwRv2joKyqyWsPGhNCYQNF5dqES8MOmX9SI+NvEg7eZ9DNTPSUdClh4LWeiel8UzcrTgRE09DSKh0HobFAM4MaGg0IauKiWcFTh50F5bjgf7/CuOlrGrorGh7xlw834PxnF2J7fllDd0UjySDzT2rqxL0Rg2awsfkM8jkSE1NnYxuDZISojZelfNFITmhmUEOjAUGJGL9ejacM/zt3K8IGsGSHNmVpLPh0w2GEDeD9lfsauisaSQaZf1JTJ+7p84tjYRhGow4gQ7WBiTJxPXKiyr2QhiNEDb0s5YtGckKTnxoaDYgQpxnUusFThdV7jjd0FzQ0NBIEmWawkfE3CQenGRR+E6OvNraxcsuhGA/8fn3+1hXiOmzq2vnGBM0Mamg0IKjkTLsMnjqkpeitr7EioIk2DQEyorOpE6JOmsGq2pCybGMA/2yJqTMrLZCYipowCst47ao2E2080BSRhkYDglpR6AAypw6NjfjRsKCZQQ0RMsavqa9x7vGFoagJ8ZrBRDFU6/cXI7+k/s0t3SKlxoOmPVsSAzGqr8412HigmUENjQYEpxlswH40NSQqN5XGqUcTp/E1JJAzgw3QkSQC51cn/CZGUU6E390Ph0rw69eW45a3V9a5Lle4REqNBzqydN0hvgqda7DxQDODGhoNCC7XUwP2o6lBj3XjRXqqPrY0eMg0EE1dM+jkVyf6DCaCcV4V9cPeXVRR98pcUB8+g9owp+4Q30VNsGmvwcYEfapqaDQg6KGstVWnDnUd65M1IfdCGvWCJk7ja0igzUTt4HLxCUMh7l+J0K6dyvOrPnwGtW1O3SG+i5O1+pxsLGhwZvC1115Dt27dkJGRgUGDBmHp0qWO5RcvXoxBgwYhIyMD3bt3xxtvvGErM2vWLPTt2xfp6eno27cvZs+ezf1eVlaG+++/H126dEFmZiaGDh2K7777jivz1FNPoXfv3sjKykKrVq0wbNgwrFq1iiuTn5+PsWPHokOHDsjKysLAgQPx8ccfc2V27NiBUaNGoU2bNsjJycGFF16Ir7/+Wvpsx44dQ6dOneDz+XDixAnHcdA4PWDUg4RTwx0VdWDm5m/OR58n5mHKsj0J7JGGVyTKLEzj9IFUM9jELdRiOVsSwVCdSv+w+tAMFpVXJ6SepgzxXWj37saDBmUGZ86cifvvvx+PPvoo1q9fj4svvhi//OUvsX//fmn5PXv24JprrsHFF1+M9evX45FHHsG9996LWbNmmWVWrFiBMWPGYOzYsdi4cSPGjh2L0aNHc4zcuHHjkJeXh/feew+bNm3C8OHDMWzYMBw6dMgsc84552DSpEnYtGkTli1bhq5du2L48OEoLLTyko0dOxbbt2/H559/jk2bNuH666/HmDFjsH79erPMiBEjEAwGsWjRIqxduxYDBgzAyJEjkZ+fb3u+O++8E/369avTmGo0LlCfQa9n6d6iCnywer/2cagD0usQTfT+GRsAAM/M2ZKg3mjEAs0KaoiQaaWaunCNCk3EkRA1qYkYq5M1wTrX4RWGg9YzXqQFGlw30ughCuqa+hpsTGjQ2f/yyy/jzjvvxLhx49CnTx9MnDgRnTt3xuuvvy4t/8Ybb+Css87CxIkT0adPH4wbNw533HEHXnrpJbPMxIkTceWVV2LChAno3bs3JkyYgCuuuAITJ04EAJw8eRKzZs3Ciy++iEsuuQQ9evTAU089hW7dunHt3nLLLRg2bBi6d++Oc889Fy+//DJKS0vx/fffm2VWrFiBP//5zzj//PPRvXt3PPbYY2jZsiXWrVsHACgqKsLOnTvx8MMPo1+/fujZsyeef/55VFZWYvPmzdyzvf766zhx4gQefPBBT2NXXV2N0tJS7k+j8YEeyl7NbO6dsR4TPtmEj9cerK9unfag/iGxmjcZmh1pUGjNoIYIGdHZ1AlRPuKmkP+tHoj2Eydr61yHVxgOzxYvxDHRiB3iURrS8upGgwZjBmtqarB27VoMHz6cuz58+HAsX75ces+KFSts5a+66iqsWbMGtbW1jmVYncFgEKFQCBkZGVyZzMxMLFu2TNnXt956Cy1atED//v3N6xdddBFmzpyJ48ePIxwOY8aMGaiursYvfvELAEBubi769OmD6dOno6KiAsFgEG+++Sbat2+PQYMGmfVs2bIFTz/9NKZPnw6/39sree6559CiRQvzr3Pnzp7u00gelFbV4tevWXPd64H8/cESAMDX2wvqpV+NCSdrQhjz5gpMXLgjpvt8xD+ksRIBhmHgj/9Zh/tmrG9SDNK+Y5UN3QWNJIOcGWyAjiQRnHwGRQFYIraP7IyUulfiEfXhM9jU81ImAuI6DDZ1W+1GhAZjBouKihAKhdC+fXvuevv27aUmlEDER09WPhgMoqioyLEMqzM7OxtDhgzBM888g8OHDyMUCuH999/HqlWrcOTIEe6+OXPmoHnz5sjIyMC//vUv5OXloU2bNubvM2fORDAYRG5uLtLT03HXXXdh9uzZOPvsswFE8sbl5eVh/fr1yM7ONuuZN28eWrZsCSCi4fvNb36Df/zjHzjrrLM8j9+ECRNQUlJi/h04cMDzvRrJgRmr96O82jKtiZUp0YnTgS83HcGqPccxceGPMd1HfRliJQKShWgoLKvGl98fwWcbDqO48tRJ5RsClNnt2CLDoaRGU4Rs60yWddpQcPIZFP37EqEZPJVaoPrwGdSoO+xCh4bph0bsaHBqUky0bRiGY/JtWXnxulud7733HgzDwJlnnon09HS88soruOWWWxAIBLj7LrvsMmzYsAHLly/H1VdfjdGjR6OgwNLGPPbYYyguLsbChQuxZs0ajB8/HjfddBM2bdpktnvPPfegXbt2WLp0KVavXo1Ro0Zh5MiRJuM5YcIE9OnTB7/73e9cx4oiPT0dOTk53J9G48IXG3nhQ6y0S0DHwkZ5VXxMEN0PamOkYmpDyUF8UILudJfAUiLD6XzQaJqQMQRNSVsuQyyawUTwzbwfX/2OPTXVb+I8f1LBzRxZI3nRYMxgmzZtEAgEbFrAgoICm2aPoUOHDtLyKSkpyM3NdSxD6zz77LOxePFilJeX48CBA1i9ejVqa2vRrVs37r6srCz06NEDF1xwAaZMmYKUlBRMmTIFALBr1y5MmjQJ77zzDq644gr0798fTz75JAYPHoxXX30VALBo0SLMmTMHM2bMwIUXXoiBAwfitddeQ2ZmJqZNm2aW+eijj5CSkoKUlBRcccUV5vg8+eSTMY2pRuNCfmkV9/1YjNHMtGYwfkKAshONlY8KEqY0mCQMan0hxJmFnd7PqhE7ZPtAsmoGy6uDeGbOFny393i9tsP51Qm/1YfPIK1DNvY7C8rw9y82o0A49+JBffgMatQd4mvX6bIaDxqMmkxLS8OgQYOQl5fHXc/Ly8PQoUOl9wwZMsRWfsGCBRg8eDBSU1Mdy8jqzMrKQseOHVFcXIz58+dj1KhRjn02DAPV1RGCvbIy4rci+vgFAgGEo9Slqozf7zfLzJo1Cxs3bsSGDRuwYcMGTJ48GQCwdOlS/PGPf3Tsj0ZsSLZDQ/SxSIkxDnNqQGtI4iZiqJlojHVkJEnSc6oNTFbCN1EIC8ygJjI0KOR5BhugIx7w9pLdmLJsD+79YL174TqAas9sGhubz2DdB4tWIdtT//LhRrz77V78K0b/bhno+k+yY71Jw80cWSN5ceo8fiUYP348xo4di8GDB2PIkCF46623sH//ftx9990AIiaUhw4dwvTp0wEAd999NyZNmoTx48fj97//PVasWIEpU6bggw8+MOu87777cMkll+CFF17AqFGj8Nlnn2HhwoVccJj58+fDMAz06tULO3fuxEMPPYRevXrh9ttvBwBUVFTg2Wefxa9+9St07NgRx44dw2uvvYaDBw/ipptuAgD07t0bPXr0wF133YWXXnoJubm5+PTTT5GXl4c5c+YAiDCmrVq1wm233YYnnngCmZmZePvtt7Fnzx6MGDECAEz/Qgbm+9inTx/Tr1AjMQgbQDLxT6mCkCAjNaAoqaFCYby5oSjhEuOB5UuS5MQhzkz09D50qfb2/ZX7sXrPcXx578VI1eHgNSBnZpJN+Mfw4ZqIf/+RkrpryJzARxPlf7OllkiAdcTWfCuiuVifYRjYGA189uX3R/Dc9XVLoaV9BpMT9mii+t00FjToSTpmzBhMnDgRTz/9NAYMGIAlS5Zg7ty56NKlCwDgyJEjXM7Bbt26Ye7cufjmm28wYMAAPPPMM3jllVdwww03mGWGDh2KGTNm4N1330W/fv0wdepUzJw5Ez//+c/NMiUlJfjjH/+I3r1749Zbb8VFF12EBQsWmNrFQCCAbdu24YYbbsA555yDkSNHorCwEEuXLsW5554LAEhNTcXcuXPRtm1bXHvttejXrx+mT5+OadOm4ZprrgEQMfWcN28eysvLcfnll2Pw4MFYtmwZPvvsMy4qaVNBKGxg3g/5KCiL7RBct78YK3cfq3P7yX5o6I0zdrRulmZ+jmX8aMlY50WyJNKlDGCosdq6eoT4jnYcLUd+PRPTGo0HUjPRJN3vW5E9qz4hatMp6iPP4JktM636hfoqa0Lm59Kquucj1D6DyQlRABOrP75Gw6FBNYMAcM899+Cee+6R/jZ16lTbtUsvvdTM46fCjTfeiBtvvFH5++jRozF69Gjl7xkZGfjkk08c2wCAnj17cgnvZRg8eDDmz5/vWhfDL37xi6SVaNYVX2w8jPtnbsAl57TF9DvO93RPVW0I10fTL6x5bBjaNE+Pu/1Q2EAyK9/0oRY76JDVhsII+L294BDHSMXKDCYHN9ikNIM6j5yGAxpTaolT1S0nn0FxvBITQMb6LO6pBWWWBUeX3GZ1bssph6JGw0GcV7HGQdBoOGgbG41ThlnrIknSl+wo9HzPCqIRLIkxqa14SCT7maGJ29jhRIA4wS3YgROShBfkpO1Vtae3BFam+NSa9FOH6Sv24o6p36EkSVOYyKZCU99PDU4zyP8mKmwSwVCFHfbi6qC1Vw3rIw8QGAsMB62nRsNBnGdZ6d70TdXBEO7591q8t3JfPfRKwws0M6hxyhDPnv3wrO/Nz7ESf7bIVkl+aOigGLGDmgvFoh1zMqFygz9J7ERpv4OnuTmO1gwmFrWhMLYcLvW85zzx2WYs2lZg+rslG2TMTFPfT520Z2IqmkSnlqgJ8vXTszvRkUub9ltOLoivtsbjuTR30xHM3ZSPxz/9oR56peEFDW4mqtF0YMSxbR8ttcwMYg2fXx9+EfWJJk67xIX4NYPx3QcArbPScCKqIakOhpCe0jC2x8nBkp4ayPy/TnfT2PpEz0f/HwDg6nM74I2xgzzfV1xZU19dqhMalZnoKTqHnJopLOPN9xJxNtbSCJ/CWc8xgwl4MbS79fGeQ2EDgSQR+jUmiPNIFAqocKw8OfeVpgStGdQ4ZSgqq9uCj10zmHi/iERiV2E59z3ZmdVkxJGSk+bnWBKv18VnsE2W5bd6vKLhDrG6MLSNDbK14eWZC8uq8a+8HdhbVFEf3Wp0qA6G8No3O83v8zbnO5S2I1lMpEXIpgI1TTzdsXxXEd79do/SfFJcPy2FIDaJOHuodYJTVMlECHESHU3UTXNaH1i07WjSatrjhTiOPxaUK0pqJBu0ZlDjlCEeQiI9xY/qqHQp1g1aNFFINlO6VllpnITWy6HW1E2fRFBtsVeGyJZzK0ZigpY/WdNwBGdd/B4bG2SvyMt28MK8bfh47UGs3H0MM+8akviONTJMXroH/5i/vaG7kXDI9sXK6qbDDN7y9ioAwLlntMD53VoD4Pc5cf2I45UIOWQt2YvF+hO9V/HPlljmEjg1++kdU9cAAM7v2hpd22TVe3unAuKwHTlxUl5QI+mgNYMapwxiknUvGNbXcjaPdYOuFUwUko1czhacq70wg8kaLr2hkEISR3o1I67rwU/LJyJMerzgCKzTfF7I3pGXZ57z/WEAwKo9xxPep8aI9ftPcN/FPcgNyZJjU4Rs78xIS+LQ0fWEw4T4piNit5JJvAvF9wdPWG0L1dG9OTGaQauOTYdK6lyfuL/Utwk6be9EjIHxkhniPPLqQkHzBevosA0DzQxqnDJ4tR+noBtDbR19BpNtjxG740VxSZ9p2c6ipI3ud6pATY+9EjR1Tbh8rCI2bW59QZuJur+4xjAs6/YXc+bO9Qkx71fr5onNeVdVG8K3O4vi2uvrAmk00SR9+RU1iRUg0XealmKRdGEHzaAoSEnEUPXqkK2sn34vTQDzQ6vv1T6nzvXZz4T6nTtVtZbWOjWQnAKWeMCGLT06D70GkMnNsvahWOk8jcRAM4MapwzxBNqgEsVYgxeI0r1kkziJBK6X/tFD68Dxkxj16rKE96sx4TDnMxgfMxirVu04cXZvSIKzLhFRGxvkqSU83Jjkw7LlcCmuf205xry58pS0d7S0ivueGnAnAei+5Gbq/3LeDvx28iq8tWRXXP2LF/H6lDYEDhUnlvGnz0ljnvDRRPl76iPSNh/URS1wyxfmYDzg+58Af0dhg6lvzWB5tSUQ8LIGGwvYXpERTejsVSiU4rfGwCsDqZFYnD6zUCPpEU800c2HS83PGamxTVd7NNGYm69XxGOqI0r29x6rTGifGhvaNreCuXgl/sSDP1aisUOLjLjvTSQokR5rpN3GBtnaOFnr7hOW7Ezyuv3FAID9x0/NOs6NQxNICeMjJc6E/FtLdgMAXlqwI+Z26gL2mscM7mxeS1bT6UT7h/FCIes6n3TeWfCYGL87tR8f3XPPbJmZ0LYSsQXbBISnUDOY7HtULGDPwjSDG4npsBNo5NZqD/u6RuKhmUGNU4Z49jx6cJTF6J8lSvfqc9Otqg3FrCUStR1eBGLahIIHlSJ69hkUxjnWeUHfQUMSnPQ5TieCQgbZ83kJCJXso5JyisPXxxPwqJpI95unp5xyE1AvYPNj/PBzcEXvdpFrySb9qyeoIms6BZCpD0GpE4OWaCuGRAeQOdXMIBXqJqsGOx6wV8H2DK+MP5ejUmsGGwSaGdQ4ZYhnyyPWA7hvxgYs3lHo+V7Rp6i+COby6iAuemERbn1ndUz3iYdYPJpBIPmipJ5KUMK0rMqbL4rIwJ2I0e+StnkKIpArwUfoa7h+nArI1oaXPGDJZhougj7DqWCytuWXxXwP3V+mLt+Loc8vSjqGkM0Pnw/wR8c0aWnsBPeLT+gO8lnNgNWHmSjdC0UGh+aRS8ReRWtPiGZQ9HGsd2aQ7t3JOlFjB3uU9jkRix2/xxDyVHAfq9BfIzHQzKDGKUO+i4mRDOI++eK8bZ7vtfsMxty8JyzdUYii8hos21kU033iAeSFcJVpv0rqMRrZ+v3F+GLj4Xqrn+JYeTWmfrsHBWXe58nuOPLHiYdvrNoZ6vPSoJpB0rQXk8nGDBm95GXok53OYr41wKlJ6N6pVewmeuI+WlRefcrMWr2CddHv8yEQJUCT1Uw00UJJqgGlJna8maj6nkifEtAPB+Yzi0StTbhJap1rswv16ttnkAp167utuuDrbQVYvss7XcPeLQtk5JXRpe8zEQGGNGKHZgY1ThniOQTFQ6ui2rvUSGSc6kszGK9Zgy3FgRfNoEQVVZ+HyZg3V+LPH6zH5sN1D9/thmfnbsVTX2zB3z/f4vmeVMLIeWWIRGIkFkbKps1NEp/BE6eAkWhIVEne0ekgUad70srdx+q9vXjMzGXj7EUre6pA++eD1bdkNRNNdLfouUEFg7yWUOxDffsMCn3ktJeJaMv6nOi+A7HRGfGgMZiJFpRW4fap35k5LL2AjSMLiuM1NzQlofY18TgIDQXNDGqcMrTITI35HnGTjiXylrih19eee7wiPkLcbibqfo/skKpPky3G6O4/BRv0J+sOAQC+3HTE8z05ZE4d9BilT2S6Nx444bm9MmH8G/Igp8+RkxH72pJh5nf7cd2r39qiTjY0ZOZG9ekn+dePN+LBjzbWW/0MNCDLqTC93BOHJl0mbAp4NP86FaAEZ2qK3zQTTVYiuz41g1QDx7XjkOpBrCPufpAq7D6JxCwyAY9vOGgh48GpnivUNaE8Sc0idxaWm5+9MtxsGBmdRse1oLQK17/2LWatPWi7j7r0pJxGqTYaEzQzqHHKEI8GSzw46mIOF8uhceB4pWfzy3iDQIjD4WXDlRGM9aUZpARCSpKGv6bv1Ot7EA9+XwyErZjXMVnMRBPVj7/N2oQNB07gnW/3JKS+REFGrNUXM1hUXo0P1xzEx2sP1qsJNsAz8aciOFTLZrzQwJtpun3PSaaARVT5EPD5zPQKydRHCp5HSywTpvIft581zr/HAycGja7fRDyzA58bF8T+ynzzEwl65CSTlp2CvrNKj4Gn2DimRekFuqc98+VWrNt/An+RCNnocOsgeQ2D5KTwNE5LxCN9EyWWIjHjeK/LAajCoRMncfGLX2PQM3me2zLbjOEZnQ5MFaplzGA9HVy0rSTlBbl37PUAt0dx9T5+YhvJYiaaaMKXBnxIBsiY3foa+mOnMI8kfW9eTaoSCS/TZs73dk19MjFatC+cz2CSagb5dVv3+ujaqAnJ9wQxtYTdZzCxTKn4XFRgmYj3kujopGKf6pshqQkm59xUwesYs2KpAfsaXB9NoyMDPYObckC8hkSKexENjcSAmigZhuFJI1OXjV7c4L1KJL/bcxxAfBq3YNhAmkdJXzxO/EXl1bZr9XVwUV9Ir1HBTjXo/JAxyjKIjIXX8QuGwrhq4hLHuk4lOIKojgTWjqNlmPndAfN7dkZyHQ2y56svYp+Oa31rCGhbDRGh08v8fWeZXUucTHwWfQa/34ommrwBZKzPobBRZ80QXRuUkHb04RMuFJbZz5WY++GQ7oH2MfE+g3Wuztan+mZIahXvKZmwbt8J87PX9S76DNJga9kZqQDkrhzUxaM2mTaXJoTkOvE1Tms0SwuY5gahsOHJNrwuBJ/NL8JjVbESgLTaWPprM9XxcK/MXMO7k3ZshAftj6yv/iQwb6H98hrIR3xHXu/7ZP0hG+PYkNoHPs9g3eoa8cpS7tlYNLhkwak0E6Vt1Xekv1PZFuCeb06Gn5zZwpbSJ5lSdtB9KkA0g8kbQKb+tFpBxZ5tDyDDf0+EqaKTz2CIe+Y6N+XI6MYD8Qiob4aES0+URGuJ4l8Ld5ifva4l9iiMtqPzKiNVfaakk6jKIa0ZbBAk14mvcVojnRCYXgkfcZ/84VCp5/biNYWpi59QLKZerD8sMauX/skObS9DufTHQvz0qfmYvHS35/6FFETLQx9txPn/uzCmFBD1BdqvnUfLHUpaEAnZWo8amR8O2SOqHj7RcGPA5xmsG0EhMrnJpgmWm4nWPzNY38w+rf9Hj/M3kfBC5KVLBAPJpHWjYxjw+0wh1e7C2IPlnAokct0C/LtYu88yxXOKuCm+90T4hDuZv3KawYQ4KJK66yGaaH0H0Np3zJqbDZmr1iu8jjErl5UW0TOlEoH/+v0nlPfFQxtqJBaaGdQ4ZeASLHvV4gibUI92zT235xTRzAk095cX0IMjlsOdFb3q3A7cdyfEqyG57Z3VqKwJ4X++3BpD/+QmbB+tPYii8hp8vuHU5B90Au1jx5YZnu4R51SBRxOpc8/IsV1rnZWYKJ7xwEgQQbS70M6E1CcruLOgDMtjzMkpI5jciKh4tVeJ9m9yAu1ixxbe5m8icdhD7tcOkn4lEwHL1rPPFwkGxeZzPDkVVViyoxA7CxLDrCc68BOd5+2y06XXxWbKhajIiTBRdtJ40jWVaOYtEStUXOex0gCxomWzNPNzsmoGKbybiUb+p6faA8g4gQrRddL5hoFmBjUaBLLk6TLUJR+SPam7t/uoVsSLFPPVr3eZn6tqvR+qrH+ms7WXyH6S/ngZk3hoWkrwHZOkz0iGQyweU0nx4C+r8qYJTk+xEwgNadGSKFOpy/+52HatPjWDw15eglsmr5IyoSrEoxmkPqStYgo8dQrNRE9hW/FC1q9kWPsMbA9gc7Z3h2wAiWESAGDrkVLc+s5q3PzWyoTUZyiEbPGC7kFVyqTz/GgUC3lJq4PxR+lmoNNErJ/TtifETJR+Trxm8FQGjkqmtaSC9wAykXLsrAyFDU9jSedHoSQugkb9QzODGqcMXkJg2+4RNpJdMZj+xKsZpJaYsRJosUh62cbJ7Ou3HnE3gZWHeffcZEygz9I83e5erGIYVu0+ht9NXiU1q0w04omoKWo12jRPlxcUIJsLDWkuR9tOdD/qyx2UmhbHommRERRu7/sk8a8trqzFf727Gqs8JHYPKiIy1gd4k9T6lyyIgiMvTHJIQr0nE/3K5j7zFWSByRL17jYdjOxjsuBd8aCYpKfxKhR1Ap1DazgzUbXZprjnrXMw4ROxZu9x3PrOamzPL+Ou0/YyBc2aU3CZeJB4n0G1JrM+4OTPmSygcyRWM1Hqc17rYV+j6yA3K82hpEZ9QTODGqcMNDCLVwdtWTGvjKSdGfR0G5cDKNZw7zLCSQXWHxbKvltulnv9MqLY5cFEkyCvoPXKguqoosE+MHMDlu0swqOzN8XVbizgJMQeX7DIOHk9+GXEekMGqUi0dJxDPWkG31xs+azGklxYbh7tfI+Yk/Sb7YUY40G7w2kG6znEPBcJ8hTMJdHn2EuTidAMFpRW1VvQGTaG/ig14zeZwQTVn+B+c4RyAkwLaP/OaJlJrltlxLEX11MsmvP7ZmzAkh2FeOrzzdx12oQtgExY/Vs8oDXI5lU4bMTk0641g3bQiNIxm4lSH0APe+ip9NPWkEMzgxqnDHRT8Bq0g20M1F/LqxbEtsF7vI8yOV7MeKgfoxcpmNgf5tvihf6WE2bO98RriiSLUhfk0k3I72N+SBsP1r9m0En67eUewDsRLtUMNuDBdbC40vycaOKlvjSDR0qsEOIsyIAXyNa829jH+24S7d/khNApZDwBuzbfy/NJhSAxjMvM7/bj/P/9Ci/O3+75nljA+sI0g4lOOl+fSzwRAgDuObmPhuwyAGttdMltBiA2pvTQicgaXivkjXNicOgcSkj8GJd9/6+zvsf5z36Fr7cXeKpPrKO+LT6cIq8mC2gqMK/ni0wz6CVh/an009aQQzODGqcMVFLvVePGDp4/X97DvOZ1s4g3z2DAF1ugG2ru5rVvhmGQMMx+z/fKyrg9F2XgYpEA84RqpA7qEJ4MESfj0Y7ZpdbxaZpjabM+0C7bCuyR6PMzNQHRBWVon2P1ORaCS0aMuM37eLUup1JbR9v6ZN3Bem0LkPlgu99TV83g459FNEivf7PLpWR8YOuSRRFl/xO1NBPGVIYNvLVkFyecS0Q+uyA3X636OB5Rweww8/8th71H6WZItWmZKUHPl6V5DHclIBAP3bJFf0gA+HhtZC29uminp/pOtZloos1c6wNnclpmr3RN5H+q3zo/qmrdmUGtGWx4aGZQ45RAJOaOV3gL2sEkTK2zLPv1eDU5XjddzhfLQ1vN0iz/CK/SfdqXFL93syZZ/W730XHo1sbdFJWBEtuMCQxxh1hiN+14cl1xEmKP86JUSB3i9Z0lGzMYrscDtL7MpJxMyZwQj2YwXoLuVEqp6XNV1IRQLAnUlND2bIKQ+ARQqttk8qH6TuBtagb9zGcwej1B7y5R+9ziHwvxv3O3cde8RtV2QjmJvkjflZck8GysmsWgpWeoFIh8yqCJwl7aessYBJIqcFpIhyH07kcuH5/6ghEjjdEQ4OeSt3vYc/l8lpmpF6EcnS/JlLamKUEzgxqnBPFGBWWMVk6mdVh59cuz5xl0Ll9VG8KIV5birx9/b17zwihQZ3mvGzsdD4sZdL93pyQCo9t9fEAMT90DIPfzoM93sPikeItnfLuzCBc+vwjzN+eb1wJxaBrjMRMVtV7xapoj17y1WR/gE0wn9gDdFUOkz1iQnhpfPinZ2O87XikpaSFezeCpzTPIf0+ED5kTSoWw7V72HFl4eBWxLFvD9U3rsiHzm2aiifUZ9Jp6xg35kjQeiTANpvuZ16TzrBwLEnLoxMmYA37lZvFBaJyCeWUSgWmWJBhZrDAUn0XQFA5OEGMYxLI3bc8vw6X/+Bqz13vX7Nerv3eCEI9QjBXz+3zmvPQylmv3nYi5LY3EQjODGqcEorTHa/4ZtjHQA8+r5Ejc4N023R1Hy7BZMJfxJDnnwsN7jJJKNYPRZ/NyKFDTDasu5/tqOX+N+AhwZupBicA22d6icMrw5w/W49CJk5jwSd2CzCTCTNRrKOtkC7HPmWXVoR9ZafaUGR0l80yGkpO1WL6zyDuxQKXNdWQGqcmp13u8gK7hWANIxQrRhKq+zdPEBPJeps2JSllaGXlZygvGO/57iyqw42iZe0GhHX89+QzmZFiarLpojGSMciLmlyqJPZ+LT675ovPh2Rhy0AJ8QvFIe9ZnUaZBBbiJeGY+h6L6nXh1ZRBjGMTynu+bsR77jlXigZkbPd9D31OS8oJxRYBl9/h9lpDbi4CrRzvLYkkzgw2DmJnBdevWYdMmi4D77LPPcN111+GRRx5BTU39mrhoNF6I+39NyFteI5MZ9PtNMyCvm0V+Ca+5ciMOZNV6IbLj0STQvph5Bj3cK3sGty7Gq+mgbTHfzVhNaFU4HjWHO07M4jIlTIkb4onKJhLchR4l/3LNYMMdXPGY8UjriWNOMTz00UbcMnmVZ3+3EGdK5r3TMu2M29h7FTiJoPOh2KM5e7w4fILfo+o7iIz4Xr2sGdnYq4hDGnwrHmYsHDZwzStLMfKVZSj1mP/TMhONfGcMQH1EL62L0MUvMYNPhCJYtb9zmkGROTMYM2jtuQeKnTXtbuBNN9WatlgibqvbkrcrwquxicigxrI3bcv3Lrhg4MxEk5QbpObdXvvIivn9RDPo4X3z+YKTczxOd8TMDN51113YsWMHAGD37t24+eab0axZM3z00Uf461//mvAOapweEBe4VwKcbcp+v+UT4nWjtpuxOJeXBRLxxKCRMl4iZwGimSjTDLrfF4/fWnUt2dRjOOSoP0vbqBaQPmsiEiZTpMTlM2h99ipwFsegg4uGieGAxCwxaZjBOvRDNm5eCGnDMLBgy1EAVsAG17biFCbIAh+5ERnx+qplE01QWkr9Gs90bMHPvViiES/adhT3zVjveS8FJFEePbznDi3s60P56uLQ1FOUVQVRWRNCTSiMFbvcc0IClubBnmcw5uZdUZf1LtveErF/eNEMimBnaF3mtz0yrb1+Wb8SHUE1EbyDKDiKZe6mxRFsqzGYifLni7d72LP4fD5TyF1R457aiu57pyKqcqwwDANPfb4Z01fsbeiu1BtinsU7duzAgAEDAAAfffQRLrnkEvznP//B1KlTMWvWrET3T+M0gUh0eD0PGJGb4vdbvnUebxad8902XRnt6GVjoodbtUcGiTcT9f5c8eRbqySbcSwHD2Ui2TPS9+gl+EEshCrNOxePhjVWM1Hmj3ripDcNhMz/pL5yp3lBonJVyRgCL/VRn9G22emexiJeZlCe1sN5/sVLdNJ669uHT+xjLITQHVPX4LMNh/HGYu9ROmXRRN3em0zo44WJZEVicQU+TkxSveYpZf1jKW0SbSZKURfmTRYgKxF9pHXUKqKJqvLo1YkZFG510nYlOiiT07NReJ16Ns1gDOswK72uFi0x354wGIaBCkUe4lAc5ws1E2XWRLFGE/VKQ50qVNWGsGL3MUxdvhdPfLbZ/YZGiph3AsMwEI4unIULF+Kaa64BAHTu3BlFRUWJ7Z3GaQNDWN9elECGYZiHSMDvMyW/YjJpFZ7/f3zkNrdNV+bLEKvpZqybJkA1g14Yz7rl/IrlIKbviGlZ6P1ewpF7OQgYUmIMRw3Ed6iKYdWPV9QoD0S+f5EBObttFn5zfmeuroYAT2DFX0+8gXGKCeE+5/sjeHiWO/FO25IF1FBBJihxY/biZeSoliDR2m8R4tiXeBRMUNB8YE4wDEO6RtymsGwMVHsO9U2zCEPv3CDV5haVe3M7YUxWTjR6YaIDyFDURaslG7KEaAbJ6zlw3BLQOGnPNh44ASA+rRaDD6JmUG2pkGgBC+8PqcZuj2tjTxFv9fFjgXfTz3g0WZxmsAG5wafnbMGApxdgQ3Q+UHjVMlPQADJto8GJAn6/h/RX1u+fbzycNH6D5dVBXPTC17jl7VUN3ZV6R8w7weDBg/E///M/eO+997B48WKMGDECALBnzx60b98+4R3UOD3gJClUgRYJ+H0o80CwM8g2H3fNoIzgdD+46H1eiTnKHJu+kB72P9k56rbR0qiLseyx9J0xApkOh+pQb5cdexoQgNcMeiXC4wsgE6m7e1vLaV303ZK3Fan/0nPamaHYj3kkWOsDYZfD+v9tOoKVu51N7VRzx8tYnhRMomeuOWB+3nDgBD7bcMix3lhCzMvXpncCIxZQhuSQh3kBRNbCv1ftizkiY7x+jRReU7KoXqnbu95yxC708aYFjvyvqwbYazssoBUbjvrQ2teFcJcKXRLQR1oHiw4K8HujGEDmnA7ZAMD5Zca6l6U4BpDh2zt8okr5WzygwyYOIX3vPds191Rfi0x+LzqzlbcAWgBioksYnCKvnkq8++1e1IYMTF662/ZbbRxRyM3UEgByo3MxrBBCUSRCKFYfWLjlKIqEAHMNaQ1Un4iZGZw4cSLWrVuHP/3pT3j00UfRo0ckGfjHH3+MoUOHJryDGqcHbL4qHnYXyogF/D7zoPNyr2yDdpVOxeGPJ0rbveYJkwWQ8bLJyEzj3IaDpsqIKYCMJG8UJTyOK56VBoJRmfK5SaS9EoXxHKqM1k9PCaBN84jppxeizJJ6Wr6hFR59ROsDTpLbvUUV+MO/1+Hmt1Z6roPCy1x0ekej31iB+2ZssEmc45E2A3JBiavPYJxRC+lzrd9/wtM9X35/BI/O/gG/mxKbBFlcH/H4OXr1taXjvfSvl5HrDvcoflQNLX2l7F1nx5BKIB4GXowmavkMJoZo48ww66DVkjKDCRAGqPdANTHPvp/Vupl5zavFDYO4hzuZgPMRehOgDXXY92nbYhohFcT3moj34oRkMRO1+iC8rxhdbBjMADI+HyeUcU1/lYB9sD6waFuB7VoyvK/6gGdmkAWN6devHzZt2oSSkhI8+eST5u//+Mc/MG3atJg78Nprr6Fbt27IyMjAoEGDsHTpUsfyixcvxqBBg5CRkYHu3bvjjTfesJWZNWsW+vbti/T0dPTt2xezZ8/mfi8rK8P999+PLl26IDMzE0OHDsV3333HlXnqqafQu3dvZGVloVWrVhg2bBhWreIP+vz8fIwdOxYdOnRAVlYWBg4ciI8//pgrs2PHDowaNQpt2rRBTk4OLrzwQnz99dfm7xs3bsRvfvMbdO7cGZmZmejTpw/+7//+z9PYNSbYzUa8MD5WmRS/z4wW52VjKquyM4NutKGM8Ck96Sz1E2/JSPXmP0CfIZYoqbI9MhaiJzYC3H640z7KnrUmGMa+Y5XkPnndMm1GXcxSxM8AMPO7/bjh9eU4Jkj2GAGe4veZBKSXsWdEl99vHXTMNM0Jj3/6A/78wfqESBSrakO45e2VeO2bnY4+HVTT6dSuign2cuA5+Yyy3/YKZlpOQSacIFubW444a+HyttgPci+g/cr28H4jfYloz05UxibRFsdATIejAiVeZVEqZZD5KUeuq9tUSehV98hyX3rtH8D7vF3Z15ulEWsnUE95BkMJItylfq8e9oS3luzCr1/71raPmXVI8sECgmZQoT2jzFKnGLRhMtA29h7j1z1NzxGrT9jynUW45v+WYvlOyw3JSTNI9yWvU0+0RKlv8/9kMRNloFFlAfs78trH76OWET4fEcqE3c/zXYX8fPG6D9Y3RO03cPqmvvDMDJ533nno06cP/va3v2HFihW23zMyMpCa6t3sBwBmzpyJ+++/H48++ijWr1+Piy++GL/85S+xf/9+afk9e/bgmmuuwcUXX4z169fjkUcewb333ssFrlmxYgXGjBmDsWPHYuPGjRg7dixGjx7NMXLjxo1DXl4e3nvvPWzatAnDhw/HsGHDcOiQZdZ0zjnnYNKkSdi0aROWLVuGrl27Yvjw4SgsLDTLjB07Ftu3b8fnn3+OTZs24frrr8eYMWOwfv16s8yIESMQDAaxaNEirF27FgMGDMDIkSORnx9Jtr127Vq0bdsW77//PjZv3oxHH30UEyZMwKRJk2Iay2SHuH6OePAXoht0asBvHfIezpKTkghWbktYdli7ubuIG4NXyTG7zeezGCMve0w8mkGK0hjML+gBUBUNJkM3dZnmZYVglqjSzsiYQcrAezVZcvJT+dusTVi7rxj/WrhD6JNFpJpj7+G1WZHSgDOiefjczFmrgyG8t3Ifvth4GDsL6p7I/bMNh7B81zG8OG87N/dqg4KwxWOgFtVze/Jf9SA9F98zfUexHKoy4uyMFs7E6yyP6S5E0JxjXhlW6hcXC9MvRh+u9Ghy9uNRay519BgNV+anLF4XUa7oj2xYSgRGmJXxasYK8HPCqz9biKxLgJqJem7WEXRt1YVJkPp7e5hf/zt3G9bvP4EZ3x2Q/u4pz6AYQCb6nY6xFy0a7a89mqj1m5gDVJxjsfiSP/jRRmw5UoqHiIWLk2aQ7sleBRFif8S96URljTSadLyI10KiviDOD/Fc87pVM7Pc4soacx2GDMPRlBewR/Sub82sV8heTTK8r/qAZ2bw2LFjePHFF3Hs2DH8+te/Rvv27XHnnXfi888/R1WV90AAFC+//DLuvPNOjBs3Dn369MHEiRPRuXNnvP7669Lyb7zxBs466yxMnDgRffr0wbhx43DHHXfgpZdeMstMnDgRV155JSZMmIDevXtjwoQJuOKKKzBx4kQAwMmTJzFr1iy8+OKLuOSSS9CjRw889dRT6NatG9fuLbfcgmHDhqF79+4499xz8fLLL6O0tBTff29tSCtWrMCf//xnnH/++ejevTsee+wxtGzZEuvWrQMAFBUVYefOnXj44YfRr18/9OzZE88//zwqKyuxeXMkKtEdd9yBV155BZdeeim6d++O3/3ud7j99tvxySefOI5ddXU1SktLub9khniIvrVkN6qDzgcCtVlPDfiIxNd9MX61Vabed75PFvnSrSWxTu/RRKMMiY88lxfNYLTIhF/2Ru+o30csxGepRGOqAiWEWRJoJwYEsI+hiuCXMdlUC3HNK84WAkDkuemjq96vaM5qRaj1kXQlXnxDI//9Pp+ZrNktourREms8/jrre4eS3kDn1+z1lvBqZyHPaHLBZeLSDHphBuXPTuexyAjEm6eSlb3+vDNx7xU9AQDVcZoSua0XGpDFLWIpAzXV9JpmAwC+P8hrN//mcY7QvbO5R+0lzwxSzaD6HhUzLJsf17/+rbRMLAFkqDDNq5mvyHQmOs8gXVt10eJQiwmGWJhLVd5FFTPIac/Ee6JDS036vax52l/xtTrdLw5bLOa2LErsIc7aAdLPgPfAQxTbhVyB4ry/4fXluOKfi2OKju2EZMsz2Eww5Y41ErtYrkOLTHM9ysxEbcyhMEPjNfFPNOLxVW+s8MwMZmRk4Nprr8XkyZNx5MgRzJ49G23btsXDDz+M3NxcjBo1Cu+88w4KCryZ5tTU1GDt2rUYPnw4d3348OFYvny59J4VK1bYyl911VVYs2YNamtrHcuwOoPBIEKhEDIyeElEZmYmli1bpuzrW2+9hRYtWqB///7m9YsuuggzZ87E8ePHEQ6HMWPGDFRXV+MXv/gFACA3Nxd9+vTB9OnTUVFRgWAwiDfffBPt27fHoEGDlGNTUlKC1q1bK38HgOeeew4tWrQw/zp37uxYvqERjwlmiBDtPp/PDGXtZfOUMWVuxIHMJMzt8Bc3i4MeE/eaiZIJM7j9qHsEM0acZqYFzNx/bkQ19QuR5WtTt2XV27VNlu2aLCdaMyFxvGrjlGkLWmfZUzc4QXydqgNLDNLBDnROM+jJZ9B6Zywku0hEiCirtgg4r/5nTqCENdWkdm+TxZWrJpJup3NV9dxezmJVSo5awdeXQpUg2w1sHaan+nFGNO+dWzRbVYAaNwa+Pcmr59WHjWog3v12r6d7AKBLbjPuu1dhDZXce2VQ4jETVb0j2T2iqZeYDN4LKqutebvjqDdNOnt+y2dQ3cd4cAaZD3WpkwbWYohlDah8Q8MKxsJJe8a+U1N/L3Od9tfODMr7JN4ntrWrsBwTPtkkjWipgpPWk2qzvY6vGDAmHObr31VYgZpQGD8cji1AlApOJrwNgYDwMm2aQa97TNiqj+b7FG93SzWWLNq33UX2PajJm4lS+Hw+DB06FM8//zy2bNmCDRs24JJLLsHUqVPRuXNnvPrqq651FBUVIRQK2SKQtm/f3jShFJGfny8tHwwGzbQWqjKszuzsbAwZMgTPPPMMDh8+jFAohPfffx+rVq3CkSNHuPvmzJmD5s2bIyMjA//617+Ql5eHNm3amL/PnDkTwWAQubm5SE9Px1133YXZs2fj7LPPNscpLy8P69evR3Z2tlnPvHnz0LJlS+kzrlixAh9++CHuuusux/GbMGECSkpKzL8DB+QmJMkC2eJ2MxVh0kNGuMQi8ZU5w8ca0Up1jUI8QL36DDKzy5pQ2CRO2+fYiQVVfwJ+n2ffGEqExESASw5czkxUQjyI2l6lZlByTZQWi9EqnfoXaUteLlN4J4GoVKGwrNo8BL0Iqk0fKJ/FiLkxsIlOoKsyuROHmQpDHDWDiv7VRTNI2xYJ2HjzDIbMsfeZazsn01mw0aV1M+l1NyGULL+mG1LJc8ai9XCzjlCBMrReNQtKM1GHZ1Qzg8J3STnWHPVHciMqaYLqXI/CIVMDKWgGE0WzJSpHnuw9xVKfmMrBqsP6rDLDtpvpRf6nkzyDXrQxdCzE/vCBbPj7xP2ErpGnPt+MD1bvx5/+s861fbMtrm6hjyHn9euUpoYJM6kAkdISzTye725wcm+oD7i1IZ4rYqJ4r12keQZpvk+VMIJBpOmSRfuWm2WnyZLBx7M+EH+SGYKePXviL3/5C5YsWYLDhw/bNHNO8PnsG4p4za28eN2tzvfeew+GYeDMM89Eeno6XnnlFdxyyy0IBPiFftlll2HDhg1Yvnw5rr76aowePZrTfD722GMoLi7GwoULsWbNGowfPx433XQTNm3aZLZ7zz33oF27dli6dClWr16NUaNGYeTIkTbGEwA2b96MUaNG4YknnsCVV16pHAMASE9PR05ODveXzJCtH/cIU5HfU6OESyyE+6aDdglePKklYo2C5TWJL938WL47L4wk0y4FfN61WtQZO5Z9TKbFqSCS+/0SHwqbI76iwRSJukBknDa7SGHFqlVCAvFqemqk7ZyMVJOA9JZPMvLf5/OZUUhlz0GR6KTlqoAe4rNTIs/RZ1BpJureF5WPUa2Dzw41i4wngEzA7zP9kTYeOIGtkrQHbvW7Eb01IWuOe+0jNbeLJSojWy8jftrRvOZFQ0LN1TxH3iWPzWsG1fewuSP674nzrUrC1LJ7c5tbTJ2bGT2dU173UiuaKLj/idIuJMq/S0ZExpT31YNmUMW4qnwGU8k88LJV0bXtpBkU27P51pPva/YWAwAOFntL4xJpizybsMNzghLhTFm/vxj9/74AU5bt4esj+wsQ8Tdmz0DdIWIJhuQEOhz1bSb69pLdOO+ZPNteSX18RWZQdAE5cdKb6a0ptBOE1WKeabtVD/890ULUeCE745KFUU00vMd8juLzzz+XXvf5fMjIyEDPnj3Rs2dP13ratGmDQCBg0wIWFBQo8xV26NBBWj4lJQW5ubmOZWidZ599NhYvXoyKigqUlpaiY8eOGDNmDLp168bdl5WVhR49eqBHjx644IIL0LNnT0yZMgUTJkzArl27MGnSJPzwww8499xzAQD9+/fH0qVL8eqrr+KNN97AokWLMGfOHBQXF5vM2muvvYa8vDxMmzYNDz/8sNnWli1bcPnll+P3v/89HnvsMdfxa2yIL09YZAcJBGI3/zmjpT2ogtsaltXrdkCKz+XdZCtSrkVmakzES492zVFQVo2yqqDnfFqHiOlqeXUQq/ccx/ndnM2Qxf6wx6JEpExyL0ZxjYXYERmnwy5BhtykjarrrE+ts1Jx4HgszKClnWKMu1sIbFX6DS9Yv78YPp8PAzq3NK+ptCXxmPoBdfQZVNRLperi3DynfbZJ9MUiYTWD/hB/TQCYtGgnXv3tQOk9qud2IzQKSi1GK7/EG4FKHzOWRPXMj+wsYi46adFOTL5tsON9VHDkdRzpu6ZmYV7mTnqKnyOybb7StfZnthgO631V1YY4xlkE3QO87h2sGCM+/aavkr3sN9sL0KlVJnq0y/ZUN8ALD+oi25E9jhtzzAfxkgsZZJEf/X6fo1+dFQzLmgf9O7Vw7AvAvx+RLfKa7gHg9814+CveJFXso3XhsLB+fz99Lcqqg3hmzhbceZFF77H+0fOrOhhGRmqAM3tPFN9G98WKOPIUxoJn524FAPwrbwfeutXaV7bmW8xhc8FnUNQMiu4fKphMNXF/kfkMivPB7XtDQR6wLzn6lmjEzAxed9118Pl8tkOeXfP5fLjooovw6aefolWrVsp60tLSMGjQIOTl5eHXv/61eT0vLw+jRo2S3jNkyBB88cUX3LUFCxZg8ODBZiTTIUOGIC8vDw888ABXRpYDMSsrC1lZWSguLsb8+fPx4osvOj67YRioro4QCpWVkUPc7+clB4FAAOHoBFKV8fv9ZhkgohG8/PLLcdttt+HZZ5917ENjhewgc1vwbFNnJk2xBJCJJzl7PKG/xXu87mGsfzS9gRc/LUZodmqVidV7vZlDicTC6DdXYM1jw7gExfI+ksM9+pnTFkrGpkBwsFcxDHazJcNW1i14h+2AUYyD+N7NUPR+n6UZ9OQzGPnv91lz0o2x+MO/vZs+UVTWBPHr1yJ+ztueudok/lWt2c2yrM9O60z12N7WmIoZVBPP9J5YJKwh8s4ocyESLap+ULg9Gw3UIUb7dOsfYF8DTmAMFjUzLa50FyDwWntvbdHn9ns0a2XPlZbiB8hjiUtTtn7YJUrrl1cH0crB/DPIJbr2Nj/E1BKqPIM/HCrBf737HXKz0rD2cWfLG4p4/Vyd6mFwi5pM14iY/NqqQwjaZRjww8e9E7FlykD/z3U/wWOf/iANoy+C1sPVb4jBvMT2+AvUwsTNh1faD65t/jfKaIprSTWGsvnLxp7OyUQFNqHjEU/Am3ggCia59ENCWXsgOG9t0H2aCu/t889ZkJsMQXUA+RkVi7CvMSFmM9G8vDz87Gc/Q15enumvlpeXh/PPPx9z5szBkiVLcOzYMTz44IOudY0fPx6TJ0/GO++8g61bt+KBBx7A/v37cffddwOI+MXdeuutZvm7774b+/btw/jx47F161a88847mDJlCtfWfffdhwULFuCFF17Atm3b8MILL2DhwoW4//77zTLz58/HvHnzsGfPHuTl5eGyyy5Dr169cPvttwMAKioq8Mgjj2DlypXYt28f1q1bh3HjxuHgwYO46aabAAC9e/dGjx49cNddd2H16tXYtWsX/vnPfyIvLw/XXXcdgAhj2qpVK9x2223YuHEjduzYgYceegh79uzBiBEjAEQYwcsuuwxXXnklxo8fj/z8fOTn53MpLE4HyCx/3UzomLkVM2WJJw0AAPRqn227Jr3Ho38BhcgMeE98HtV0+H0x+UKygzMtxe9Zo9hWwvRR7YcKdCNkbXA+KRJGaN2+Yu77CSVhK0iKZZpjF0bLq5moOF+ouWeKOafcx57mTWOEkxtxoJKIVwdDuOffa/GfVfI0OlRCTQUpymd0kLw6R/lT1ae8xcSkr3dKrztpd5y0B06gZlyUaE3xq48wpWbQ5eFyyXqRBf2QQcynKL6nT9YdxO+nr7FpAZimt2Uzi0HykrsynnGk/jz8dfU9TCCTLphsisSak4k9zyS4Cddi99dUpZaQMYMAcCxGbX08DKoMsntbZzn7vdLxaNVMzkSL12U5YVU+Wn6S2sgLwc/7/NL61OXEvogQA3x5waZDlrm5uNYog33guDfNvtRyKfqAXITbBJkv0ua8+sbWFaJbBxWqieefbb0Lv3/5/RGMm7bGlk7GjLgtCLntzB/fN/Yzm4s0kFRDQva+k4RPTThiZgbvu+8+vPzyy7jiiiuQnZ2N7OxsXHHFFXjppZfw0EMP4cILL8TEiRORl5fnWteYMWMwceJEPP300xgwYACWLFmCuXPnokuXLgCAI0eOcDkHu3Xrhrlz5+Kbb77BgAED8Mwzz+CVV17BDTfcYJYZOnQoZsyYgXfffRf9+vXD1KlTMXPmTPz85z83y5SUlOCPf/wjevfujVtvvRUXXXQRFixYYGoXA4EAtm3bhhtuuAHnnHMORo4cicLCQixdutQ0CU1NTcXcuXPRtm1bXHvttejXrx+mT5+OadOm4ZprrgEQMYWdN28eysvLcfnll2Pw4MFYtmwZPvvsMzMq6UcffYTCwkL8+9//RseOHc2/n/3sZ7G+mqRGPMFZmASG5SRUSXyd2nt8ZF8zOmA4DBSUVSkJ/7gCyAjMgNeNwgwE46MSNPf7GDEZYQa9aQbjyZ8ICIyfwf7Ta/Z61wjMoBOxzmAYhjT/odvYezUTFeWS1McoNp9Bi+hMNZnB2E6GxTsKEQ4b+HT9IczdlI9HZm+SllNp0FQEm5Pk1dFMVPGblzWmCrNe60A8c9FoQwYKyqqUfSgsqyYa6cg1v88n5EZTT2SV757bu6ZCDq+0H/WLA+zzYvyHG5G35Sg+XMMH+jLNMFOtZ/KSl4+fH94k1exVsH0jK83d1Jn9JPrveQn4wC7Fkk6EmzsxmomKqSXEtmS1GYaBfBdz9ET5DMoZZud7gtx68abpZtE0+QBg8nb9Pp+pUfUWUdn6TIMfiWeBWJW4jlRpTryC5bMT6wL4taTKVSkG/mLv5lf9zzCvsbkYT7oTN4QV+3t9QjT1VEWhlfVJHOM//mcdFm49ijeX7OKuUy09zTNoO6sV9bP3kCymmPHEkWisiNlMdNeuXdJgJTk5Odi9ezeASEAZFt3TDffccw/uuece6W9Tp061Xbv00kvNPH4q3HjjjbjxxhuVv48ePRqjR49W/p6RkeGa5w+IPCdNeC/D4MGDMX/+fOXvTz31FJ566inXtho7ZNI/t02QMSwdo8wc29e9mBCY5gokqtU3Owrxl4824tfnnYl/jRngqT9ubcVr607NKWIxf2Xh21MDfs8axXiYXADYS/JiGcJmDSTuEDMMue9MrUv9olO66pwWQ97TA4vxEl6ehRJQjMl1k2pf89MOmLvJ8mG+c9oa3HFhN2XOMAZqilLr4KvF4BSwIS4zUZfxWL5Tvb9TbbDT+vh47QG8uWQXfn3emXh59AC+/l1FuOXtVfhV/zPwym/Ow7aof4vPxzNLTozTUYX225UZpFq3OOd4MGRAFg9KNNVi845G3PQC+gybXVJsiPewfSMS/CjkOIcZ8SsGUjh0gmegpFYVzJogBi0mZUw9R0kVnovBy7i8++1ePD1nC567/qf4zflnScvUelxLbpA9j2tQM/JufiDaMK6M0CdmSeDExFLBVkwCMVJmN9lX3Yh9u6m+9dnv93n3r4iCRjJ1ulXFvIlzhfV/cNdW+HzjYQDWvktNWhOVZ5COVzxmsl6xdt9x8/NeIc+lzA2Ewe6yIR9kVYwAqnEWTYgBtZAwxe9DMGx4ElafCsjmz+nKDMasGRw0aBAeeughzoyxsLAQf/3rX01t1o8//ohOnTolrpcajR7xMCRsg2LOzbGYU1KzMravfBHd5Gmybu4e2WHtqhl0lqCpwKWI8LN73e9j6SdSA35Loxij9hJwD1wAwIyYSfsba0hs1WEsmo7J7PBDLoekVz8DMcUANRNlB5ZbmhPaXsRnMHLftnxnglNmZvLOt3tsDvsiahSmSV7zAspMfKX3eTQ7FfHqN3ITUcMwlLnOxO9F5TUwDOCTdfb1+NTnmwEAn288jP+s2o+N0QibR0uquAAkTpGnVeZXrsxgHMS/OFVlOTiBSMAoCmuPs57JS1RFOo7d2zR3KGm/h+03bA47aTvoPkXR1kUTCljPxqc7cO4j9beM1ReSMTXMT6xXBz5IjGxKPz1nCwDg8U9/UNZPTYATHU00Ns2gShDEf2cpebhooop2/T6fKWT18my0SCeSm0+leWSwCYXqSFAHuaAu6j0mbMjXcJpgUUDneTNTYx65VlhuCT6yXPZtr6BdcgtCVhfc8PoK5W9O+5zor6+aG6LFAI0myucZdH7/7CtLF5Q8AWRiF+A0VsTMDE6ZMgV79uxBp06d0KNHD/Ts2ROdOnXC3r17MXnyZABAeXk5Hn/88YR3VqPxQkZwuNnfU+0ZQM1/3NuT+eS591HCsMaodfO6h4XJs8WUPzF60EeikHozE5VtaGpfPgsycz869rLx6idEpPOaskEmHXXT1rnlKlKVoznrTkR9HpwCkZj1EA0E65tI3ItQmXa5TUmaQoKL4ujRrJOWc0p14DWPnIgKhU9H2ODnTbyacypxfmT2JlRE533XNlnISrMIsiyHKHfq1BLeBTyx+uOZdZAxoHNATB/D5mJLhT+YClxuOY99FM1ETb9Xh31YxQy6EY+RfkV/i8FMlAbs8RwllWgjAKB9doa0LXsYCwtOcyKLMOqJjiYai1WHKsCLeEaxgCTcZaEZg+yBsVim0DH06hvs9ns8SiBandhrm2AmesFLPs0A8SNnAp3/mbPVVlddQZ8/Hp9JL3ATcDoFgxP3BNW6tZmeUiE38d0Vb1dpCk0f/iRhuJzM3083xCzm6NWrF7Zu3Yr58+djx44dMAwDvXv3xpVXXmlGzWQBVDQ0GGattUv/3aLmUell5D+77oXBsDZ3J+0Bw/b8Mrw4b7u9HpeVL/q6eSVg2GYrbppuKI0SyRmp3gPIxGvOSQk89lGWSoNGJmQavrQUP2qCYSWhSa+qNIN7j1XYrnFtC1Wr8rOJ5aiGjx2ClMFwa8/v85lMoNt9qoPeTUBBf6VBR1R0g00SzxFb6rbYfakBH9dXlUkaw86Ccun1UJh/l3aNgGO1JpSEb9jgghs4RUBUmzY5m+jSee9dM8iXo2NAgyGIPkzsPqop3pZf5t5eDAwWA7MGMJlBFhHX4X62R4vMoHiLnGiKXAvHwLhSfy+v2iNWjPm+WeZp8nKxgr6bREcTdRsPStCnKvyvVdp3Lxr6SHLwyHhtiOawdQJ9BE7o4yKY8yq4cwLdMnnNoNhH/kJtKJIiwim6Kst/GgkOFhlndpbvJpphMf9evKBdXLe/OCF1ijjpEgmZjsd2Yc/xKsQTzzEqaKXCapWPoPidmaPXo7I0JshMzZOFUU00YtYMHjhwAD6fD1dffTXuvfde3Hfffbjqqqvg9/uxcuXK+uijxmmAWesO2q6pklYzmJqYaDFVYAAZeM2ge/+e/FxuJuTGSIm/xqpJoMyq22NRArNZWgrRKDrfJxuvCg8h86XRREUJolB3fmlVtH8B6e8M1HcqbBhSzSCT8KsgEhR9O9p9mWV9NolHvw+dWkVMSGPLM0gj8Dnfpwpl7jYnea2sdV1FRInXnRgy2X0ik3JOe+c8bFed20F6PWwYHAFrM6P2SEyfqJQzbIZhcKZJTkw1k+KLYx1wYcTjCRgijvG3O4vMZ6VaZzFpNbuPBqCRaTtLq2qxes9x833xwZ0MhMIGVuw65sjosmdhAUYszaCa8spMjTBCW4+U4uKebWx1ic8ha+9YRbVjOQqarzDW/IlsH2Wv1ymATCzMCGduaRgIhw0s31kUcw5RqRuCSzeoJkrlWyaOE2MC6HX7ORX57/P5zPnQW7F/8vdZNdU6WCyI7dmZC9embKDrNuRgOi/2he2ltA9iRFm23xVX1Jh7iuzsKlTs57GC9rlbm6yE1ClCZapu9oE8X5dcvg+23JWK9SIG/ykqs4RH1OJJvN22pqJf2Z6ULGaisneTLH1LNGJmBq+88kocO3bMdv3bb7/F1VdfnZBOaTQNuOWRo6YbgLU5i3mVpPcSabEXM9GVu49Lr7tHvxM3TdemAFhMQsgwTL2Na+oL8ntqwOc5uqrsGfa7aN3E+xjB5SYxZEQ80zq4vWMgMmbSEM4e7nP6bl2XEws+EkAmFn8Zanrspr1QM4POc1JlguU1+ieNkOj0bKz/qYLvh9t4tGoW0YyKPiPBsIFDJH+VGKkxHjNRvl+8qaWTQIm1ZYuE6dI2zwy6FDbL8QX/8tFGfBL1TaZmumEFEZQW8GPBA5cAsDOMAHDdpG8x+s0V+HTDIXsfwwY+23AIv3l7JR5z8H1jc4rlF2VdLpFE8hWf67zOrTDt9vPxy590sLUPWGbDmakBdMixojcDvODHbb1QhsdzABnT5B7R/+77Iut/tgcfMPqoIcPAnE1HcMvkVbj7/bWe+ie2ydftfTxUvp1itQeKK82+qtqhgi02H7ysTcpEx2ImqrLOAJxN5iuJIIWuY+dn4+tgwikuaIvA7LD+d2iRYTI4svH4x3y79VA8oH1JVLoKETKrFPr+nALI0D0c4MeUCvtShP33JAleRGMaqASy4me2nyeL9k1mFpwkXUs4YmYGL774YgwfPhxlZZZaecmSJbjmmmvw5JNPJrRzGqc3vPqEMeKIBVbIcfHTAqzNLSVgBWhxghhqmsEt7Hi8eQZZ9MCDxZVxafhS/NRM1Pk+2ThnejCLpPet338CL83f7uoIzgjB7GiutIMn5MEwWjaz3mHYMKSbbizMsfidHno/HOJNPUKEEIrFX8aKwOcjOS+d7zujZab0upvpclBhqqhmePnvVNPkGEAm2ozIVLkNB2uvpbAWQ2EDORnWtTZCoJG6HvJhw+CYQTGlA4NhGOb8FZ/NrQ90vsRrJgoA7yzbA4A31+LThFifA36faf4q6x4zVZv67V4A/DOEwgamRNv6bMNh1z6y4Bks75gTQ836Gwl05TMDaIjrnlVxsjZk7kvMv+xMsgbc1suWw7GPvRhNVLmm6ZhFP5dVe/AVFsb6y+8jY7x6j1yAqMKPxLSarQu35UCZFhXTII4Te0f7uGjQ/D1UsBVLABmeKVAz7uKr2yPk4fS6DxQTC4HeJCAQr1ni71HlwKT3tBFy79L4BKLVx5DuuZ76Ggt4c9v6sYmUafxV0cDFMRODb9H7ysmaEX0G20bzskbcWNQBZFQRhp0Y8YZAPHRJY0XMzOBbb72Fbt26YcSIEaiqqsLXX3+NESNG4Omnn8YDDzxQH33UOM1wUY+IuZF7UvHoBh3dVPp0jBwGXjYKRkz7PfoM0hL3D+uJn3VtBQDIzogtQEisZqL9OrX0zJDQDdvv987IyPzxvETPFA+TSV/vtGt6REfzaF+YtkHp50IP87Bi03V5zyrpLsAftmLicGom6tVEN1LGYiK9pjlRzXFqXiN7P1SqSxlDr9E/VUyH6j7RdNI10q/g42FeDxu8r6lQTV3TkbDbxwzuDMAhNQa57pZAWcRZJPqsZ4ZEagIYuUbXmipPJ6dtdmiTaUdEU1Yv/WRziknzWbAnx/lBhGqANU/sZl+R/93bZNnWlNe5CPDCg1jzDDKhoSqwFv3KpuhZQqRhef38WMc7hdtGGZBbh3TBsD7tI32K1q3y71KlmKGw+edFOygS9IaEAI/sZfY5pYI4z82chkLXxD61VezBbpDtjYAzM6jyV6R9FEkCM/AJEfSx9ZnpEKQqXtC5XV/MoKxelUZVXGt25t76Tt+JyuqGF1bb14zqrE42zaDs/E4WRjXRiJkZ9Pl8+OCDD5CRkYErrrgCv/rVr/Dcc8/hvvvuq4/+aZwmYBvDP27sZ262bpsgTTQNePfTAqxgIn6PZqIUaSl+U6PjFKACsOfC87pPBM1NkyaddyHAqSbBZ2k8nfxfVL9tPuwcIASQB7IQfQ1p4mHaHksK/NlGeRoP2quQYUg33Vj3XJW0UaUZ8sUYVt0kOn3eCHdarxiAg84r2Tp4iZgjOZnzMNiIcw/pKOhvomWi1yi6YtL3mlDY0aw13rx9DIyxMtOxKOqjBEuKPzatJzXTjNdnELAIYMrYHzheKb0nsp7dTY+ZVlQMIONJQBadZyZj52EfpppBQJ2TjvPR9vPXnKIWiqCCO69molY0UT7QmNjHo6WWIIvVTQUFqr2S1sPSocQD9mhntW7GMcyfbTiEPk/Mwwer99vuOVxiWVaoglGpEoaLZxctxu2BMfjii89uprGwMQV8OdG3jLblFOCKruN1JMCNU8Rf8TlYWaf5RK2QRDqDttU111144AWcmWg9MRclJ+1ab35vJtfFMXSIJurkj05NtuleIdIJYclcBJLPZ1CuGWyAjpwCeGIGv//+e+5v69atePLJJ3HgwAH87ne/wyWXXGL+pqEhA1tAzdNTTALSKyHNiIuAR00YAPSJOsNX1AQ9ha6m/KJhWOYPMgLh0ImT+GD1flTVhlAu+DZ5D4ce2WSY+RXgvsmIZmVetFrUlIeiYwu5+SJFF8nBVy1oFMW0BawvraKh8kVzHBPCYSBLfxCLphSwa0tk1+l3zkzUEyFEpene7lMxTVQTJztwqEmZkzkPg7NmUN0/VkzUnrs9lxkKXGC0a4JhLmKom1lxrDAIERupX16OBlJpli6EP49B6CIGOpi19qAt8l6knLo++n6plpoS96kBP9G6qfsnm3chw57MXgZzLkY31FQP0UTNfcoUyPF1MVANs/gcsWgG6XMdLfUWrMNqG9E+yseR7kUiAyn2k6/f+tw8PSVurQWbB+mpAU5rct+MDQCACZ9sst1TSgh6tb+w+N2QXqdfw0TQKjLvThCfnfk0eo0WGUvkbADYR3zbzz3DCnDjJTgOg0woIc4NthT9PjszSC0d3ILeeQXt4y5FZOa6QraPqJhoe9Rn/julc6gfa6lI/5DzxHR/gd1HXqalBmg0UW/zY+2+Ynyy7mBc0Wm9QHw+IL5IuI0BnlJLDBgwAD6fjxsE9v3NN9/EW2+9BcMw4PP5EAq5m59pNC0cIdLNrPQUU1IvatVEiFoVa5N2b5NtJm2bp3uKJkoNRc89I8d0oJZ18Zr/W4qSk7U4WFyJZoLvnddDTpZawjXnlEkIs83WvU1V0AFvB7/9mhhlTGQ2WV8Gd22FeZvz1X4uwmFwQhLEwo1xEMeLk3w7SD3Zc1FtjJezR3bQuWrQmDml348qyCMDuuWZCikii/J9UzPGXsxERWter/6aosS/JhTmCDUvUSdjQU3IG1HJ5mVmasBGLbr1QWVKNX/zUfzlo40AgL3Pj+DukfWDMayqMPh0/tJ9wKl/TCrP5RkMy6PximD7LdtHmRQ+Js2gQiDHR2/m1xR9HlWUWLOeOAgtquWifRTrojPVCiJF2g4bSJVYBIomffEzg5H70gL2MVKBagaVJuKiJizajsxcMgCeUfb7SLAvD88lFrHmo3yPFb+n+P2oCYU9a1f//MF6aZ1OmkHVePCWI0L/zHkOm6aUnmFuewejg91AaxGDdyUKbIy6tckyfTZrFT6oboHhqJ8gTadVUS0yg5aQhe7RTswm/YkJTb2usZveWI6wEYmGOqhLK0/3eIUqXkSyaC0TDU/M4J49e+q7HxqnMSgBUFUbMokQajIlgyi9tZhBD4QPx2x58BkkRTIFya0I5g+3eEchbhrUmfstVp/BFAnxpLwn+tgBgejZXaiODOo16IC8PXsZMffftvxS9JI49jPzKxWhKfp8ZEqoMLehFKtW+kPYmEY74RqLVJxKj92mIhvD1BQ/QBQdlVxQEXslAzq3NE2dOcLHo3aglmNAHJhBRgTZ8kUpb4n8bhLTAjMYDAsmjPL24oUYLET1bCw/XmZawFVzoGoDiJgFXj1xCR4d0QeLdxQo75HlZWQjU6sw2aVzzu8DJ5hQEZVM+LSr0NImhMIGWjVLU0ZgZdh6JBKcJTUg7qfqAfnwuwMArHWvWi8hQkyLZu90D5Ctc1k9DNXBkBlsSwV2i2kmqlibtGaaD41BrRmkzKDhuN86gY1DasDvWQBIx8urv7BSM2jQMpH/fmIqH49m8LKXvsGKCZe75xmM1p0S8KEmJJiJOhzPVPhI1yW9Lg6LajycBGSU1hDXBbdmXYVklobaCXR8WngIiBcPrIBRFrNJH3tPUbmtrOo7DdpH31erZnzfDXNe8VY34rDRFDJiYLzINekj2cBuPVhcmXBmUJXn+DTlBb2ZiXbp0sXzn4aGCGpjPrhra/MwFR3cRagOeS+HFmMYU/w+M2qeE2iwlBSPktvCsmpXiaiyPSJx9+ozGCJMDADsjUaLU0WsBNS5hrxIgWXjnCME1Cks4025WLVpLsygyKyVSjSDXk0wZd9p/SKRzOajz4eYUktQ81JGMNSEwo5CDVMzKPrWuUQJpAe4lwAyNu2XQ0JoCnGNmdddtfaR/6LVVE0wrHwPQN39Y24+PyJ8cVufTGJ9vKJGKQxQQRyvbfll+OvH3zuaiMnyUbF2gwrNrqjppwy5qousSMeWVg7OkGE4EtQMzN9SjCLqFMhrYzQZ946jEcIxoNCkW8ygn9MellbVcuvPdY8TKv7y+yPm5+pgCD8etZvoUj8lQK015i0HrLE321ZaMVifg6EwFx01FjCTs5SA33NaIN5kWV5GvM7WmJcIjj6fmsGX9kdS5M3Fuz2biab4vT23DGy9yNYvlzJBsec4+V5TKySRGaTz19WqQPi9tKpWej44mWgmCpTGkKVb6Uij/LpYcNDxUu1n9D6/YHXjFJCGtmWaiXqYH5S2EPPkxoqjpVW296TaF09XM9H60U9raBAwE6ZWzVLROivNtP13TS0hmCiZ5hse1qLlRO/HT6NR85zQspnFmLbITHPVPAAR6aSbiYoKIfJsNLVELFqcXu2bu/ZR5bOmIny4MpJ6ReZPdegzZlD1jkUp7dNztgCIpKS4cVAnZftObcsk37I+74xqVQwD3Ni7gZURtc0Xv/g1ZwrN9TF6Xom57mo5vws7I1xNfmcpVYB4fQadmEE7USyrz3afQqNYXFnDm4mKJlsq7YuHdTOgc0ucd1Yrrr+qfrJ2zm6bZSd0YpxXAHCkpMoM2e/1HuZbeLC4UlpOpel36iMrITI2XizhmTZl1IAzubr2Hfeu6VLl8DND8/v4NXXL2yu5crEyg3S+PPLJD7jyX0uw9MdCroyljeDPCSdmiJ1JdPqKQS6s+q373FwbnLAjOh/4lDbO9ziZQ6qumxotx3WPaF98RBvj/myys+ZIyUnbulYxCSlmtEjXpmxgzyO7l14Tu8gEw045LENkPxOZQaoJ9upLzfCz/1mIi1/82sZoUBltXa0lVGDPnRqQu5R48atnUJ0nSt9Qv7OZqCG5BwDSUixtohuoH2NdfDmrgyFc/tI3uOQfX+NEpeV7rVpvdfV7T1ZoZlCj3sHszVl0vRSPTsKiKY8pVfSkGbSYLTEXjgzU9Sk9xe9JW9epVaYykIIbGINCJemAM1NCn4ndCzgz1Uy6JUZU9LKhycbZgHhoCPcwZjAQGXOa68qswzCUh3dZVdDMVejWRSdpJiVaREk+0+IUV9SYEnpP42EyTj6br9x6EukOiAQZenjW96bvqXhYOUVkA4DvD1r1NSdMiKqbrG8Hjlfip0/Ox9Tle22/Se8T5pRTn7jfDfl9KX6/0h8EcDAb9jD+Z7ay3qMbMc20qc3SUmzmgm7bh8r0l75zMTWLzO+ze9vIPKMmVjINhpkSgUwRt/EPCppfL6bwO6OBKth+yJKTK4M8wXq/9/zi7EgfFVokOo/o3inm+HQde2EedIqu3ZKTtZi17iAAYNryfdK22Vr2KfoomqbT/4B6DtL7Dp84GbfPIAvIFfDFbg3iVFa1D4rFaTnLZ9AKIHPEJadupA77tQu657qeg+yrTDMo8+WUgY2FbG04MTYbD5RwfZCVoXs7m/MV0YT3bB0D3nMjMzABjJiTMhbT03gRlLjKcEJYLn0R34dPhXyltL+8gIJv0xLMiGai8v2C1k3vKShzn4vs/QBAwIttrgLlVUFU1IRgGHzQKrXgNe6mkhqaGdSodzCTrWPlEakL01LJkqJSiBHIGNHkxdSMEdspfh/nn8Ugbk6UWUpL8XuS3Pp9PhtR7HWjYOULy6o4RtQ5GAw/Hl4StDLiWwwzHq9JUEW1GD1U3OQj/xnvI2PExXrFOrxGnHNySnd6Pvbbma0yY0wtQQ4tgQkS7/9g1X7MiPpbAfZ8i1TzJwblAXgCnctTp9KsRS//5u2VtkTaXqKJ2sxEiUmWnPiK/O/dMYe7XhvmA8jYTLY8+rDKeBtqCuTmc2Xl1PPZfDJdzUQVY0wZ30/W8SlTZH6f7JKKeBK1q7T+WAQhwZABL6rBrOhaZJrovtF357RWerSNWB+w3LAq/zJrb/I57oWxmtkxTdzkpbvJVZGQR7RtRPso1/bLBFBeAi2J98Vr1sfGqFVWmrXnuwomvPRP/i6cLSesvYxdz0j129oUIVs7KQG/Y1sANZd3ziPnKLhyYAZlz8bArE6c/MhZlQG/D0XlEYagWhIcx83k3MveIfa3ntIMWtpYv1/q4+4kaGBjINYFiAGx5Ew1Tb8UNuw0m0ww4/dZYy9anMhQo/AnjRWqPUDtn396coOemcEdO3bUZz80TmMwRoslb/UcTVTUhHn0s6isCZpSzoDfh94kwAmDKMmne08acfB32mR8Pp8VICTGKFjsUMzJSOUCRTgNCWMK3HJ+UTBGWNRMefK7lDzLJiFQhkrCynwLZeYbbn6WXn1DbUyliuhWHFhUYurlMKGMk0wjRiGmykhNUfsMyhIr08OQ5ntUzS92KFOTUgZvZqJyYcHtU7/DJS9+bY8aF/29V/tsvHfn+ab2slYIIGM3E5VTPl4EPFQzp4pqKfZfZMLpbyqoJML0newQfNdkTO7qvRFtwOOf/mBekxGkprDLg5mo+Tt5hk2HSjwFNWHrql12BvfdmzDJz/Ux3jUVq4CHRT/8/qC174iaTEqARv5H61L0kf7GMREKopw+R1qK3yYI8gorgIzPdf6a/SR9UhVVBWmyaW1omegXn89n5q5MTwlg2Y9F6P/3BZi19qC0LSmDHwpj0bYCoZx87FMCFoPgpX4aFMQSrshyv1k37lKshZDifKC/BfxW0J40if9aUTmfwsV+BlmfKaMkRvulFjb1xVwwq5SAn+SSVAhM6ecZknyX9D6616mYfuqLOunrnbj5rZXScrRtv8+H1tE4EqJbhQxLfyyy+lQXZpDTelL/fHn5Yg9pfBojPDOD5513Hvr06YO//e1vWL58eX32SeM0A9vszmjBJ3J30wzScOX0vxPx8tXWo8jbctT83r1tFlpk2gPVqIhSIBLdy8th7fdZBzEjOr1u7OzAbk2lxB7vL45GZ2XEsZeNUMxDFm80URF2X5HId9NnUPKOnUyK/vuS7t6jqzoQe6o8RoB1YItO7m7g8gwKzJObz52TmahocggA+SRBNiV+SySBdiLtqfvtNKcszTZ/3TAi7/+b7YU4dOIk1u4r5u8ja/Pinm3RN+oHXBsyuNxo4jtRJs4WhTOSMjQEu1ueQZVG3Oke83dFAeozKAqYvBIjMlM1c3+jzGCcDKsT2Ngzxl1GIIqwgs3wfVSZJtIUGbJ5F4tZJABUSfz4RMEFXZf0dyczclmkSC/aqlA4bPNB9grG2KZyAWSc7/ESaETUzjDNr5cAMgG/j7Mw+d2UVSirDuIvH23ElsO8ia+sTgAIGcDEhT86lqOaN7HPvDDUYa+KVuKmGezcSh7gx0kLzBgnv8+HDi0iwhK2h9D9IDvdOZWUitlKF5gb2rwbHeQFh0+cxLwfjnBtsv1qZ2G5lHain2kahYcl+S7p/kwZW3F/Z18DJLWEDJzPJFu/fpjMoJf99OU8S0El7tnf7izCtnz7/JWBjgM9n1TrTUwndrrAMzN47NgxvPjiizh27Biuv/56tG/fHnfeeSc+//xzVFW52/dqNF1YRE/kOzt83PKriSZsbiGw1+w9jjunrTGT+HZunYlmaSk2LQ4A1Ab5OphJyHPX/xR+v7eE7tRM1JR4etzXqXkp7Z8n88aoH42XVBvsnjNaZEivO/YxDoaRfTWjiUrqsEnsw4bJ8Fw/8EzveRcdTE94zaC8fZoLKRazWepXwiDOMHFcROaR5m0Sicujpfx+SpnFEkWeNiciyimPHPUdoggZBme+KvpImsRk9D4mRQ+Gw2ZaB1YPg9MBLxL9srQKlCBxMyU2fWUDftfQ87Z2PDAFmYL5s1eCTiakEPOoiuWkffQSRUsA6yNjqq09S10Xe2eshCrXK2UGVT57kbac+yjWWyRhvMTtnK5L2ke7r6hdWMQR7x7eezBs8EEmYtBIsL2QppZwm4teIgmL15mwUCxOv1umedZ4lQva/1GvLnNtC5CfPyqrjVSXYDUqk1fAu8+gWutoP3fMuolwIEXwxXeaI44CBwXD67W/seCP/1mHu99fhy83WdF3mcDxZ11bSecb7auYL1gEfZZj5TTIilWGDgUVtLrVR81EYwlmRH3p6TzZW1SB305ehRte86a0otM3qGB0ufL1pMltaHhmBjMyMnDttddi8uTJOHLkCGbPno22bdvi4YcfRm5uLkaNGoV33nkHBQXqXEwaTRMi0cNMjn4ssIcJpzDNHEwfuch9u4vkZiAsLxtDRjQ/Vbtse4AEcVNv0zwikWISPHHzfGvJLoyb9h13YPp95JCTmJQUlFbhtndW45N1dpMbagJLTQwdg8GEhXH0oBkUg1R4acfso4dNT2USGJtm0CIoUjhG3E1YEPk9TRKhTqUlpP2kCYZVOYVk7fl9Plt0VvGwF8c3R8glRUs3E6TN1CwU4IPJtJXM5UjflN12TB3ADkKZmShNySIyv6KJI2MsDhafNM0QAZ5AcOqHqB2VkRGUAXOLAmv5y/hsbllujJaKwHfSLGwkZoyOdZPb2NKwoonK25L2JS7NYJQZFDSRTnsByyNmahOj924XpO4FZZavD3sOmbDPdU0LfWkeNTdfvMOKICoTXNDrKkZL5svKm4mqiD/rczBkcGvQaexmrT2IcdO+MzV1TOhDzUTdXmNIokFxKgNYZ5mTfxvn26Ug2mtD9sAfMh9H2XtW+ZLFaiZKGU32fqSaQUlbDC2jc9jJx5ylucpKT7Gdq5yfXVgcU74fL8zbRvpr6ybpo/W5vDqInS60kBtYALOFxCqKrfe0gJ8IceR7WLscdRApQNCOZtCAZvY5BfA+g271UTPRgAeahqFrm2bStn+MBsqqkMSKkIEKXG6ZvMqM/KoUNCaCe09CxBVAxufzYejQoXj++eexZcsWbNiwAZdccgmmTp2Kzp0749VXX010PzUaMUSfjiNRJo+ZjarATAb2RJm/fVGCXcbc0XYYGEMiCwlv802JHmjZUeJDPKz/d+42LNxagC+/t6Js+YhmkDGDdHOcvGwPFu8oxPgPN9ralwVcAJwlzSpNgjOxz99jte+uyYhVM0jHnzJoNu2hxEzUYnT9Su2Dve3If5m/pqN/CJmP+6Ibf1uHiIpiPX6fXHPFtSE0yoIzMDglkhe/dyTrRHUQsXknmjFF7nHQHJsaPmBEv46kPmD9/mJbOfO7YOK4N7pGm6UFlO/BiYERfSxlw3s2iernplmpJcIFsYjbvFJJyZ0CFNGIg06QjQ0bQx+JMuma/iIOgqSamCkCVIPmLoBiBDIzJ+vUqhlXjhGIuwrLzb2zsobXNAHuzCDTELNgN7K+qQQTVp5BhZmoZOy9RHUU3xnP0Kuf5y8fbcTCrQX4z6qIDxbbE30+Z1Narm0HAYTYP+brFpY8GyAPsuKTmLxTuPl3A3LTdV5jZI2ZazRRUTMoyZcq2wM5TVv09wu6t47cF2Ljwd/Dmwdaa0N0Y/GSSoHh47UHzbqc1rDILP/9iy3KsvGCrXcaEE/FDKpoCBZ5WxkES6Hh9PntGnwK2Zj6fd6C4jG0z7GEjtw88WqeJbTP2v3Xwh2OfYi1/saChEQT7dmzJ/7yl79gyZIlOHz4MIYPH56IajVOEzDii21IXaMbjJdw6ADQo1129H/z6H3O7TBsPRKRXouEeKSsnLhNMaXmkeviZl9OomlSzaBM4nn4hDz3HGAdFCl+3rbe6QChplj0/w9CUBfpPYTQBIBNHjQZXuhNFdNFHcDFxPei2WLYMEgKDGs8vCYHl6UqkRE+Yp8Dfh96RueUl6moMqkU25Z9F5PiUgbNyYcSEIINuBCEfc7Isf3mZI5Nn+mfN/XHizf0M/tEzURFYoF1w8x5SXzoVNJipwNe9Gn1SXSDaVKfQcV4KIQgTvcwiMEexDpldXhV1MkIKUqMB7xqjOLQDDLLiRTB/8/LnsOsF1h6BHEJsPfRo122WW+VJDCS257CUtGkBHhTPVmfGKiZGf1vT3tjv8dLNFExkmJY+O4G0dQ1IzVgjpeblsEpTQsD8+2zabSE8jLCnaaWkEHlE04h83mmewC9xcwzqNrHHNpjv7F9iTOr5jSokf9ZUd+usuogSk7WOq5Z9pypfr8pLGF7npMQSDZnnHwbZc8FABuE1ETxgq5LZlGSQjSDtFkvaUt+fV4kJymjpQBxHwT5bH1x0wzK5rWfuMw4CbgZVM9C56yXBPHiPsGUD1418acLEp5aIjc3Fz179kx0tRqNGCJhRomQUNjA69/s4syAGNhmmp7KJNnqhLWfbTiEKct2c9dYOTHPHGubwkpSb0npI3Xw5ah1oN/nszGRu6IJzelzysDn5bInupWBMnaApU2Rpc4w26EbLelPL0mEVRF7FOa4XJ8UBwol3IsreMmxmErhjcW7zWeh0QgPFNtzFFKw9mSaQScmhGpYneaUiB+PRt6t7LW6EQnpKaKPGemfglmVfVcmbZcQt1Zb6tOLjbs/GlXw3DNzzD5RYYZI9FKnf8B6vrAhEAgOGlBHSMaYzim3IEOU2BVt25jZngqifyRDASHqxSFV5k+0MS72OeoX9hTZfSK8rE0RZdEkzbVE8BJpS32PuecEeAGU6rnSU/zmnKgi+xJLMVNdG8Lr3+zC5sO8MOpoaRX+v69+NMtZvrz2zomWIWKeQVmQElqO9p83E+XbeW/lPizZUWgL+kPdFLxoMJiPpqWFt/a4SuJ2IHVnEOr/96p9tjI92kcEWiylTCgsMe8EvwqoEMhJMygT3ImoJpr0v13dO1pOfo+lGSQV+GhZvm6ZsFHGbMmic55DzrjDJ046mokGyTxnfWRpDlTMj+w77Zdzig7+u0e5eExgFiUFpdVSwc8XGy0rJ9W5wgKZnR1NMQPw71MldA24+AzK8wzSYEbWnJr3Qz7eX2mf97TPpUQ7TedjPLERmMmtSs5D+2YYBiYv3Y2vth6VF25E0HkGNeodTj4di7YV4IV523DbO6tt95kbtIsvSHl1EPfN2GAL+8zg8/nw826t+T4Jkie2wEWGNWzwRAXd4IIhw3w2pk1oQXzDnM0k+PoCHohAUTPImFwnyT4lOMcO6WKrywnUN0BZv0Ibx8KVA8DEhXxaGlHzQg8lv89nmh3ROpzaTpVoBlUHVuQ+qy23oEQU7N3K8gKKzJJ4uFYK0nMnM1EnZtDNVEx2qDtpH8qjDAIL+kJNB53MiKifh3ifynTIaZ6K6TVkS4eab7ppj6kJplhEDB5FEQ4byvGifVIx8B1y+EBN1UF1Xk7mf0zN7Pwe56Pb2nBCeZQZjiUAFdufVGZc5hz2WXOCaYyap6fgF73aAgCmfLsHL8zbhhGv8MFJxk5ZhX/m7TAFW8xcX8bY2IN4RP6zOWEykg5CFvabSoC08cAJPP7pD7j1ndW2daAKXKGCuLdHBICR36hfkyycvjjOj87+AT8KaU3Y+HSMBgkTTVllz0fHTKY9ZxDXvWy5sTmenuJHhxbptrboe0hxScFkt4ogfQnzZpvMjSRyn72O1IDfDJxWGwrb9tlazvLB8qdl65HVIwt4ZvZP8hwhxX1cHR6YyrqCjde5Z+TYhDg1wbAnc+curSOWAKogOkozUZ8L/SMVilnCWbaugqEw7n5/LR779AdO0B7ps/X+6JlMk9F7WZ+yZ68RUiRR0DpX7TmO//lyK+6ctsa1nWSHZgY16h3WIYjof8tk4ZCD9kfFoIlrVGamIsKWdF2lGfTzAWTEpNvUVyw91W8eDK2aRR3QSdhhRzMJ4tMEeCMCRWawm2luC3y6/hAufH4R5+dF7/H7fLh/2DkYenYuAHdTOUDuayliKwl2QseUmkWuEdISyPLqMaQGfCYT2tylfVMrKzHRVUmmaT+pVNzLeDRLjxDgLYVgMABw+AQfAZQGfQHsz0K1dTai1YGIVZqlGays/XcnLZLIVLDxOFZRw/2WL0Q43Rg1OZRp+1UMoJOk3MYMSpYOHXczJYgqN5yphbHHvMhKVzNSokkzBQ30YyMso0Tzc9f/FA9d1cu8Lvof0tvYmFHhCBt/laaRjUuztNiYQTrfWF/ZGIoBixgMg/ry+rh7VL5k1DxsT9THOy3FSqVw4LjcdH7HUZ7QMwNQSZhzlSmhKWyM9vFEZS13NtDbzGii5OKoV781g5bR4El0b/jhcCkXyEgmGBLRLD3A9Zmm31gTzUUJyE3jZATpMUWaICoUk+5nkj3R56LB8WImuvVImdm+7IymSypFkoKJL6tmPtn4BIWzU6yP80GLjkktEdwymAIBwjynEJ/BzOhZ7qRRlDLdEs2gyDSK39l6NwwD46atwW/eWlmnROq039T1go2NKKSi5wpznXhiZF+pX7FsHVVUB3H1xCXmdTczUZrKwhLOWmf5D1HTZ+pLzgSXZp/JeqH7YSY5t7wIecUoukBkfLwEEmPaY8A5andjgGYGNeodbMNgGws1wXQKxMHWlpsfn5cFb4tAJxB9R0mSeoAnNqnPFT03fT6fKdllUUhVjKMIdp/flLi75ykUmUG26dUEw7h/5gYcOnEST8/hHdFpCosWmam4bWhXWz9V8GJv3zVXHtGLjndHIa2FEzMY8PvMPD5OPjzf7izCiWgIdZpYXBYYQhVVMOD3lrtSrDslYN82WwgMIvNzZRBNwOicctUMchJced/YM8pyoInaKtl9Z0UlwKyp7IwUjugRcyv16RgxJ2VSdKph5UwhJUSEjPYUiWqZz2A68f31KfYCBqoZFP0Rg2ED6/YXY8WuYzZGmRIYuVl8flKnYB6MmOrUKhN3XtTNvC4Kqmh/WVvUBIvtC27T0dEfSfIbJXhGnXcGAOBQcYTx6ZLbzFYe4Oco24NVwhP2LRJcKfL5YLT+4xU1nv3DGVID1n5o00orCGs2r6hFwwISXZE3HY/8Lyzn18u7y/bYytIy3dtmcWN/UmGiT5nv1XuOc+lWAj4fjkTPm86trbEXBS6A/F2KOUtZEWYuHxHI2O9jV2g+OL/POYCMKHySLTeWl48KXGn7dL9n/vv0mlOaBW69RPcWyhSwrvOmvJH/fp+PCwaj0mZThjfg95nBxNjvZQIT4hRQhv7u5Gso3sf2v9KqIBZuPYoVu4+Z60dEUXm1Le8rg4x5Tgn4beec6EfORUyNVvKTM1tIU2zJ9vSZ3x3g+uumcabRtakwhzGJ3aOCbipME+vz5O/rgYaRph4LybXrAD93qUBCDILW2BAXM3jixAlMnjwZEyZMwPHjEcnWunXrcOjQoYR2TuP0AFuobGOxmDpeA2AzB2KaQRc/Pi+EvH0j4X+3zHWsjYm1RRc/PTh9AI6U8Bs2n1tI3Z+DxXz4Yta9WFJLMOk57Z94gIj+mlaiaXXfGJzGVXoIC0zz1ed2AAAs/bGI6yMljERQJ3IVof/RmgP47eRV+Ous7wHw5lVyZpC/P17NYFDwtbq8dzvrN4VPHcOJSrk0X/wsu5dnQhTBTaJFjklMpZ2Wh21OMULTcG6XjSHLD6k2EzVs98iYaTHYkmztBAjT7+YzSP2zxOA9Gw+cwPWvLcdv3l6JX/7fEm78qXSXVp2W4ncUMIQI4UUJBJGQpLfRCIYMOSYj4zwfnQIsyLRVlPhjxC4LyKVa5zO+229+ZnuwSnhCfdDYu2HmjMP7tkfAYS+UgdcMCnNPERiGnQ+5WZbghZrgytacuOxPSCJjcmUMvh4aWIOCanu/2V6IBz/aaH73+4GuuRFi1y3XruzdiPOZjX0qCboj287YnKW/idGsRdg125GbB57VErdf2DX6DExT5+fOTQaqbWdCHmpJwZUNOTOftSHDjLxZUFZNNJEGucfa09LImKgsRCqIoCTi8+rjfhchC2pD9ytZPkSVJl0EFVyprBTGTVuDG15fbrM+Yf0X20wh8QJMBlgYZ1lAs4DfZ65btWlo5DPVpAOReeUo/6HMJXlfTDDF3iEVYtnmgmJ8qRDeSz5WlZ+96v2rmPTtCguLxoKYmcHvv/8e55xzDl544QW89NJLOHHiBABg9uzZmDBhQqL7p3EagK1Hy/fP2pjofmGXthvy+0Ti3gszKOxMIoHB8mkx00jKsNKE2FTC7fdZTtoV0SijtC9ONvMsrQbb7EqjROOPgrkUxZZo0AVGODOCySmfjpNvF4VhGPj7F5vxct4OPDp7Ez5cc8CRiUiVBF6hm2fA7+NMKKjUzIn4CHgIpjPjuwPcd8oMsoOFvl5RyLD5UKnZDzdzQwB4f+U+PDd3qzlnWP+o1kfUdoqER5FEO8UgnleqhN4AsEkROZa1d4aHYEmyuu2+sjzxpDLVk61N2hzL+SS7h0LUrMpmSEBYe4Bae80uB/w+m1noQuLsX1Ub5kym2Hv0+fjUCOe0b869l0MC88qCd6T4fRyz6+QzaDGD1nOZ0RYpsSQjVqJz8Tfnn2X7rUKS0oEShoxYsrQmKqGLlR+VMbimz6BwC01VwN4N20tLq2pj1gyyIfnPqv2SSLZyol7c4wCgW26W9D42b3IEv2iW0oIy8dTEOxQ2HKPKMoj7wdfbrQBpKX6L4ajhzhZ7PXINn/D80f6wfVAUyJj3GfY63ZhBe77AyH+fz2eOC9vbU0jwL+5cIHvM0bIIE0jz2jmdM7ZUE+EwthAG3GeWs9/jI2aHNaEwSk/KNXx0vWSkBmyMkzh1ZUFt6LnFzhInDaJq36LzRhUlnEUFXrzdHnSP9pUK+ljfGK1QKwz60VLrrDYj+pL7aH9lz58pmK37/bFHE43sHfz8oeNhd58gPp+KSeTFZ1D2LmqFdU5B84xSSxzRjLWxIWZmcPz48fiv//ov/Pjjj8jIsMyPfvnLX2LJkiUOd2o0VdijiUavGwa3e6kITtFM1K5BlC/aa37awfws+kWIxD8jOFhURCpxpEQ/r/nzmX1kZnZchDOHfYg9q5iv67FPf1De88qinQBgmhiJpnuAnYgWTfNUkv1dheV499u9eOWrH/HvVfvx14+/dzQTZYesKjqiz+fjzKvoxlqtyOMGMGmkd+0lwEuZZZpB8VnPikofT9aGXMPrG4aBxz79AW8u2W0emEwCT6PUinPXNieFr7wkVtR8iN+tmzsqcnOy7svWgpPvicgMWuaXPFOqMtVz8xlsTxLQW4IJez/ELspMrCnRqsolJ7bl88mSzvPfqXbmQFTqaxi8VsQw+LZyMux+o4C1LhiD5yQkqCXaROu5+P6L9zCw+XZZNDAL/zwyzWCY6x/gntOLMh1iOhtxjlr7jEUEsjZ7tc+2Mc9uWBeN6Hew+KTr2rI0Qda1n0Sj4tJ1JtNSi4+eHjW9p9pd3u+Q9z1T+QyKfn0Ufr/F7HLm4oZdYyN7NyotUyqnBbO3G5Y9sy+2PIOGsMcDlmYtv7RKekZbmkMrlQ9/TjoxTXx/xOBP5jlN5ipnJsoCkoQMGxPNpgbb21iOViqMDEu0rHRI2LMFwwY5tyIFqjlTWL4O1dFKx+VvUcsXFZhPNy+ApvSUtebZ+mP7kTjPqM8dNbNm71hN19gfRAzkJIPsfI7sHfzvHDNoS1GlYFDJZy/xJGRnfzAUVp4tdH/1SejXwrJqHCyu5DTOjQExM4Pfffcd7rrrLtv1M888E/n5+QnplMbphb3RQAJs3ajMPcVDn2lBGAOj0uKopD8szDXgrhmsIQcW7WvYMEzmCxDMEUjbaRKfQVl0OLH9VMF+qqjc7vOlgpcgEmGBaFeZRcoSbbNN8omRfbmxVNVDo3QCvK8gfUfjpqsjb1FJtVcH+jNbEoZDYgolVsMOnNbN0kwCUtWWLG0H618uSVRf66IZtAeQsRMvyu8eTI+taKLq9ygD1RgBZI0JmkGRwbBFwyXvjBJ3ATK/TQ2OhEpQ+YFRUEZG5ssiey6JRap93yHPxjT1or9gKMwHkqLrlvaVEeSy4DBif38sYIE3nJlc2fujQUPE1Dkyn1yaR41BjNwnghKWogZYZdrs91nvlxFrAb/fJvSKBeL72iFE02RTnhJm7NloP7ccIcGuotfF52A1UP9UPuE2Pw9U/s+OAi+yx4nrymm+0D7IvlPmnluDpnbHfj+1jpDBHkAm8t9HTOxZda2apUrXJdvrUkm+O5l2SbweqVs4pwRNOxVeifcEBObCFjcgWk4UlFAzUdnaU50VfoezxM0VQHZdeiaTelhAM545scqy3IUBv888i9nvYtAUKvxgn5pnpBCXDdIHyZlPR1bM9ymDLLgOnYusiZoQEcQLw8E0pAA/T/k8g8oukHrthSqqQ0ohGR1vKqBk58jLedtx0Qtf452o/3FjQczMYEZGBkpL7Xby27dvR9u2dimlhgbbiFiwBrrB0O1ClFYx5/riqJRVFTRCtbHSaJgBMZqosNCDhLgCeHMFagpA2/L5rI1Rxgw6bYYWoeQgPhPAnO+ZSWvE5Mv5HmamZkXag62fgHwM2UZ/drvm6NepBfcbM4uTHRJsQ6fRKL345AH8geDF/BcQQowzIs+BuWBjn5rid9UMij5fgHVwMp8ZADgiBH+gPFl2RgrGXdyN+50eKCWCn1JIQtwxqIhPkxmUqFOdmGo279mYs+lkGC4+L4zZEpkEgYmkPhtiICmnPsq6LJpoR8o5E1UyrUeKkGWbEg8sIEjXNlmcsMUw5KZNAD82YgoG8X3RecgEBMwsK/JcPDEkfmY+V3Qv7d7WMoWUtRnpo1ozqIpQewbRQjPtpWgKJ/bRB4sAZ/1IIRGC44E497rm8s8rRhMF7AnYAeBsMk6mJl2YP8znSpwjtC+0P6IvMMPJWrVWgO5xos+gyERKtcIKs1l2Bh04XsnNT5Fp4+eT1ScZbMyZ6VNvrUHGwLbLzpCuS5rDVyZMcAz2JTy+OLepy4nZZ2ImSi18VOlxRA09NROVamYl/c1Ks8xLZYIGUUskVsuifNN7fiHR+tOzgu0FVANJBSI920eCmBVX1KBd1EKDjZ+4fmX7GReF1OP7Arwxg7KzxeezKwqccgb2JnkkZe8fcIi+TSA7QgxY55i4NoIKjSQzvd1VGNmbRdPZZEfMzOCoUaPw9NNPo7Y2Mil9Ph/279+Phx9+GDfccEPCO6jR+MHoXhaBkJqS0HUoSqsYYcaSx6p8BlU+L1TaJRKFlMinm74pHeQ0gyT5NteWzyR2acADBrqHiBJOK6+R9yX4s66RXImPj+wbaV0SHEPcf0uiETeZX4RoymL2R3LoUYJa3NhZhEpZ6gDWxkU92tjqd2Pw/D51HxnEqzQAB6veiaigZktu/omyw4QNRfucDIwe3AkAcFwI3MJp8xA5mPc+PwI/PbNFtF7KgAiEgqBtdvLdE58v1jyDNs0gMbuSJWW2vkfGhU1fqmFVSZHZPiBj0OzRKe19putZlWZGfC6Z1oNqfQCewKRh66lWOGSofcXoM4pWDE5R+xgRPaR7LnkuSf2S95dOgkelCM9YXGkPgkK1dAxs7jsFowF4oYe5XsT1ZY63XStKfZbigWuApehX2oRsXdPbTHNyoW7mu60WMvDPXqrwEyosU+W85bVqomZQPAPdmBHAmlNsHgf8Pk6wamoGo2uKri0x968IlWbQ7yMMLWlXdkbTNSUGB6ORTcX7xL4CQN4WPrk320pkdXA+4YZ6HplWOsLaDRnynKM1EvNPPxViGvazThQqsrZvjeb+NdciuUfm/z156W7zM3tnq3YfM6/R10j9yMVgc04BzxhTkxKQBwRSpZkw++Xn+ycDvY/N+YrqoG3/o3uZuCb5fVvev1iihFMESTRR8TlqJQLOyD2R/lSbY+zedjIhZmbwpZdeQmFhIdq1a4eTJ0/i0ksvRY8ePZCdnY1nn322Pvqo0cgh5tSjduicL5kg9VsZ3eRYCgWVz6Dq4Gb+f4BdukMJQhq1y9QMkkOL1kOjZnGawYCdcKdSOhsDKzCfNwyMMBWiyRd3j8THyMkUFQCaR32bWIAblQmm1NeMmH6J4ydzLBcjo/7ugi7Wb6YUVi2pY34obqabIqi2w4oSqJ4jMrMlN98zCqrxZH6bzQXNB+07nQcyn7AWzXiTRNH0mBLrovacwTAMnKwJ2bSMqmdgYIl8A0J+zbDBj6HNNI8RXD6BgAobSkbGiUFT+UHR1CW8zyArp3hvDppBsS0a5IXNz7QUP2e+aY+SSvpKXgnrI9vrxPkunYdkDct8dOg9W/MjVjnMZzE7I8UWnVVGhLFgOPSZ2OfvD5bYb4A1p2VCNSfzQZMZDFr7vsiwxgI3SxAW0VOmGaTjL/cZ5OtiIe+d9gP6U7YiF2paivx5RXNsu/m1h33ZptUxuL6LaWFSzL2albfuZUOm0uKI+40samyNeS75TEaA7h3FFbXRfhBLDHOf5ttzi7r5+cbD3HeZz2CY62Pk2uvf7DKjT4ttMUaNrUNLw+d8LoptiWcrLScGyGI/pQp0A78/2Pf6eT9YrlgHohHJ6fqlvaX+4Gytb44GobPMzO3nnyWoJppcBcMuM+eXBXISQdtjY3CistYmTJCd7Qwqf0JazlPSeckz1IbCpsWGyJTTwD6ytjKjtGVr4VxPdsTMDObk5GDZsmWYNWsWnn/+efzpT3/C3LlzsXjxYmRlZblXoNHkIEZ7owueHoZizqau0VwzjElUBY1QLXi6Ge0u5KN00iqopIdtjqa5Qpivn5ok+mBtBukm4S633xcP/dIo0c4IuTNbRTacXsT0gSEcNrD5cIlJtKaS55KZMXL3Rh/UTFCvkOxLzQsJgSf6XpmHSNhenpqJMmKJjaHT5iwLRiKFcJ07iM1DVXwW68LxqGlXSsCKrKjy8ZH1l86rTtH35kT003kgC4xiM5E0D+rIoFNtgUzrE2kPmL1entrHyUS3fVTDu7eI+fVa40gPuiyB6LVr0i0mQaaBof2QMWhiFxmRcdelZ0v7rfI7ZiiMBvvx+322usWgAjUkKIVpMibcFxkPe/8Afp4GBELIPi+sz7WE6DLvl/jo0DXWM5q/0vQTC9gZLac1Rv2f2d7B9gYRQWL+J/ZPNHuj5oPi6/WiGRSJ5fFXnmN+FrWrIlHI+k/z9Ln5pkU0UvZAK+yZVdZlTu+Tr0f+g0koKzSDXlwgbJpBxgxGBQQ1wbDZ/9SAz1QXyRgON5M+VdL5iAkmou1ZgkbZuqQBZkTNstvzisxGBhHintkyU+ozaGqpiRBTFoWZmicClrk2FUZyPnpp9oAtNKCOaNHCR4yWP5cY0ZdjLiRzqH/nlrZrdExCEhNGv88KIMMEmaJbDJsv1LKDrltVNFHZLGdzySnPskxgeE77bJvA3ymaKA3SVC2x7gDcrR5oWxS1IcO0fqJJ7AGLVov0ybrO2mJ9btFMHmQsWREzMzh9+nRUV1fj8ssvx4MPPoi//vWvGDZsGGpqajB9+vT66KNGI4dpHmYS+5HvYcPgkj4v2lYg3BdZXEwyowoaodJ8UCk4M1FlUPk1WT6DVjlVCGOfz84M0q7QA1bs48aoNI+10yXqHykj5N75dg9GvLLMjLBHNQFdFQmjGejBCFB/CL6cu2aQ3ypEiSatgws8wRIhRxt0yvvjlv5CBS4CqcL8izPPY2ZNPp/JhdAUCBSycaHEd7ok1yPAHxIUMppYJIBCBv/OqDZapvljdahyEDppBlnb554hmnCDY36+UaxNkYjcWVDuqhmUMQZ2Yinyn4419cFwyjNoGAY+iTLGJRLm2UlQINO+s/6pfGU44to0m+W1Y7RvDLVEQ209l6Qcea+sqOUX5bP3VTIorDpqecAEGWLQEqtd1j/rHTCmb5cgXLNMquQh5d00gzRcOwCMGnCG1Q9F8CKr7UjjdC+kkTXNvpMxLSirls4dVt5LJEFALbBSrTkxKqvNjFjcCyT1qCK5ZqZFnrk6GLbMuMn7YDUZ5Hb2qrz6DNJgPeYcJ2b3fsn5wvrSv3NLifaMb0/liyr7/fXfDSSpJezr0S29gWWqGvnOfEqZMJPmuPT55HOKRi4Vfd2dzBXZ11Qh0BG9R7YuaR7CV7/eZe+PZBwCfh8u7hnxP6wVmE7RFYHWlRLwm/PDa/RXwF3bHKnP+kxTYIg0HmeSK4whPQsps7+70KIpvfgMyra/YDhs7nWDurTC908Nx4PDz4n2TT4W7JyuIdYljQkx9/b2229HSYldylJWVobbb7895g689tpr6NatGzIyMjBo0CAsXbrUsfzixYsxaNAgZGRkoHv37njjjTdsZWbNmoW+ffsiPT0dffv2xezZs219vf/++9GlSxdkZmZi6NCh+O6777gyTz31FHr37o2srCy0atUKw4YNw6pVq7gy+fn5GDt2LDp06ICsrCwMHDgQH3/8MVdmx44dGDVqFNq0aYOcnBxceOGF+Prrr7ky+/fvx7XXXousrCy0adMG9957L2pq1KGpGxvM5PGiX5JhaSYi18X7opuE4NfgZDtOwZnnCZXTfYVuGLK8aVykKqr5g8/sC1v4VItDmxSZPEaUMYk4kxCKUSkB4H++3Mp9p4RVeTWv5aD5glj/AWssVD5ysgS3lHgXtTmyfGiyACFWEJTId6fN2Zwf0f9bPSZxDfh8tkNLJT0HLJPeZukpZiAcloBbhEyySJ+PEQhbhOTT9OCqJO9IJi2150+KMiRRQoFqbsS8aKZkPGwgU5JqBHDWDNrTvlj9o++qA4kMS+tk97EgS11ymymZQbYGZDSCSkNAGSXeZzDyXybVpVLiNfuO2xtzaPtoVLuUGuBTUoQFkzGZJiLSL1+0r1EhgYPmZ180yjKfWsK+Pp1MBQM+H6dZVJaPXqJJqZmWYO2+Ylt5wNrraP/Y/D27Lb9eqPmgyFgUlVfbGFb78/B9pu/dTXtmEZN2f8hjxJeX3vb20t2OKThUS8buAyovqNLOimaiIuyMrpcykUIZUXeGbfll1vzwW3sje0cyzaCKbrcHPrEEVWwu0GBosjOamZFmpQXI/LaX8/Kd7klpJEE8r8W3ns1JO8X6zd4Vcwdh7yhsGOY4UlNnmbUD9QOVBZCxB8ji9zd2foiRa0Wc0TLDdo2eUTuJUJMK7NiZR1Nh0PZF/8nIb3aLmx1Hy8wUV5Hrtu6QoET232TPRt2IROuvAhK8T4zsTfcymuOvHaEpRfcGGWQCneLKWk5DmpORagb8Cir2ZibQ+iGaxzjdZc9LNsTcW8MwpAvs4MGDaNGiRUx1zZw5E/fffz8effRRrF+/HhdffDF++ctfYv/+/dLye/bswTXXXIOLL74Y69evxyOPPIJ7770Xs2bNMsusWLECY8aMwdixY7Fx40aMHTsWo0eP5hi5cePGIS8vD++99x42bdqE4cOHY9iwYTh0yDKzOuecczBp0iRs2rQJy5YtQ9euXTF8+HAUFlqJPseOHYvt27fj888/x6ZNm3D99ddjzJgxWL9+vVlmxIgRCAaDWLRoEdauXYsBAwZg5MiRZhqOUCiEESNGoKKiAsuWLcOMGTMwa9Ys/OUvf4lpLJMZNs0g2WAoc6XKJyVK28W1WylJsixCZGZk/iM+HwkAQQ5Qqs2ihKbfb23ElBCXaU3EQ5X1mTHDaabU0V2SRe3oxTxjWUIEK9E0j5rzUcg0duzZfD7LF4SBaQtk5nKUzrHai2oGPZiJMpPNDjn2gw+wm6b4/bLABPJnof1M8fvQNpoeIhafQRppkCXxbSn4B3DSQy5gg70Nu/Q7coEdPk6MAbvXgHodOI05W34+CVGoOvTod/Z+mWY7bKjNRJl5Jj3gGVTRRClTIM8zaH8mavLbo11zjLuom70QAR/0KVJvUVmNjeiTSd0B/hktH8rId3vKEesze7/HSDoZGvBC1ha7TgU1hUI6GictP32/bGxFMygGy7fWuikrus+piHafz85YdGyRaZrFU3DBF4Q+U6m6TeuumItUWMBS9Mh8yQDgwPGT+HyD5X92x4XduLpUGr+6agbZmKty+3mJ8qzSMrG506pZqrnf0qAurCqeGYRZjmH04E5oH00KzwKPmT5+5n0W40eFV7LATuz9RXy0+T6Ij2cX4vG/03nROiuNixZq3kOsYQLyYY48G4uIrRCIhcKG+fy1IUNq+m0JxWCuQ+buEpKcjeJzsdQJ7aKMREixrzDIhJN07VBza1Y04PfZAsgwBiyNCHUjOZUJs00DyEQvP/TRRuE57P1hQZUczUQlQkJemGCvn467YRgcLdaMuDFQmvJvszYp+0DrAiIB75i1RHFFDSfgYv0T+07fFyvP1s5pG0DmvPPOw8CBA+Hz+XDFFVdg4MCB5l///v1x8cUXY9iwYTE1/vLLL+POO+/EuHHj0KdPH0ycOBGdO3fG66+/Li3/xhtv4KyzzsLEiRPRp08fjBs3DnfccQdeeukls8zEiRNx5ZVXYsKECejduzcmTJiAK664AhMnTgQAnDx5ErNmzcKLL76ISy65BD169MBTTz2Fbt26ce3ecsstGDZsGLp3745zzz0XL7/8MkpLS/H995YT8ooVK/DnP/8Z559/Prp3747HHnsMLVu2xLp16wAARUVF2LlzJx5++GH069cPPXv2xPPPP4/Kykps3rwZALBgwQJs2bIF77//Ps477zwMGzYM//znP/H2229LU3gwVFdXo7S0lPtLVtgZksj1UNgwTZHYdwqLaI9MU5WfkJdIdWIRmQ08l2uH+k4pNiS/z2f+1qa5xQwcjtrnqwhGwzBM3y9GiDHJeY0HG3fKjIjhi5sJvl3mhiYw1GI+w6NlfGqESF+YqZF9jE0pqeQZZYEczAS/HpjBllFbezEHI4Mo7QtIpLI23xMWSc8wuH46MRWR/tqZczoWbONPc0hdQgMQSTWDinmfmiLREimIT8NwMvWSXgbAEzNi/zaRwAQqTaso4IkEkLE/C2DNBZnJoMofL4ULeEKOq+jl7w+esNVVTphiH3z4/SXd8eotA/EX4ofGPQvpMCOacgQftkjgELqGyW+UuDafkUni1cQ9C1jRhphIyjSeMhMt6octCiKcIgPTtclS/qhMOL+KmgbT/cYk1hQMSSS1hL0+liaIQpU0GuCJfjGwmCoSMp0r2VH/ORptWdwTdhVZWhTWHuuTSjhk0/QqNg4VM8j6qFIaeDETFZl/1gfGCKQG/Nz6ZKPCqqI1+swzmezZAb/J9KcG/Hjwo404/9mFOFpaxfvICfNm2c4is63tZI/eH9WAp6X4XfdpcTxFzf/eoogp3tlts9AuO8P2bLROlckyA9tPxMBW1K+RNi/TDLLfIwnuo2s/YC+nei4mjGR9oZps2b4tzzlKaRLrusXkWuuA5eZjTCXVrhkGz0jRaKLrDxQDsNxbxOeQjbOziS7tv7V+Reaerl+6J4j7Kn1upyB1MlDfUcaU+3x2AZosL6tM8MneZV3S6TQEPDOD1113HUaNGgXDMHDVVVdh1KhR5t/NN9+MN998E++//77nhmtqarB27VoMHz6cuz58+HAsX75ces+KFSts5a+66iqsWbPGTHWhKsPqDAaDCIVCyMjgtQ6ZmZlYtmyZsq9vvfUWWrRogf79+5vXL7roIsycORPHjx9HOBzGjBkzUF1djV/84hcAgNzcXPTp0wfTp09HRUUFgsEg3nzzTbRv3x6DBg0y+/uTn/wEZ5xh+UhcddVVqK6uxtq1a6X9AYDnnnsOLVq0MP86d+6sLNvQsMLQ8wePuPmoNINsP1CZiTqZwTHYzESpzbok5x9lEuimLm4026LmHZTgZ0Ea6OPQ+2h9zFSLMT4HiX+YCvT+wyd4Jq5KMKWwNrpI/TTqJT2gZAnsgyYz6OMJcajMRGGWZ7D8LzxoBqP3sbFQMY4siAZtQ9SoqKTn9HKKXx79jkLWB0o8iwSF1Z71XWU6LCtL+8iIcF7qzd/LhAkRLbv8GRzNRBWCGoA3nVXl6BJ9oJiE2byP065F/stCpvN+GNZ1KhCg65PldxN9gQFe0xYyDGSkBjCiX0ebX5q8j5HPuVlpXOJ5MaAOF15dsHwASHANWzRG6zOrI0viCxlSjIep3SHj36qZyLjybVbVhvDFxiNc/YA1d2Um4oCluaTjpgpARc0HxTkeDhumgIdCtScCQDOirXRjwEQ3BMAisinRKC5l+giMKGZCMtU25aaldLvOxlyWUFx2Hwv8QSGailsmhxYTwoaM5qJlAjH6rhjo50PFJ801Ggob+HjtQRyrqMHnGw5zbgcywVZ1tOHuxLSdCSt2FZSbBHVxdP2q9j4G9jPbc3OjQleWa5L1gdcAs2dyNhMVBStsqzEFpmXVZpnWWWnmmSfbL/w+n+n6ITuDxHOEBT9JS+EDutBzWLZv07nP9g1a916Ss9Tao/0oqojM665tIkIZtqZSBWEJE84zxotZm8j22Uh/7NcYEySzBjD7Rs8IkvbGdHsQ3g19Htp/2W90zbNUTgwFZVX4+xebeUEn2Uu7ROdVcUUt5w8KyIUBMtcBUdPcWOCZdX3yyScBAF27dsWYMWNszFSsKCoqQigUQvv27bnr7du3N00oReTn50vLB4NBFBUVoWPHjsoyrM7s7GwMGTIEzzzzDPr06YP27dvjgw8+wKpVq9CzZ0/uvjlz5uDmm29GZWUlOnbsiLy8PLRpY+VOmzlzJsaMGYPc3FykpKSgWbNmmD17Ns4+OxIBz+fzIS8vD6NGjUJ2djb8fj/at2+PefPmoWXLlspnatWqFdLS0pTjAAATJkzA+PHjze+lpaVJyxCK+cUoU6fKDxO5j5c6qbQ4XgRBNlM8qWZQIgEX+sjnmLFMIlL8PvTukI1t+WVWYlcFUUw3OLbpsktipEMZcjKtZdu3YzYWbrVyLzVLF81EI//Z2FMCd82+YpzfrTUAud9lNckfJUq5pGaikk2Q1csYImb37/dFoodtI36BolZFxdyIBFPAT5mRyG8nhMAh5uFC7qUBBlT8klgPNSUGaAQ5/j7axUvPsUx5ZdJSdTRRifZV6KhqnlI4m4lG15jEZ9CJWLevTavvMn8QgI+8J0IVkMVHMmdRJpyZV8sIphfnbTc/0yADKq2qLNCD3+/DL3q1w6x1B6Pt8PuMTPtJTf9YPUdLeWGN7Dn51CP2PU7mo0Q1uiLRIe6Hby7ejQ9W74+2ZV0XIxlSBENhc83+hBBUqgBUpiDI77O1r5p9MtNtq29++H2RcRD3JvGdWxFgrf3bFCiF7POPgWod2G9sviiFQzZNr7SYci0y4rtNc7lgQnw2WZRjFQNlCqYMK/CJ32f5vrLb2H/ZvAOA/p1amBog+rw1obA1ZyFfxyx6tMykul+nFqZZJBtn+1nOX2Df2Hgy3+Rzo3PS2nese6wAMm5+a+xefv6wMT9ZG+JcH9h+SINSUa2S6Lcuc0URwfrP6nbzFabTjzFutByXP5nsS4x5ZsshPyqwpoKgsMGnlQCAVlF6QXWGyPLBsmnRsYWaR1BZZolmqTItLGCPPE/nKT23xOjsYyevxvajZXj3273Y+/wIrt6Az4oBkV960ozOKwo8Ve4T1t4c+e6kGU1GxOwzeNttt9WZEaQQJTcqn0Sn8uJ1tzrfe+89GIaBM888E+np6XjllVdwyy23IBDgCenLLrsMGzZswPLly3H11Vdj9OjRKCiwouo99thjKC4uxsKFC7FmzRqMHz8eN910EzZt2mS2e88996Bdu3ZYunQpVq9ejVGjRmHkyJE4cuSIsr9exiE9PR05OTncX7JiWzQ3FiM+qAkml0NNQXCyTVpmQkXLOcFJAklt1hkok6DSDDKTCwAYcFZLyy4/euBxdvFUQk0OLtYmY7ZaN3fPTUP7KUb59IGfM6IUmObIY9oVAFi9p9jWjuUzaPcrYu3Ko7hZ5Zh/mD2fEvDy6AFcnam2TVfO5WcIScMDEv8VMRWCSESzdtxSFKQI5p+iSZ0q8in73r9TC/zjpn7mdSkzKBJEpqSfaR0j16mJq1hfVW3YphFiEIPb8G3zjAwXQMaBWGdCEFk6ENpF5kwfaYvvs6wftBxgaQIAngmXRS1kWLazyPxMzaCUvnESCX7AD/zt6l64uGdE+BcKG1x+Ka6/hCBkYJJ/UbjDM8qItkU16Va591fuwx/eX4sqkgdR1DrQvH4MhYLJN01UzQd3sjQd4p5KJe90DFXpfegYiHUFwwZaSXJuHa+kJnH29WeZ2opaAL7c6j2RIEHcs0msC1TrLNJvS1i2YtcxPPHZZlt/AD59RaRO+b6hWouiKaEIsb5cyXlgyzMYFvaLkMFpq1lL4h4o8+2O9M1v9pPuwSt3H+PWsOj3eP+wnlw8AAYa4Id9ZkJJca645RBm75jNSVGTxD+ft2iirE+mlUiUwWmXnWGOo9/nM989r02z+iUKJDnhkTD5mFaPmTPLGEg3zSATkmw5bO2xVFBMYy5Y5rmRe5jWv/QkzzzWClZSMm0Y15/o5X0SiyanoFG7SRR5pv2m/q3mXFUwXirhJGDlHZWVo+bLon+wz+czmcyWzdJsZqJszS7ZUWjuqTJfVTGVWmNBzMxgKBTCSy+9hPPPPx8dOnRA69atuT+vaNOmDQKBgE37VVBQYNOUMXTo0EFaPiUlBbm5uY5laJ1nn302Fi9ejPLychw4cACrV69GbW0tunXrxt2XlZWFHj164IILLsCUKVOQkpKCKVOmAAB27dqFSZMm4Z133sEVV1yB/v3748knn8TgwYPx6quvAgAWLVqEOXPmYMaMGbjwwgsxcOBAvPbaa8jMzMS0adOU/S0uLkZtba1yHBobmMlJQXQzVeUZVGofBH8mN2kiwGtjZGVk4ZF5n0HrN5XUiWrLWjdLMw8JlreMZzjtTueAtUkz3z9VvjsKKgEXiQpx/5H5Cp3ftXW0T1Y/mAaEooaYiTYTIlWmmkyQc1u9o5I5Nv5sLDu2yEDfM3IwliSmZ4cHG8ejpdVSnxxxk913vNIWhdHmMygQ0UA0CqnQdxGiJkD0VZARIzXBsCnBfuLavlyeNtn5YDO5E4g7UeJIQROWi9HWGLpI/LXMtgXNIO0fnbM2n65o31hxGqWWjgUN98+ILLnfJGzlgMjekZORgtZZaRwzp2JKRND3xyS9trYlB3qK3492ORl4etRPzOvMxAqQ7x+UGenfqSUAuzkgHUaREeeeK2zgsU9/wP/7IZ8LdCLOhYDPZ3s3oh8xHzDEaoua4Ip10HlO9xi29ag0OH6fj8vFCgBlVbW2PIKAZWIv1vfy6P5cW27RRFnQB87X1GR05fsuAFQS820WpbEmGMb9M9fb+sqQLoSLVxHJKs0g08io/KFFRlemtVWZ6KYRM8YQmZP2ADKR/3QdihGS2XeqgamuDZuV+P32fbhX+2ypkIa6e3SMavSZVsuWQ1LxbGxOnYwKV9j4yQhuVidN9yADa0lcvy0zLUaVnmks/U5Qau0g02rR/ZNvmz1nuuCr6qYZFAWkVbUhdCRm99Q0s5qkULL8ICO/sfFnz8TGgdUvBjqSmStHnjVST4ccS9PN5pVqjgNAe3ImMjpqT1EFEfgj2l8yHg6MMtVwntnK2qedYhSI2tiAPxINmz2XKLyka4RFeOf7BPNesXxjQMzM4N///ne8/PLLGD16NEpKSjB+/Hhcf/318Pv9eOqppzzXk5aWhkGDBiEvL4+7npeXh6FDh0rvGTJkiK38ggULMHjwYKSmpjqWkdWZlZWFjh07ori4GPPnz8eoUaMc+2wYBqqrI0ReZWVEEuIXNDOBQADh6MRUlfH7/WaZIUOG4IcffuA0hQsWLEB6errpV9jYwTbMs6M+SDSiGJPqAmq/K0szKCcAZSYYqpDY1nfrs7PPoMEFLBHNRM3yfp+5+R2SBJCpVWhZ2Flm5quT2LyKmwqvGRSYQeFec0OTSM29Olr7fJF2aHRPVodMoyMjbtmmLPoqyKT5lPh88nO7hF484Hu2a262w967SnvMB/tQmx4zBIUxEmkPWaqOO6Z+Z6asEIkVGfGi6qvojygjDijhvZdIW/k+qw8l0S+CZwadCRMASE/l32PY4IMu0LatwxX4VX/LRxrgx4Den5EaQN74SzHv/osV+fiUjwaA95ENqAhwydq0mb867B+M6KK1s/W8mwQpifTXTtDQMZcJvGhuMVGoEfD7bH0TrQO4OU9+opJ7kWii8z6VnF/UN5SCapt6tufTTuRkpNoYVLFf7Hle/+1A/Pq8MyP9Y/5lFbyptkpo2KkVzTMY3XccfAZpsK40sv+K6XkovJw9gJXAXETfKPEt+mCb9dmY8sh76NzaIvhV2jMz4JRhYGPUaoVPLcHf7+fmnfU5NeAz92B6Hvl8PCMp2wsDkjPaIo79lt+dmcJDva5on9l6ZGb7Vj5ge3tUg+9FMyiavFMBH2UUzQAikjnl89n7wpuVC88Z/Y3tnzKfeqmZqHBkU9NdACgiAWhY3juaE5K9Czb+NChLxEw0SnMxZjt6X1lVECt2HbP1R2bqzqCa45Hy9mu92mfbLHWoMFgVVEv8Tplwp1zFbM+jKbFoIDRrXkTKuwU+Y3uBTPPeGBAzM/jvf/8bb7/9Nh588EGkpKTgN7/5DSZPnownnngCK1eujKmu8ePHY/LkyXjnnXewdetWPPDAA9i/fz/uvvtuABG/uFtvvdUsf/fdd2Pfvn0YP348tm7dinfeeQdTpkzBgw8+aJa57777sGDBArzwwgvYtm0bXnjhBSxcuBD333+/WWb+/PmYN28e9uzZg7y8PFx22WXo1auXmSexoqICjzzyCFauXIl9+/Zh3bp1GDduHA4ePIibbroJANC7d2/06NEDd911F1avXo1du3bhn//8J/Ly8nDdddcBiDB6rVq1wm233YaNGzdix44deOihh7Bnzx6MGBGxVx4+fDj69u2LsWPHYv369fjqq6/w4IMP4ve//31Sm37GAjG5Ml3wXYjm4EAxf4Cyjc0eQIavX7bgRY2ZU4APthGnSJlBcH2kDBQ7KJlki0U6Y34TPDMo36DYJp0WNVE+UVmLm99agWpiGpYmbKq0n27JnGUbk4yBUaVxoG2UVllEmSVltm/QMr8ktkFbucvszAcjOinx+d7Kfbb+iI8c8PtNEx5ZYBvaT27siXmpykeoVqhI1C7JiB9qpmhnBu1tqKKJpqXwB7hMC0YZ783EXIhC9Wy0TmuNybVFYh/N0PWCeamoGVSZb/1l+Dn46ZktTHMpme9FpGzEP5BqVwF1ZGERT4zsa35O9cuPO5nfsjgeIcNQ9pGhgmhRGCGWlSaaK1ufZT62AXOPo0IL63emNTWZVr9dMygyKFQ7SYk2unfYmEHSN6l5rkLz7vf5OFP0nIwU/O6CLtLIeryLQKSPPzmzBYlwCbMPFDa/uqCdsGWE+6ETJ2EYBqZ+uwdLdhQK90XeV5vmllXHdpfcpl7zDLZX7KfMVy5FMRft/pCRZ2MaasDOELAuUOERY0ZPVNZamkEzonKkPF3rds0gs3LhNat0DdsiTAfs+V4B3vRaZNJVVhEM7GfxnDMFMBKagPmJnawNORLkZgAZ0xqA38vCBn+mWaaz9n0xooUE90xUi3ewmNesWZpB69yPtOnMDIrzY09hBb783lIkUOsJ5rPn99ldL2TRRENhw5xvbH7ScZdZD7EuyvoqYwZFdw76TOmpfpvwjd8vrc/i9kuFL3TOOqXqCgqaQS5XpGGZzrNroktOpB92ZlW0tmksiJkZzM/Px09/+lMAQPPmzc0E9CNHjsSXX34ZU11jxozBxIkT8fTTT2PAgAFYsmQJ5s6diy5dugAAjhw5wuUc7NatG+bOnYtvvvkGAwYMwDPPPINXXnkFN9xwg1lm6NChmDFjBt59913069cPU6dOxcyZM/Hzn//cLFNSUoI//vGP6N27N2699VZcdNFFWLBggaldDAQC2LZtG2644Qacc845GDlyJAoLC7F06VKce+65AIDU1FTMnTsXbdu2xbXXXot+/fph+vTpmDZtGq655hoAEVPYefPmoby8HJdffjkGDx6MZcuW4bPPPjOjkgYCAXz55ZfIyMjAhRdeiNGjR+O6667j0mU0dlgbjLDZhnnJY0aK3KeHQZZTCJBvRFed20Hog5oZZE7XJ4iJBWUSVD6DbNNhzzWgc0sAVkQ1ug+Vc47d1nW20WSkWUtx5e7j+GiNtfGKZleOmkGB+QiTw4ohNWCXcIqO1hTswKJmiKZJBHkWmbmceQhF22LvIU2Q7AKWZFulwWEQGayA30rMLvMNBBRmosRnUMVTiHnixPGmkkQZ3N5PpK/8d4sA4s1EZW0cr6wxTXGpbxmFSntB6xSDNAHq0P8R86nIZ1k0URUzaPl3A11ys/DFny/CbUO7mvdZ5azPopaLQaWxE0FTGqjMdmQEmBhmPhxW+5+xud2ORN38aacWACyzNllbsvUiSzpPe832FEqoeI1wGanf+swldhfqEPc2p/7RZ/EJv332p4vQNjtd6jPIC8gi/6kQjwl2qoPyCMliXylhW1bFmC4fvj9Ygqe+2GJr37ovYH5uHmM4eNX8U10/76yWANRJ3lXBcXq0bY6ro2eaXUsd+U6ZQfb8zOc1Uo4vT7tA1315ddB873RuhTjTOfs+nOL3Q6Y5phY+piuFJGCK07OJwl0rmqj9PrYe2zRPU+ZzBKg5J78Oqd8urxm0z326Dq3gSgbXj8iz+7h7LOsPUWhNPkvmkDheo179Vvk7mztZ6SncPgZY40+joBuGYdJCTGjBCaIkU1p23jq5yomuDwARFvjsqZ68monStV+jOLdEmHOQnWWCBpVqwQF5cD+ZwFRmIdUYEHMijE6dOuHIkSM466yz0KNHDyxYsAADBw7Ed999h/R0eYQsJ9xzzz245557pL9NnTrVdu3SSy818/ipcOONN+LGG29U/j569GiMHj1a+XtGRgY++eQTxzYAoGfPnlzCexkGDx6M+fPnO5Y566yzMGfOHNf2GgN2FpRjxCtLceOgTnj21xGhQa1gkkAJuRoucaiQMy8tgMqakLlhyTZ+wL7gf39xN/zm/LMc+0mrkCWTZRvA2n3F+G5vsXm9NmjdyDYTJjGyJXYljaQJEjirncj/7HRe47RuXzF+F/Wn69Qqk7PZ5wgmV80g/zz0Hmpn7yRBo077Vs4v+yFAne3Fttgzb4zmhbPMfEDKRq6pAn0w2JhBouELCxuy2TfGUBGGxEfvU5p78aaXdkbUTvw4lZe9LlUUXVOrakqa5Y2wuaXWNsj7Ruu2AsFYv1FTQZWWULwvHDaw8UCJ1TYXRCHyXx49U37Qq85TJ/PeXu2zsf1oGR65pjd3XRW0g/lxAWQ8BD+RmlBYSgQCcssCJuwQo95xRLLDeNB9kY4BGxvLL8o+Bo9/9gM+WL0fs/4wlNPS0edh94r1MjAGTJTui0EyxPt9Ph+XioKNSUZqAP8Z93P8WFBumn7T+WzupS5jAdj3exb1lO6xLIBUZlrADGIlYv3+E+Z9jFl123tE0ABJTn1kYO9D1U5xJbW+MIiPnJ9jUihEn0HAmjNtmqcTM1F+b+RSAJG50CIz1XzPOwstM+eQQQQ6sK/NFL89iApAArT4fCaDv3Zf5EwVjx2VL6ooyGFmx7Jo0GbeSb/fOfG5cCaIAjHD4MdKFlSHMxMVzgJKT1Dahj4im6emxow7T92ZQRG8nzdzybDeC/v9x6jri2gmKjLrbgyNzOKGoXWW3U84NRChIaav2IfHRvRFWoqf87ETUz3xKXzkjCHAB4xbs9dyPaJB/kSw+AzsjKf+tTTHJLsm83uW+gwK86mxIGbN4K9//Wt89dVXACImmY8//jh69uyJW2+9FXfccUfCO6jRuHDoxElUB8Nc0IOisoi5p2jnbxjg/DNURDFbU6oIgmKerN/+vIuNCFIdoLSd7m0sX5eTtRECQ9TK0bZYkBB2SLDnY4EJuDak5nIWIWgPBOOzlWegB+Mx4k8UuY/7ajMDpG2xzbAmGMa3O+3+AGb5aHu0bjZm1J9JFkWLJvAtKKsyiYCDxcyf1irLTLTcHK/FZ6QpItgUUvmimFH2TP8QZ2ZOTD4uWr54DWTCsE1ihqbyQ2LEHeuz7MBtl51ultuj8Bl0MhNlAQcCfn48AJ5Yp/OMXpdFE+3T0dIyy81ErfZlmlX6mKoDVUUY0zp7deDN7FXzipkwrttfbJpzidH0ALvJHIMp2SZrmO0FombQkOwJHAMUfa4aBSNuGPw88Et8Bg0jYjIsmkUC9qjbMjM7+r1c8L0WhS5iedFMlO5rQ3u0wW1Du5oaLjZuMuECYI29GISnmEQhpf2gjCvbt2tDhjKyZ7to0Is9RRUmUewlMjVF97ZZ0uuqeg6f4OeXCMok0rQoLZulcsGFKGRaVWbF0T4ng5iJRssTgRgDXWfN0gLYHWUCqXn2sfJqRzPR2rAhFa6ZQZkCPvNs7Nk+GljM4Vym38W2xGTnnHCGuCI4HSUm00ZSKAG8CTr1G5NpBul4iFpz6mKgEqZZmrLIM3y2/pBVzoNmUPZMomYy4PfbUiB1aBHxQT1AooAGQ2Gs2BVxcegW1bzScZdtxebZRLrFismEk1QTypg2apIunscq03wn67CeJD8uzUksrhu2vphJ986CcvKO7eeVKBgzDN4/3uaDGjN31bCIWTP4/PPPm59vvPFGdO7cGd9++y169OiBX/3qVwntnEbjA4tcSIkZ5s8lHkIhwzAZqsjvfF2iZEZFeIv2+Omp9lWoInYAeWqJ3KwIoSBK9mkeHwbTXy16/67oQcptFJJNTUb4yL6LBwD1faJBE2SQSYFZv5i2cfKy3Y51yA5B5s95nDisO5mJhsIGzn/2K/P6DQM72fo1uGsrAN79IM02fJKQ1AqighH0wTC/0asYJnHsRUmpzAeCIkvQdvfr1ELiP8LfYwsVL0iwKXy+SL5IipbNUrn8iE6MKlt/1KSJaZtU2mJan2gmGgob3PPIAgxxwgLZmuaYQXm/nZhwUyJuIyDldYXCBjYfLsH1ry231U+jtfLMIH8/II/y65RaQvRPpO1SrQIfsMLg5kGK36cMBOXks0Pbo/4x4jPlCsIwyvRT0KAkVEMlY3qs/IaWMIqBMpLsXtFMlJ4ZVDBBtRym9UMorNSoM9P9wV1aEc1JbMxgrGaivaJMkMqfiL4HaqadnuInYy9vi84/NqapAZ9NM2i+K4W7QcDvQ98zcrBu/wluDzhWXsPlKBQFNdkZKVIzYqoZZFpj0b/Kehb+2Vh74pnAEtmzq7LznJqtysD6kB8VSIsBQ0QfSanPoDmW1l7G6qWWFbJE9QDPHC3YcpTby2XL2snkn5bxw2cKrlP8PlNQxfZG1oe+Z+Rgxe5jCIUNfLL+EF5ZtBOARaO5CWZF7SqFzBJDFlCM0wwK+7oq6bzK8gdQj/XcH45w9zz26Q/49I8Xmu3/5MwcW6AdwFonsjgUXJ9MqyS5ACPZERPvWltbi9tvvx27d1vE489//nOMHz9eM4IaACxziOpgGMVRbQJzZGZEAiUAO7a0JI8qKaFoiibuOyLBIluETprBVbsjWrGicovIYBt/hcAMOq1vRrQwbafKGVz00wLsvmS9Oe0K3w71axEPSZtmUNIWI6aY9PztJc7MoJXvy77hdyI+WYy4ol2SRWADItJnsSx7FrdNVCQg/H4fxPxW9qTY8kPUNZqopC0K8fCwJbYWQtFLfQaFNnYWRIQJYjRRWT47GWxBS9QWwGbaF+pvyPpI31kzEg1Sphlk/zcfLuWjuVEeT6YZjH7eRczReDNRhWZQYSUAADuORuoS81yJ+SkZakNhPPTR99w187lI+1TAJfNRovOW7XU0up/YX2paySAzjRStCsTgMqLmjEHm/6YyWxbnv2iqzKCMJspMxP0+wYzdPuZsnTOhCBcsK8XOSIpmome2siJr0r2AM9NNsfYdqmGjoOalJqHvMcIygyz1AwBMXrpHet0vmVcUdFxN94qAn4sIqYwmKjAWAJ/Im90mClkBe5oJv2QPOKNlBhHoqMz1+bYAPkCLKFgUz+UTgpms1SfBXNm07LCXrSWaQWcz0cj/NtFcjvmS1Fc0XyPrQwHJNcnOvADRsrP1euC4JfSjEYs5AQbZo17/ZhffP8mhtJlESlWBjS17d6kkbySb3lzgm2i/6ZwV9/XI89gj5LL3x0dJjvyXrf0Qx2RFrxE6T9yPZEJ0sR6xnEqb+Mm6Q9w9zISUWjRRYZdo7inSJSHDMM9qWo9M6NkYEBMzmJqaitmzZ9dXXzROA6QHLKJxyrLI5sK0aSzBqt9vHRgqm3CA9++K/JdrA0SCXbYJHRHy5NDN67XoJkx9S1QMierwByxzA2a/rpJkyXzrnNoRn5cSPfbUEvx3mf06CxbD2nCThjOp4vPX/9S8dvVPosEMqAlb9D/VfKmS1jKzQ96k1B7BTAaRAaAHmorIMA+X6HUW8dUkJiAfA5tmUOibqcmJlhNTg6QLQZFkRKDYVzaPKBFbVRsy/TVpcVmAFVEbyeqvrAkqNUBtm1t+XuwRVaklSgjBxp6HEdZntMzg5q6MSKAE2tFognQafZFjdhRTgUqQxTQyLJCLfd2omEEDW0jOO0BODFUTpkRF7DKIycnNspSgiX7kzUQtjZZYPxBZY7Rtv8+H/4oG4REhk3+Ie46PED8UpiDOxjzaJeeRfll7NTMtTPH7bHMRAA5HfTTZPsmYPb9PvrdVC2Z8siik9PdI2+pUPQzMRDo9haQ8UGn4JakxALlFQChs2MyDrX5FBZsKyksmZBAjL4fCEU0um/eyqLQMOwvLbdozcx2SclRuQpk6cQ/gzSL5tlRBVmhQJvF38TylddKhFc8E0TxdxkSn+v3K/SNyj8H1pUfUvJBai1CBDXNtoNprdu/B4pM2QQmd+6q9lGrvmwlzTGaZ0dkhZyxtyzAMzuKJrWMxgmbAT4R/pD0xtQ4AzheYQWbOaUbMlWgGZetFFkDG1BxLzo/IZzmtKP7mxeybaibZ6xCDJQH2aNThsGVqHukz3+ZpzQwCEZ/BTz/9tB66onE6gEWEBCKpIhZtO2qaI1qJYiO/iyZPYoAG9lPAZ7+PQlzwsk2oQws+1LfbHiFqFRhE/0QKFtGSaUYMxeblxYyAakrE51OFh4/8xtcjbmiAdQCxQ1Nm+krB2rhpcGdMuuU8/Of3Pzej4slymNFDgz3jfkGqyMxbZcFmXDWDopmo3x5IQHy9bAxFAYOThgmwE4ciccz6yrSt4rsSNYOyR7O/38h/mq+tWqH9kZ03zQTNoGFE/KLOezoPf5vFa8Bk0fp8AuHA6gCAb7YX4OIXvzavs+dn2n8ffMrDWOYz2DHqu0LfOR0NtWYw8n9bfhnOezoPmw5aEnN2v5gGRDWtZAyDLLoqb9JOJM7rD5p9YeisMN+mAQ1kyYnZR6oN401+7czyhT1y8eFdQzCsTzuuLRkhJA6nGAGRtgPYNeGiNN9WPmoKOOfPF2He/ZfYhCGAlSReFCSkBvw2DRVgmUGziIF8KhCrXi7lTnQ+syAxMjCrj+OVtUqhFUOb7HS0z7ETwzLm8bjgx03hrhm06qNmfvSekGHgb7O+x3lP52Hz4RJT+ywTdhRX1EoCyFgMjtkviUACsJs6WiamMi0zydNGnoMJWriIm0JfGGiVvGaQb0tkkGlZZplDmVMZWNuWWSmr02LqLK2VZUUh86Pr0CIDoqCEjq8q9x01Qxdpjl2Fdh9wLwxGKGRwgqvUgPVefoxqsqiwxxSkCq4CANCcBLYTU1wBVPhqXWN0kCyVD+09m7d0H2SPZ80Pe1uAXdBF9wGVEF41cnTvombOol+qTDMopmKSpQ1rLPAZTtEFJHj22Wfx0ksv4YorrsCgQYOQlcU7UN97770J7aCGN5SWlqJFixYoKSlp0PyExvbtKBp4AYCIZKyyJmQu3JbNUpHq96E2bJgETsBvmS6kp/iREzVtMmBtFrlZaf8/e18eJ0Vxt//0HHvfByw3CwsssAIKIuCJcnjfQmKCB5LoaxIP3rxJMPpqTPIacyivr1HjK94/FaMxksRXxCQqxFtE8VxF5L4Wlr3Z3Znp3x891f2t6qqe7tmd3dmlHz58dqanu6q6urqqvtfzRUAzUjY0tkUQDmooIsQeLR1RLu1BWV6G7cVvPBThJsi8zBCy425j+4grV3ncZYS2kSKo2WM22HWHIjE0HYogI6ihMDvM1VmQFeI2M/WtnQhovIsrbUdORtDURte3dnKbDtZGwOoThlBAQ3GOvW9oec0dUbSRY/ua1ZsXQN6fnVEdB9s6EQxoKInXJ94/bXteZhDN7dYzyssMIjtsjA+2KaPPX/ZMGA62dXIuq3mZQbRHYuiM6ijMDiEjGDDbwlCcE0YooNn6viMaQ0NbxNZvYv+p+lcsLwYjtkbVd03tEZtbX2YogPysEA51xpARCqCl3Rg3eZkhtLRHoMMoW4eOAy2dZkwfYGyKRO16MKAJ2mcj3qUtXm9pbgbaI1GEAgEznUp+VghZ8fFZ12LEBtF6tPi90L5nxwCDzruhzdhU6+Djbwqzw+iM6tA02MZHW2cUze1RZMX7ADDq3N/SwZUvokNw/8sKB0xr7/6WDsR065mLz0pEdjhg9g1DbmYQOeEgNw9pmrUJyQwFkJcZQnskyo1rNlbpuGZ9pcefBZu7Gto60RHVub5vOBRBRyRmMikDhkKBxoAVZIfNMUbHlzi2CrPDyAhq3LuUEdJQSIRk9qxLcsOcgMLmP/p+A9azUdXN+s0Jze0RtHXGzPmHPhf6rrN2h4Ma977TNqnaw8ZVRlBDMBiwxX6LKM4JS8cGQyhgMB12RPh3jY5lBtU4A6xxRdtN4bRO0D5uiY+5rLDBzqjr8nvIDAUQjRlWIjYeZOsPfa8Ls0PoiBjWTcogHdSAzPicnRUOICMYQKMwx2qahgPCu8vanR0OICMUNOeJ4pywbZ1l6wLA7wHEMcDebba+sHsD+Pf/UGfU9m4zsPeOvatsDqH7jJyMIBrin4OahkORGNdGc82LK8E7Itb7TNcOOk7EMcvuMSsc4N7fYAAoEVKysPulc7MIulawOjrj8yUrk76DbZ1Rm3DF5in6DELxdUWXnEfnnqBmhKDQaxlou9lYZ9fmZAQRDga48UHLzc0ImtZTNm7YvErH24HWTi51B5tvxX0DYIy3SEyPj88gggGguT0qfd7ie12al4FmssfLDgeQmxky7zn3Zzch54dL5Q+pB+FWNvAsDFZWVqoL0zQuntBHzyFdhEF8+ikwYULi83z48OHDhw8fPnz46Gc4dOsvkHXTT3u7Ga5lA89sops3b+5Sw3z0c1RW4vbf/BF//3SP7af7Fk3FqLI8fLGnCd97Yj1K8zKg65ZbzbQRJfiveFxaRySKM/9nHQDguatnITczjLc378eNf/4IYwbk4/ffOsosd8W6r7DynW3m9/+79gSbif6WVR/h9U1W+oTvz67C2VOGAAAuf/gd7KhvxWWzRuLiY0YAAL6qa8ZVj71nu4f8rLCZ0JfipetPxBub6nDzqo8RDGj4v2tPwM2rPsIb8Tp/NH8c5kww4uw217XgysfeRVF2GE9fNcssY96dr5qfL54+HJcdayhernj4HWyrb+XqYnj36wO44bmN5veRpTm4/5Kjze/3vrIJz72/Hd84ehgWHzcKAPDI65vx/97aislDi/CbiyZz9cpA62P4eGcDrl+5ARWFWXh08TEAgBc/2o071nyOGZWluPXcGgDAPf/8En/esAPHVpVy6St+cPIYnDV5MJ58eyse+pcxp8wZPxA/OrXa1hdi/WJ7vz+7Cv/4fB8+2dmA/zxzIo4bU4a/frgTd/39C/Oc//nmkRhXUWA+1+KcDKy8ciY2bKvHj575ECNKcvC/lx6NhtZO3LzqI5wyfiDOmjwYf3h1E55dv90sZ1R5Hu779lTz+476Vlz+8DvIyQjhz987Fg2tnbjoDxYrpdj2O176HC9+vJs7Jmr0p44owXtbDuA/5o3DPa9uQkt7BL+/+CiEggFz3DCL3sjSXHwt5EI844hB+NtGizltXEUBqspzuWMi/vPMCThuTDkA4Nzf/wutHRHTksrw73PH4XdrPje/Z4YC+MsPjgcAfLa7Edc8+T4AI2ZsbzwWMDsctMVPTR1RjNvOnwQAeH7DDvz+n1/ihDHluPFMQ4lU19SOix94E6GAhheuPUHa3o92NGDp0xu4e752zlhEYzpO++/XAABPfGcGykgs5K6Dbbj0obdtZZ0yfqBtvlp8XCW+cfRwAMBp//2azX3w+DFlWPtFna2cH8fH71PvbMWD66y1ckhxDnbUt3LjZ+nKDfhoZwNuOmMCjh9r9D2bp+j7MmlIIT6ME0eMLs/Dry+YhAvuM8bY36453nT7Xv7y53hhozW2fnFuDSYPLcJZd68zj80YVYpbz6kxv59/z7/Q3B7BikuP5uKRPth2EP/xzAcYVpyDFZdZ80nToU5ccK9R9x8WTTNdwn71f5/iH5/txZUnjMIFU4fZ+pjivlc34U/rt2PBtGFYcvwofL67ET948n0MyM/C40uOMc9b9qeNeG+LlTOsZnAhPtrZgLK8TDzxHcP7ZG/jIXx7xVsIBwL427XHm+e++vk+/PKFTzBpSCEyw0G8Q3KPyfDw5UfjsoeM97i1w+42X5gdxhFDCrHuS/6Z1wwuxB0Lp3DHVr6zDSsIQzN9H/7tpNE478ihaO2I4FwhYTjArxOf7GrAdU9tAGDMI3f9vRZ//XAXTq4egH98thcAuM9PXzkTC/7wBlfei9eegKsefw9f72/Bry+YhCnDi63+zsvE4/F+/PYDb5ltvO38I7B+y0H88b1tmDGqFG/GCdYKssI4c/IgPPHWVhxXVYaFRw/DD+LvPACsuPRo5GaG8I373zDbDAC/+NsneK12H64+aTTGDMzH9Ss3YFBhNh5ZPB3vfH0APyXr16kTK7B03jgAQHtn1By7Rw4v4lx+H108HRWF2fi3x9/Dpn3N+OV5R+DokSUAgLP+Z62Ry27xdDy/YSc3f1P8cN44zJtYgYdf34wn3tqKcyYPxvdOHoO3v9qPG5//CGMH5uMbRw/HrX/9GBMGFWBIUQ7WfLobS44bhQVHG2P8Lx/sxP/84wscW1WKaBR4c/N+LJ07FqfWDOLWjqxwEKu+fxwAYHdDGy558G2EAwH85QfH4dT4fDV3fAXWfGq9vyW5GXjquzO5Nl/+0NvYcbANI0pysEVC6AIAj1w+HdvrW/HTP39kPoet+1uw5NF3UZAVxjP/Nstchy4/thJ/fHcbmtv5+Z6O6yWPvGOGeeTGvVW+N7sKv//nlxhdnod7vz0V//XCp3jl870ozA7jkcXTkZMRQiymm/fGkJsRQkv8/Vo6dxxOranAf79ci79t3IVzJg/GieMGYOnTGzCkOAcPXXY0fv3iZ3g5Pjd/65gRuDQeH832H7S81dedAE3TuLFcWZaLPyyaBl3XMX853xYRF00bhqLsMP537Vc4tqoUW/a3YXt9K743uwrnTBlizjUMS+eOwx1kPTx1YgWunl2Fs+Nj9rnLz3esL93gWRj04cMRWVnYN2IMauuybT/FJtQAA/IQKW1EbfkBlOVlQtd17M8xhMGBQ8qAGmOjEuuMorY8PonXHAFkhtCWsQ+15c0IDyowzwOAnV8HUPu15ZoUOKLGFhxzRt5gPHyftVAeqBwL1BjC1vbB+/FFqBkVx04Dqgca9e9tQm25PfdeXmbIlnvLaGMNDsR2oba8BdUV+UBNDXa814baRoOspX7UOKDGWEDadjaitrzOiK0j91FbvsX8/FrmAHyzejwyQ0FsLN6NvaF2ri6Gtsx9qC23YpWaC7O43/d8paF2ewgHKquAGmOR/fTzGGrLA5hUMxSoqeHqFVGQFeLKY+gsPIja8oNoKco2fz/QUoDa8naMHD7QPPbRB+2oLQ9j6rjhqG3YarVzTDVQMxwH67JRW2ssQFNGDjWv49ok1K9P3G/GPgBAQ1U1djYXoLbzABqrxgE1g1DfnI/aDy0Bq23cBGBYEQ7tbERt+X6DZKSmBody9qO2vBHR8lygpgZ/ePEz/DlSgj9v7MRZ36rBjk1A7TZrmswYwo+92IFW1JbvM9yGamrQ0dSO2nIrx6bY9n21Omr38vGr0ytLULvZ2qzmlRWhtrUArePG4/33jee+a1gVyvIyzXHD4te2ZwSx5BujOMH32NEjUbvbEoKyBhWiYEghd0xE69jxQDz/26aBO6RxpFduaAfKR/IH4/fXXngQteX1KMvLQGMggN1ZamFw0NBy87rG5nzUfhTBqCEV5rGOg22oLd9txKhIxh4AtOcfQG35QfP7jMoRQE0NNu9tRm25Mc4Kph0JkJicaH0rasv3mt/Z5md0RYV9vppYA9QYwuCmAdtscYWjhlSg9mAed+w7J00y3/GG/dmo/ZzE4FTkozbUBAzMM+9py9pG1HbWo2XseCBOyPTai3X4qjwfk6uGorbBmP9yK4pQ23HQLCcyYaI5xoJHHGEG+Kx6sQ5flVtjq6mqGpFRpdY8CmDEsIFcn35VsRMHWzvRXj0eIDm5WrLqUFvewLUXALT2iFn3dR914vnvG7/t2NiJ2v05aBhdbc6rKtRvDaJ2Wwh7R4wCasajOb8eteX1OFSSw9X1xv/tw9fllia7orIctZ37sCVkjYv2A62oLd9jvn8Mrfou1L7TiqLBJcgIBVDbYpWz5LhKPEAEdU0DohNqUFu+j3PPpZg5qhSvNbfjy3L+mQdK821j9MePbzHfk1OqB6AgO4x18fxxTVXVQM1IBDqjqC3n2Q0B4ODoaqDGSLvTmmeM8ZGlRr+8/WYLasszcXLNaNTuN0jPigtKUFtuCPHBSUfgywG7ODe8wKQjsHVwPWoDTWgeMx4YU4ZD8XeVzt2BSa2ojeelbB83AXWBfajdGsTgweWobTLGRX5WCEcPH4HarwI4/ohKxCYORW15vdn22MSJCGZnoLbcUDodGjceWeEgtr/fjtr6XDSNGY/OIYXcutEc3sutX3MmjAZqDIVKtCNijt2KYeWobbPyZuo1NUBhNrYNqUctGtEyphoYZ8TMfl5mvK+xiTXY35DHzd98Xxtr8p7tIdR+FcD+ykqgZgJaw3tRW96MjEEFaKqqQm15CwqHFiNcmovauizUVY4BaqoAAPsO5qK2vBNjRgxCRySG2uZ8HKgch09Li7BtiG7WPXloodnXh+pazHlIO6LGnK/GDRmM2roszJ0wEGs+2WO48Apjq7Z8L3aE25AxpAC1QZ70Kj8rhKZDEbSNG4/GuhbUljeb9cbqWlBbXoe8TGM93/lpFLV7s3Bw1Dhs3h6yuRcXDy0x656/sBD/8Qwfa94yZjxqP4ogwPY6H3ag9kAOfnb2ROQcNdIYU4B5bzLUjRwD1IzA7lodtbszEZs4Fu1VZagtP4j2+Jjf9XHEnJv3jbD2MOzdKMnNMI0J0QkTEQoG8OWAPeb6w+avuqZ2x7YAQH3laOSV5KD2sxiGDx6IwGCg9tM9+KJ8JFAzDkWRGGpXWUrDq4T1cNKwoYhOmGiO2cCAAehL6GNpEX30BajYINlhi3VLV5JNcBTENgIZvlxKtgLISSeOHlmCd346B2dOGmQrgyXrpsyMKuIKVe41ALbYERXFsYqpj+Ifn+3FT58zNHuU5VQEtXwAFlOfWBclBWCsaSJluwyyXGUAITPgnplF6c1QHU/83S4IBNL8ci4hu0YMPFfRr4vsqmJCZmpBqN3TZBtbNnZFgTAh0f1sPWAnBRDp7JmgG9A0Q7EAg+xHxlo5c1QpFs0YwV0vktbEdF0gZbG3i/vd8Q4s0ATZjBkyElOTQjHQ6UE2DmRJse1l2MkrACuvX35mSELeIyehEHMBAvy4d5OqBuD7XawrM95XMlZBWv4RQwsB8KQ24ntK+5dWI5JbsVgxChsDpISNkdYhSx/A8AEh7ZGRA6nA3hkW66piw5w5upT7zsY9jf2WvRMAzzwt5mEUiTomDS3imDplCIcCqBlsd7H6SkLyQRETSCZEFkzb+QoWTgDmXEDf5reIEimD5CIErPvUzDmOn6NoEzLInK2T9tF4ZJpXLRjQbH0e0DSOQE4kaAkH7AQyUSGGS0USYnu+EOZvSjRCCNqcoqDEXIdsWFBSMYtwzCKjoc/oi71N5jWsiX9avx2n/fdaPP6mJXzQVrB7zwwF4vkajeNsjZQRJZn3FmPX2uNyKQmSmDuZEdWwd4HmOGX3S1Pv0HF04rhyZV2se60UVrZTOcwcZb3TX8f3XTEyzkWSQG5/SNcIyXsfFcYbQFhrydw4qoznOWGgqS0MAkPj2uFxj4mMUAAbb5mnvDeRELGvJZ3vY8310RegYlFiLIdsojnQ0sFppGQbQsB6qUTaYYbhxL1p6dyxynaV52eakwctfySbHEizM0PyV0OV04u2U86EZX12u3F65j1DwzRIYEKlyBbIGoaV8BYOWV3Z8SDsN7/a77hYAnJmVkDOKmgtQFbfsQ2yaB1iG5x6QqKwSxBkVRDXyNb2iI3WW2RHvOefX+K597eTHFvGX4uNzvjLaPEBY6M1vIRfOGx5BgUGuURU1p/uarIdE61OI0uNOnXAJFXpiMS4DfpjV0zHydUD8PNza2zjSNwoxGKG6yWD7InKkuwmAt08MKbgzkiMY910Yuo0PsfrJ+PIekbqdtiElHhBjXEX7jIJDbo4LzG2O5mln457uTBobxNlcxT7kBHE0PHx2e44yyKZalgZ1Dq1db/lDkYVaJom5IcT+iSm67b3wJaKRqGUiSmeAX3m+SSPoSyRuQo2gUAhDIrshUxop21gm7xgULwvdh92gVgULG45awLJ4SdvczigQcx1BwDDS3nWWNHFtD0Skyo/VApT2eaXXWMmDlekN8oMBaWCJztizo2SZ0vHrqZZ19BNdGtH1Ly/YMBOnEPzExrX6li/td508wvESXgA65mLgnqnIqWSbWyEeEGXKgEptb+TIlVMBcCeL01bw/rKyCNoV5ywlDx7Gw/Z2G8pZIphtg6z61jOOpa6IhrT0dwewS/++gnei5fJUtbIcqaaOX2J0M6ea1hQpNC1RKb4DkjmJAqWT5qVw9qe6P3/xnTLhbw0j08BpGl2dm/abzRlFauXKu3Y86T5otkxqtSgLN0UGveMrXmD3lN+Vli5N2yPxPBff/vU/O6k7E9H+MKgj26HaqFjG0aVsMgnZLY+swlCtP5Y5xrfr5szBtecMsaxbU5JcWmybhmNsgqnxt3rxJxHKuFW1PgmgizZO4OYm0jcKMgWftaUcDDgmIcLUOdmk2lJZVp61o+i6xU7hyaQHkPc1JwgWmdltN7iZv3lT/fi+pUfmNYTNumLwkgJYXctzgnbNtN0oQHsCoBEwqBMwBEtPywJd2luhrnpORSJcpbX48eU48HLjsbgomzb+zTYlkZFNy1TAFBRYFcuUGuL2/xI9DwzXUmC+wcESnsJpT8bn14sg6wPmHtrfaudqVG8hmnLdx60KyHoJkP2msqUKDTpt3gNaw/dlLC0GiJbrXGMMASTcmO6WlgWXXujMbt1Qdz4meNfmAZkaS/E6+l8aT0zF8Kg8MxV1j3Rgjc67qJJ29rWYXwRmZ+pxV/sgxwh92HNkEJOAJCBJu6mEFlKH/rX19z3xkOdXB8yBlzV3E+bShOeA3xqCRHsnabdb6ZkinejTgQmgB+jdIzlZIQ4in0KZu0KBTR7DtUAn8ohFtPx3UffNb9/vrvJ9uzF9YcKh7RqW0ofticQzuWuCWhmTKsM7Fy7ZdD4q+vUamX9TvuEzXcTBxe6SnBvXM/q0bi/bFyy/JeRWAwr1m7GA+s24+r/x/MXyPYnTpbBLLJPONQZ5QRmtqZ1KNYA2X6NPXv2vpTGmTxlDOwUORkhXHyM4X7P1jkqcIsKfzrUaa5PdpyOW8pgbR6TWAtjOnBUPDUWBa0/plv3pspxKWLNJ3vwFOGu6Pd5Bn34SATVQscWd5XGROYGANgnTXG/qdJiyyDThMs006o8gyJCAQ2/PK9GaJ99IqP1MUuE2zw0Tq6peVl8PIS48ZG5bzB3o0DAnvRXhMoyKHPvYy6V9L6YMLNe0JayMUInWpfdYRN4De0muPaoNnXn3/N6vH7juzgeqNttZihoKydXyOFHxyRNUqyC7B5r9zRLv2eEAuaif/3KD8yNmPj+iJuQSUOL8Oji6Vh2mhF7o+sw06iwckVEuPfN8Rak9bJx4sb1WGYpiUreFaf3WfyJaWtZeaLFXKwXsIQ32fslS35OIXvOTq6lA+ObdZZzFbA2dEXZlgKC9eO2A9Z53AZbp4m/+fonCG6MUWIlYVC516pytzoprPgNVly7rzzbgpk8XnDhsgnrwhzMvtO2qoYIDSkQ3bDF/GdBMn+oks6HghpnfWTjjT5PAPjz+3wcYFleJteHdH6RjSvOxVp4D2QKOAZmZZJbBnkFaFN8/aHvLzd2ieuiShEZ0DRkCtapgKZxc1M0pnOpBWK6bv7OUiuI5XPvIhXsRMuvTXCzK+NosnUZ7JZpu7VxT9wSR++NKoLY2GKpCJR1ydx/hefKimX5DKMxHe9tNdZNljuRzUvFOfaUO/S9EkM26HzY3hmzQlUC1tinwr0s/y8FW0NYm5k1k6bKksFQIhjXsrWCzvcaeW/pb/T+6HGZmyhd3yyFkzWu9je3Sz07DJdZq3y2N1J5A4kQ1z63yv50gWdh8Nhjj8UNN9yAl156CS0tzv7yPg5PqCyDbPOj8qVWxdix4tgEtfNgG76ua8FLH+82NuAu/dXpObymzj6xhBVCkIgzJg0y3R2oRlG8B3pvzNq2Zb+cDUxEp8MGW9QQips/FlxNJyY2cXdGdKmWmUL1LNmCSetjG96vSJwd04SPFDS0ltZavum+4Kih5ucXP9qF/cQiJ27Y6prbbRrnBLdlVzCYbil8PJK4aIguu3RhiOl8f/zuosm2emUbwHKJSyNgbNBo4uHn4htNsQzZ9xPGlmPS0KJ4u/SE8bB0w+zGugPw75sXS7pswxqTCRYOzRAFB9ZmNjbYhorC5iYab7MsJ1wkJt+EWG20t6nDoQ/z4jGVfI7KmK189r61ENdVarXVdatusY4bTh/PfY/GYjZBV7wVmZsu1zaHZ0CT3HtRyLH7ZS7ibNMlKp4yguLzYooDq6374vOCGDtNLQzUvUysR9OMOSiRS9dX+1q4uZA+Ezp2RdfJa08Zw5VNN6qyOnVuzeA39AFhjFOwuHeZtY9Vw2IGM+Pjnl0DWMIkYKzPsvmdIhTQbO98TkYQASJciGvLpTNHmp9ZTtA2wa2WupjTMSnGZgbF+VshPIhCJAXra2YZs8o0fo/EdNPS+9nuJqtPSB1MmA0HA/iqjlfqUXCKblMQM74zzwDW1wXxMSQKyjpxXWTuogzHVJaYzzsai5nhLGzM0rHbGYuZ610goGFo3DuHDkdOYSe1DPJu76z/VRwDZrkBzXwH2N6Ed3sHd4w+zw5JrDCtTxaqwd59+s40HYpgw7aD0rZRz7GoROAELGWKE9zuH9MJnoXBM888E+vXr8eFF16I4uJizJw5Ez/5yU/w4osvorlZ/TL4OHygsg4kdBOVaEWNCcI4n7mQRGI6LnnwbXz3sffwau0+KUmKCjJNuMwymGhSE8sz2sovoCphkB0fq/BdF+HkeidaMMUFmAlj7STWkd1bJBaTapm5uhWaYTFGD7Am45ohheaxwUWG8CSOCfYs6URLN7fLTq82P1/1+HpcRJhgxY1rQOMncdk5tvYLbkZsY9ApPCfRHVAcF3TMGcJjfEHPCuGCqUMhwo2bqHUuMHlYkb3twjhXbfDpRp8qYGQxDyNKLWHdrUJTZgF2A9oWqZto/K9TM+yWrBhXjmyOEYUn9ixl/T+ACOjtkt9l44u6GIsbfSYMRriYKOMvH59otIkmJOeFQUv5JdYxfpBgGYzZ3T9tlkHJewxYyaJl9/6Dkw0mRfrMZa6HKrD+ZnPTgbgLbbsQj90hzD2sn3Tdqu+nf9oYby/vvk03lcwdzSrHLpAlEmKPGFLIjalJQ605jhL3UDfHX51/BI4cXiwV9o37k4wrzoIErm0yAh2xPVLLoDA3sjWCeYgAvDKHxv6JMX2s+GBQs8fFxpWMMnIxwFAIsjHD3h8xpo8qZugGXiTvEUNHpJZBzU5yY1yLeBuMv8z6J+4jNte1mEJXSU6GdM0z17GghiOGFNnqYpApu1g/FcUVRGw88FY8a+zS/mDEbAy/umCSZRmM6qZQzcrUSF9EojoXjxoUxgc7n0HWh5nCc1S5lYvQdd307GGu81SRZBfurWvpWKShLgyi2zkFnXdnV8tZPts7Y9y8IVpwGVhyeyckUkanIzwLg8uWLcOLL76I+vp6vPbaazjnnHOwYcMGnH322SgtLU1cgI9+D5EshEGMfRAhI5Gg57LFZkB+ppn3Zv2Wek9aaTF+AoDNvx5QW8Rs5cmsHOYEaZ3HBT8rJhkV3LjemWULGyhGpEHvl7r0JYpx29MoJ3Vhz4WSb8gYCNnmVtz4sMWEP9f6Xez/r4gWW9SMR2K6hIVMcUNxsGpFNlGR0Vbc9IcFoUd0XWG3qXIzZvmPKFTPNy8zJB2HdmFQvsFXbfTFheqSmSMwY1SJ+V1zySdK+ypLwm6nAhczKDw3o32JlTtirOymvcb4UGlzAZllUF1+FtmQydJsyBZ7uqEWq2ebYCo4SC2DkjbR8cHHDCqbD8AYax1Rfi6WKVJkxxk5zD4JAQfzbOiUCLZu5jQ2btjcxARl8d0Q3wvOChCvT2RPZjBd/WJ2qyHnms7elQTtFq2HdHzQjeanuy2CKGZto0Un2izLPFaCwvssY7+1BD/rGLtPdsgeI0ffQ37tY1/FWG8zVsvh/RK9NCjMWMR4QaIllW60KWuq+F6Ibv7m/E09igI8mZlZVvzYzgZjTWakXjmmq63tEuxqaCPxtVYdn8WftyqmlEHGsCyOPSbsFGRboQjUM4QKQ6KLbihgCXsf72w0+/VAiyVcm3Hd0RjnTcXaEZbE3wFyzxPRo8ONNwdgjJ9DceVMSS5PIEOVEGJ8K8AT81DBnbqWxgRvHjaP0T3ptQpeic5ojJsPVbHMbua4PigLJh8z+MUXX+CDDz7ABx98gA8//BAFBQU4/fTTu7NtPvooZC5aACHtUEya/KbHLliIdMbxQpUxNE5t4Cxaun1xdLtxpHt+JzfRktwM7Gk8ZKQIkNSngmzhd4JNUIovIAOJeyPbtLZ0RBO6iVYL1gYGazG2jsk2hKY2W7iPnPgGkC7yMlp0GcQNyknjym2bjMSxe/zmiZ1PF9xoTIdoGBVdo8QYmUSCvszS6qQ8kY0R6t7FzqOwp2LRlfGrgLE4ygS0RKBafbooA3K2O4ZNJEekPLUEfx8y2GPyjI1FVCJgiXUxqMiRAF7wEBl6xfYy8G5WfF0sHoej6o/aLXxiDJqsXqeYyhPGWjTw+ZkhG/uxGCNszVnivGF8H1dhJ3Vi7yxP9uFuMwhYz4rNTexasS52HoPMCqACHfu7BYGRiwc11yTnNocEl0NOGCRtKSGxXGwjGuTmNetzUQ4vCLH2ip9NNlEHyyC7J7q2MkFCfMayeKvhZIzTNAmqeVSmJGCwBAX7b6KCSlyvOA8aQqCjinUV20mVoaFAQOrmzBSTLO6OWfTZvkXmJp8RCpC2W3UMiV+zh7CJyiB9rgH+Htj+h8buUS8OunaI3h3BgGYqnHc3HjL7ccwAy/uIvreUKVOmnOfjcvnfozEddgueOwV3TNdN4ixTkKSCKRur5vnWtTREI8pdQwQ4xTxGx1VuZkg6T5XnZ3L3pfIycbNvS8TSno7wLAwuXLgQgwYNwoknnoiXX34Zs2bNwosvvoi6ujo899xzqWijjz4GmYbs/Zvmmp9VlkFKpMFeRNkGi5uo4I6K3ioDtjLYpoS+5NStAlDHRMm0qzJ/9w+3H8SM2/6OKx97T+lSIXO1o+5ibiBOhmZMA9ntUM0tnSRvPIOPOQLUMUNm/Cfpc5q7SKyrtVPOJsqnGbA+q+ibAbvFYHR5nm1xSgQVKdHHOxvNc2SWQZvgRZpJN+oqWXYycS9LhGBAs7EVAsAEQUC3MWsK9yZunMV7EoUitzGDtvZyz09tKaSbfkc2UYe6VO+6GX8mdRPlv6vIkQCemElWl2yTTA+JCi+myY/ELNdjmVKIbt5kiMV0zoVexH3fPgqjynPjv2v48bMfcr+Lbn+q98aNhfWjHQ1WuzzMwSHTQsHmSfm1dkIZMte4VPZ8trvJJnDIiH4StVskI6HzE423pbFcrEw6h1NLVaJNuGVB4s8X01fQuuh9jCbjwCibtZe3TAHg2IYNUhHjN1U3V5apx6m5vkguFgVTkQFSFk4R1OxKMcvNn783zjKoAUHJRMws0eJegKX0kY8Fjcyn9l9HlOY6WgapYCy6/7K+ZutaOGgp1qhy6OVPrITn4l4hFNBwYTwsgabXkHk7NbdH8PHOhvhd2d2JAWdiOVEAo/fnxvKtUtyKqR3oX8DOCArwZEftnTGs+6KOq495X7BiGNO23H2YzzPYFWHQ7T4kneBZGPzjH/+IaDSKSy+9FIsXL8bll1+OSZMmpaJtPvooRNeMmiEFKCbxNCrLINvEAMRNlBPQjL8imxydTBJBtvmhEwt3LhUGFcIJHzPIt4/W8fKne6HrRjJ51ebnD4um2spvdRGsTKGKzaPJgGVsW5mhgCvSDQYnVtaAZAESFxcrsJ261vHXqR6nzEprpngQtI0qmG6igtvwJ1QY1O0xgzbGME4YJtpERePvXDjFsV0UwYCGXQ12S1GB4FolPiJz80gs6dSdTtyjiSQLySbLlVHoy0AVK5QOncHN+yyOS7ZRcIoZFOM9naxLYYXF2mqj/RoaKytWL9Pwm25IpK5Esco6nN1oczJCZixYTNc55QYgSzUBri0MIsMiBaOPp7T9Vpscmw+AzAkxPgG2yt2ZwYtl0Gkp4L0RjL+JNngBTePi2TKCARsrqq2eeGc8RxhG6bwge35UcKQ5/ejfZonbskUyYx3LFYQeCEnnaVt4NmF1zCCDU4ywpWxU5xg1k4HH3wVmaZUy1Gr2saGav6mVSVToMljxbuDqFC11FO2RqNlfdE6mShMnshox/IDWw8pl4ysUCNgYbwHgkTe+Nj/bUm0ENNMS3UljAsnN0PHLFHJNhyI210wA+HwPnw+XuuUXZoclOZX5e1JB13Ur17PpYor4tcQiLYn/6xBip9k1bD7tjMVw7yubuPo6ozrH8i2unRRszLA2dUUY7IvwvOwfOHAADzzwACKRCG688UaUlZXhmGOOwY9//GP83//9Xyra6KOPQdzPfLSjUfhd/jLx5Ar2DYJMkAtoGplMErdNNvHJYncAXnvUIrHQiNeImkOVq4AsHw4AzB43AP955gTuWKI8gDJQQcgiarFvwAFrgpW54hhtlHcqdYnVdfukzmC5NokkDmyDA3Ku9VnT7Gx1DE6xKG5jBk2tLKzNSVtHlIuBjMV0m6vTzNF8XDTty9bOiHn9QYUwNKrcHWkQYPSdTEEr9ouhUbW+i5TlkVjMTHoO2K0qonDtNpZV1l6GkUIybtV5opWIts/pfRbfVXNz6SAMiocGSvItMtDNmKw7ZO+2k5s5tZSyd9psq8I6LoNhfXY+V2URBuxu52KcM4PVj/by2bOVuom6iDc14ycFN1HxdsTnFQryY7jpkPWOiYy8Tu0ISbwkxLqPHF6EK08cRc4Dxg+yLNqhoCVoqAQmVvZQkkuV7vFlCiPq5tjSbjwrplhh5cnYDMW0CACNGeTXTdMyRTqY5iYNBa1NuUrQFYVBZm0DLGUBywFJIa7hTGDMENgpAd7jh98H0DyxGnduhzmmjO9OgrOYWkJkbaVobo/gYJshqNN3O0qsrDIBzjzPhZsoQzgoDw9gReRkBCV7lYA5riOxmFQpycZhlKxr5fmZ0hhPkdxOXNNVbqKJFPJDirPNccfGFvUoEp8nnZa4EA4yZ7A4045ITBpyEYnZ8y7KtmaaxrtHq8J5xPf2IglRXF+EZ2GwqKgIZ599Nu644w689957+PjjjzFhwgTccccdOPPMM1PRRh99DDJtMve7YsKQac+4Ta6E/EWDWrMsg8y6qHJxoO2U5S0T67QmGmeBRBajyCC6rnkhjxHLB4A3vzoAQJ0DrYO4yErjrBQ7cnrfYowkFyMjIZug1we5TTdfl0r7LOtXJ4pxafsD7Lr4PcDOSBiJ2WMQxFg42uaOSMzcgDk9t4kCM54KQU1DgyR5uqxfgpJxSBd5Sh0v9p8oXKq08AnbKxHyZKCb0LCTm6gHYdByOWSaenv9dLEHnNNhhBOkAEikbBDHMrUMRqOG4oFtmnkh0rlcXU8cnyNjPVRB3HxZbbQrkRjY+BNTXgDuxgorc/2Wg1w7E2ngw+R7LGYJSwDw9JUzuXOdFAmyHJIyF1WRCCtLcKWUsXvSetlcTi2oVLkkY+OlFhhWnykUxc/f2ygj9bELFnbGTeOvzAXYnmcwLugq5jEx7Yesv2XeAfQ8miqBvR8yy2BA498LJ7dtcRwXSuIy2fhj58rCRERkhYKmpZXmmuVYOR2ud8ozKM4V00aWOLq5B4k7JUMwqFl5U6PExVHi4RAT5hA2riiTthiXKo4rVpaVHoKvQ4b//sYUTBxcaIaeyNxE2fVM4UHXcRpGROcMNo+ff8/r+GIvb9EEGFEez14uU3KIbKZf7rXnTQbsFn0vTNrpjKQsg8899xyuvfZaTJ48GePGjcPf/vY3nHPOObjrrrtS0UYffQyJmDhVsiLNiSXbILBNGSVFCAS8EcjIrIsdUX6iMOsjE6mKFEfUWBpl210cKJxIRsTNlyhULHfhZkirZXEjHJsoqYNaBkXrnaqN4nHxflW5A2WQxRcyyFgcVe6f7NKt+1vw0Y6GhAHc4kKs61bOMoaDrR14c9N+7phIfw9YueMoOyt1eRZRlSAujCEY0GzU6wCwZb89v6vMXZkufDJyJuM6+2ZEfGJOGm+xveZnh82RTHDtjMXw5d4mfLm3yVUMsCigscWePR9l3eS4yMhHkdhN1Hl8ie2jwmUkFuPcsBihgqouvl5LoFC9WuYcJ3lXRHdtmbs3ANMiLetHtvmhREZuCSQAizCJWR9UyjxVKhCjfdaYzskIcgIXoA5FAHiFG0uhIT6v4SU5wjjllQfhQMD0FtG598k+tpfOHWseo9YNWuXQ+PpCN+RsPRxeksO1sVlqGbQLtaLV05qnnVlsKRlUp4wFBnZhgZbFiD7+vGEHRHBWtZhukoExyzmfggHmPdHnyX1WKAFz40K1yDpM2y66Isri2K226CbhTEQi2AUDsBEVUXBsoqJlUJiGirLDji6nmgZbLH8ooJnvx8HWTqnXAVVWW3OsVRaNfRXnDpXXA7MIJ4qVnzqiGOdMGcJdL3MTZc1l7xqdlyqIJwd1E2XzUVtnFCNK7OtufWuHMoE8f4+8wYFZy8V9nLhP7IvxgTKEEp/Co7y8HGVlZTj++OPxne98ByeddBJqampS0TYffRSJBAAVix9vHbBvEMxAa2FB9ZZn0Pgr5seRXc9bBhNviMVAfdWG0dEyKBxjMSSjynLxwrXHc9ppFbhErRI2Uc4yyIRBTePypDEo+5QcFu/XjVDOFi5OUy4swoMKs7CLLLCb9jWbGyMRbPP6yBtb8OibW3BufOFRQcZG96sXPuPO+e1LtbbrKgrtroXUUiJLryHCRfcAMJ7T6PI8bCREHQDMZPJcmaRQi33Qcr2iwiBlY5W1kx7StPh4cUFqK1pcgpqGqIRkW2ZBbGmPYP7ytdAAPPGdGcq2me0WBhnb/DC6eBVLrlEmb42QIZGbaGI3ZP47E44ZaRPbeA0qzOKstokUabquo63TEAZULnwiQQOFmL7BGv/8eaImnYLN3zRdjhvLAANz6RStuWJVdjdRXgHF0mbINPNO3ShjihWbHQrwVuSgpnEKnnBIQ3FOGPWtnRyhiOw9PHJ4sXlMtC4yMAIXugaaZEjx9joxP8vyJZrCYHzGYVeLBCbG/fKWQSu3r7xOMV2HGHMIyNc/KuDHdGBbPEWUzC2Vug9zQo1EAWsLVYj/IBu/xTlh1DW3q2MGJdOCrtP4Zp5x2rg2gNED1ApA+lzr42u6Kr48ENCkihzq/i/Of6GAFS6z42CbqXCUcy7w1jg3ngRiOAwT1kSGWpWbKFXW0HWJXhsMWO+mDv55AnJXW03j0zjkZBrv0ZUnjMLDr3+N9kiMi+Vnz3DqiGK8R1JVsLZT5Rirj7pAs/unKHeRd7AvwLMw+MEHH/jCnw9HJLYGyX+nCwFbhHj3BPYbYW9rOORpIyKypFHBUkbXzJAt0TCKbREXwc92210WAGeSC9FNlLVpW32rK0EQsO7t67oWbDtgbNjEpMIM163cYLQ9oEmFdJWCkjZdDCKni5tMM3v5sSNNV0lqMREfn7jJ29NwyKTyBoBTJ1Zg8XGVxm+NPEHKJwJxhqr91E3u7a8POF4DOLvNNbZ1Oj5bBrdsncGAnEQnEclIUNgIRWM61m+1Fr7OiH3MUohEPm4D5sWNqEqIpOcxC1xdc4fZdzQWTAWxTexdY5vUfRJXOvE6J/eeRNbtRJZnmxtXAKYw2EliWMT3I1Ff67D674CCaZgND9lmXBw7Kisiy+MqUwax2DnaVi9J59kz7xTiu1SsuOb3uIBmWEd1MyZN9j64JR8Kk1g7TSPJrEMBPt2KMD+GAgGzXrrR14iygfboredMxJd7m3FMZYn0/jKFOMoV6zbjt6s/j9cVV4I6uJ4zSxInjArCDXtGLC0Ev8G3rgsQQVjl3eLkxcHaUE4ExocuO9pWT0zXTSVlc9zl98PtB83fdd2aS5VtFdZz0etGNl+HBKuTJSgEuGspYrpOYrDtQonxfqvnE/p+MXfTLfuZIGyfkxolXjFDirKxYdtBLmaP3hOLBx5SlC2NnaaxxLwLrmR+E76LczsVLI37s58HACu/OwNPv7sdPz19PLkeZjuMMqxnJo47Os/K0o4ENI0be5QQLyMUQHskhkgsZuuPuy8+Elc99h4+2N7A3aOZ6ihmKU3EPZktHtzlvizd4dlNlAmC+/btw7p16/Cvf/0L+/bt6/aG+ei7ONiaeDMnA3XBY65EzI0HkMe35GSEPG1EzEksPjlQYU7cVNCXXnVPbNNE62dlU+IACjanyTYsYqwVm9woU2EiMI3Wzas+No/RjS/tJ6bdD2qalGrfS8ygzE1U3OyOKs/FzWdNNO89N0OuKQfsWt2OaIzb4N6xcDKmxzdXIiW/kwsgbb+TFlsGWR/taTA2V/tbOhytvgx0E+8kFwY0DQumDbMdTxSjwPqWbl4oWQp18ZLVL5I2uZRdbcm81a6a9LO1QWFgm14n71RRUGAuROzdG61wxaXXydyQZZBtDsVN8reOGc7XI9y7pmlWfGRUN60+NuEswSRGkyGLrpFie2XWBbHdstxpgLVhlbHZ5meFzbJEVy83ig52zyYDrMKaLn5vbLOYD6O6brpLynLeObUiLLhEMtCxERY23Pua2rnrKMkH7VOZkgwALpk5EreeU6N0d2SxyCze6+d//cRcA9l7VSrx3GDYEZ/HuU17/LNpGYw3h80fO4hlVySeSaRYFcc3TR7PrmXzzKzRpZhdPcB2XUzXTQIW5lo6otQa09SCKQrmVrutsox75PcCsvmaxTsa7pKWYkbGyGq2Rdc55RqD6X6oaUrFKbte13W0tEfMd4YpRGXWZNnegSmuxXhWxh48gOVa1S1hT5ZT02DXhNVuqbKL/y4K4+K8oHEHvQAAridJREFUIVMEA8Axo0rxuwWTeTZ5wXPB4ofQSLng/tLzaH0BDZgxqsR2TigY4J6XKPAPKszG/3zzKK6tAY3fD5ju1BLLLYWTh0lfgue7aGlpweLFizFo0CCccMIJOP744zF48GBcccUVaG1tTVyAj36PwUVqlj4nyJig8jOd833d9+omTxsRU6CMf6duMCqtOQCleyJNjCzGL6gWVJM9S7oR578nSlUgLT8+Ub5aaylp6L3JKLeDATkbmpeYQdl9i4KLLZaKtkuoQ3wekajOLQ6iBYsiUW+J5ApuhUFZWosRcXZFTbM2ME7CIB1LTs81GNBw8fThuG7OGO64SN4gu47+pUmCgcQMtbRJbjaGDGJKEVUXcAQyEqsO3fSo6+K/s+dnbuxUSgxynMbqOUFWlJiy4Ufzqx2voTGUkVjMjMVKxFQnIhazM+PZ2ms+d/tvg4S52VRgCcOfCRAjS+0CJ30H2H0k4yLOhH5VWgpx01Wal8HlpWT3Xyihi3caO6JLpOyaUDDAKS2GleRwiroQl1pCbmlP1BW0bppaQYwJZPU6DY1h8TlFtPDR65jrHXt8dJ0uzLbW2cxQIOFzFPuXj7E1/rIYdNpv/LphjR/mOiwTpjWNz/FIa9aE9VzkGnC2DPIChik8Szp6eEmOafnjYgYV1ksRsRjwi799isk/e8n0QGHPR7aOycrq5MjerOPsHbWsWro0Ro5a8+g7J3tXdME2yCkIAzQfHyvT/fsvKlE+2NZgtE+oJxbj8/yqmGblrtUa97xkc6a4N6GWSV2XK7cB+75NJgyeMLbcdizd4VkYXLp0KV599VX85S9/wcGDB3Hw4EE8//zzePXVV/Hv//7vqWijjz4GpgV0giynHmC32A2gwpZitHohL2DvNWOOZLE7mua8gVexiVLXEFFbpqIcF/NHUTS28RsBU2vuZpaNQ5dUm5vJt1+MN9pxsE3av6o+oV1tLsQkmJ7BJgyK1j8ys+4X3N5EQaEzGhO08ETrKTTeKb6Gtp8ukKpnzLVX0kksjtBon1ybSMFbadXnhYMBBAIaJg8r4o7vUbhAWmUaf+miG3FJBCG2iS78iSBqod0QyMhOYW1yqlZ8DsxNNJGbrls3UQrZ5nDMgDwzlmT8oAIba6FtAxHQTOKrnQcPmRYR0RMgoZso2aSoBF5zUyi8A0OLs/GTU8dzx1SWcTaOxXgZgH8vO6M6avc04f2tBwG4U8ixdrOE2mzeEK+VCtTEO4T1Q5kkZsdRGCRzDj2Nfm6PRLn2ZIYCgmXQsjw8+fZWGwlOcU44oTcHZxmME6jsPNhmc5Nm9TqNDSuROv8OGvfFhATjONN/MgsvAIwqy8PxY8pw5qRBCAUDCZ+j2BY6fFgb2FqWwQmK1ucoEVqYZVRl/aGvCXWhtJQZdisTILcMhsg6zYWJhNVuor84t0ZqGWQxj6GAPY6PIqrrWLFuMyIxHQ/962sANLabn2/FYwydRElGn09RfO4xFSW6jje/2m+7nlrkqALdq2WQss2KimA3738wwF/L3M5bOyI2ZQD1bqBrWJQoCmhbmUEhHLCUOdGYYZEV7yNH2BMZxElW20zFgnBPKs4LCuoW21fgWRh89tlnsWLFCpx22mkoKChAQUEBTj/9dPzv//4vnnnmmVS00UcfQ0FWGF//6gzHc+ZPrJDGk0UFQSqs0Cpy18SsRSMRGB05K5+xt8msYmyzIraDopHQZ4vaMlXwfUN8kTwkYaYU82W5sQxOH1nCfZdZuWieMxnGDMiT5ubyxCYqEcpzMvjNpLg401jGIQJjq2gp7ojGuMWBi/0Ryu2MOAuDopsodOCI+ObNyR3LifSnM6pLc3iJGD/ISi3hhqizIIvvQxlTKb1bK17GaoNbIgjAbhl0GzNInxcVfkRwAlnQPi5NN1Eny6Dwk5s8g2KZokaXsVsmUmCwetjm5H6JYktknW3piJgbz+uf3mBeGxbKFvMAitDh5h6Nv+I8sO7HJ+OIoYXSc8UYyE6iYRfBCYORGK545B1beU4Qn2tUsemyxRAG+JgiGlMmwmlPqkopQsupriiwWQrpJrCtI2K+40+/u930wmDPddX3j0sY20ub3Rp/7lRAYmBjydnayQQ/cj+C26NdaccLIY9dcQzuvvgoWzkyiM+Ktpj9xPLy0RQg9J4NF03j3pgwTJWU1Poj8xoC7DkURXdFmas0e78NIhXruEgqxnDrORNx/Jhy812ISNagQ50xxzVaFntpsb2SccaEQUlZbE0LBPjfzZy9xDPpk12G58L9r31lqy+m65wCvVWSQ9lRGAzQmEGd++tmrTAt6lG2bzCOl+ZmcusmFVoBtaKAtn9/sxUPGyJENSw0gyniAVlKJX7uVCkWWzp4hb2YyP6vPzgO4yry0dfgmUCmtbUVAwcOtB0fMGCA7ybqwxNyM0O2iSga0xEOWhOFGysKXTTcoihOE90Wf7Fl7n8UbqwIorZMZY1hQrCMEOBkwarqZpL99YWT8NcPd5rslzJh0CmnGitfJpiohBpuUY+xtrLfrB9FFy4nN1HbpCu4S+042MZZ/Ojp4rUqq6x5bYBvK2UPc9rEyUl/SLyPInaC4vwjh+BgawemjSzBt/73Tcd2GnW6sB6RR87aT89rV2ymZC4udrIAd+8V3fQFA+oNHM8QbP+dvRdO1YptYlZdWawMBX204jnnTBkCTQOmEvZHo73yNjJhVzY3iBY1mptsX1O7SUMvClu5EkscRUy3mEgTucK6yVHK+lF8XSImm6iEVCpgEbl0RGMmSRWt2wls/mMhAKqYb7EsTeOtH07u+E5rgWoup9eU5mZwG8dwQOPeFRqTBABf1bVgNiwFn0yIFkFdjUvi1p2C7JDNa2NMXEnhdE8mWYzMMhj/7qS0E5FoLRWHRbaEJZWNeToPiG6ibJ2XsanSDb9MacS1QxBK2KMRN+qA9d7oZMNP26aKXWX39RoJvyjMDmN7fRvys0IJ3e/tbbcLn06WwU93G+NF9LpgfWgKe9SNVRLPyscMyhVQ4g6CdgmNWbQIZDy4icav/SBOFmQqJ4J8SIKu83sZfmzEywponEsrS/dCY3ojMd2cj6miRezjgGZZd3Vd7ZUlunGLxH5ulafpBs+WwZkzZ+Lmm2/GoUMWe19bWxt+9rOfYebMmQ5X+jjccNc3jwQA3HB6tfT3BgkpC3vht9db7hcMqnfMS2oJZnljblpsA9si0Y5RqAQEOlmxeYxNIirSGTaZyEguxInETX6ckWW5+P7JY2z1UyTanISCGoYV59isUJv2NkvPl8YMKjRp8ydayiNbjJSgcaQYXc73T15miFt0ZBpVhkQLs6gFpprAcCjxpovCTPYbsyyXTv0dCGhYcvwoTBlW5EqBId5bwjye8Z/ppleWmwzgrd/i9QBvjUmEaqIN/XxPk2lpE+H0zAHiJupBubPPdPt2Vp7wGnX+nc4IBnD1SVU4ZlQpd1zWDiooyARqUeAQNww58c3JF3v490vmLUER0xPHDLJ7pC7A5x8lT7WicilN5IrKNmOiBdRNbLPdxUwunNiEQ7IJ1ol1Q/Z8nJpB+42Of3pNQXbYphShud+KhN/FfvKimASsdSkStbt0M1IVp/dQliOPnW/2T/yZ0dx4KiR651kffm/2aADAD+dbuRRZG9g4pTHSnOUnpptWFuYmSj0YTIEloNk8Zhjs6Zz4emTPgbKJyjxNxEvYcRpjzJSNrC+zwkFPcf2AFXsmG0eydjPPmUBAQwPxSPrbxl3mcdomAFg0Y4T5mSp+aOouGRGV6CnAufYLcYa6rptkXG7mbLYWjR1orBc0JyKth7p3AhaLMG1fQNM47xY2vOpbOzm3XrYfoF41dk8Efj8QI+2iGCX0l2hI8DgM0gaeLYP//d//jVNPPRVDhw7F5MmToWkaNmzYgKysLKxevToVbfTRR3H25MGYUVminMgvmjYU/++trdyxSExHa0cENz1vMGHyVgT5WxbxopUK8AsVm9QHSfLHUai0yXwCb0urpEqODsCk+U9kjTTaxyakhKcawdS6bnPxABILEMFAALmZIaz90clY+vQG/P2zvQAs10kR9FE4JZ03yiYLh1AOZf10EhQBwfIm3o8wNmiqCRksAhlrM8HuwynJuiyukBJiWGPR3YrgRoFhj7O0ty/KKSWM86k1WKXsGC1xOdW4hd69ppO+I5OHFkmZKIHEwiDTVHtRsLKxJ0uorYLbRVxWFHWBlc0NojLAlqg43t4pQjyoEz09wJNeqGJX2JhiBB4A8F/nHaEozyhLTJjdqYhpZMgIBmzsvkb7E/e75WJm/GV6G1s6DomFhlV3qDNG5gJ7HW4tg3PHyxVVIcEiHg4GbPMCTR0UDGjcBjqRi6iILGIZE91EQy5iBmWCzJ837MTybxxJ3ESdlXYUCWMG47//cN44fHvGCE5QsnIUyt9FZlXWdR21cWUIC2OgOfyokkC1/mrCuaJiQepCbF4DqaeJOHbYKYz902hn3IOJ9KVXi5CpkOQU3up2U6GJEtcxQYxdEtV1DCzIxJ7Gdiw82mKjlrmJapp8HnFihNd1fk6M6TTeX73vYSgVYnzpeBT3FV/v570NO2MxZAaCJM7Ybm0GjPyhrCUHSdJ5LuyIeDgA4GIx6dgQu0eco8V33Q33QDrCs2WwpqYGX3zxBW677TZMmTIFkyZNwq9+9St88cUXmDhxYira6KMPY0BBlnJhkU3wsZiOnQetjUnjIXtMngg3MUYMNHicXpuf5awXUS1G1ABFNy/MpUMGRvMv89UHgF+db23cVAuqDFSrJUJ8BhUFvPDL+qUwJ4w80hdBhRTK8nIZ9fH1yjT6DJvrWrjfnAQv0dUzEospA9Vp7CZgj1UUYS38pHwF3T9gaAMvnTnCZO2joNYVNxstWTuc4MYyKItJ0TTNtDS5zRcmtmlvU7trwZa+IxkhTbmhEFNXiDBz3HlUscZiOr6Kjy9V/+8kQo+4CXJDOsMgxkeKkLH1Ujz25hbjPFsOK2kTLOjWRi1RXCS12qnoz7/eb/RXkUCA82XcI0ClsDJTIQjjys0jo66eAHWF58+zEcoEYFpENI23DtjqcGgHnacPReQujBmhAKeACwWdN/uhgCZ1yXML9nwiMd0277HfnBRHMjdRC9YGF+guN1FLmSay8rJmsvlUZWmL6ZZ3EBtn9WTOoO7DqvFLFbCA3V1R9j6xp0Tna+ppIt47U05xrpmm8smyoHsheQPkbqLmc5TNOR1WO2RKIxonKWO1NpUCgou17B0XCee+IB5CX+5t5t7NmK6b+4lEyiyAKmDjfUjGI88mao+PZ/s1ToCT1JERDJp7jaxwUMpBAfBrAK3fiEk2jtvznfJ1uV1H0h2eLYMAkJ2dje985zvd3RYfhxlkbqIitfbwEmLWV7xkbJJMxjLYHlXH/VCo4m9Oq6kwP9OJ7Mz/WWd+zg4Huc0jc98aN1AeZHz+UUPxkz9tBGC5VLhjStUAWBM90w7KcMr4AZxVlm5ead4uJ4uiZYkUNnW2ydP6PmloEfcbTTovyrD1wvjojKpdN1h6B+tcd26idFFzchP9z7Mm4KRxcpZcSuXvZqNF4UrITyBYAIYLrcwVVKVwMMuWbqStYyNLczjlzNDibDM3pQjq0hMKBHBcVRlWvrvNdl59q8UaK7uX597f4dhmFaK6bip16hUJ2asG5JmCjiiIuSFLkkEVV8eVIXxn8WLitYnqiumWsLC/Rf5us80Km2ec4j5rBhdiT+Nem7KgJE6iRJ8VhZi426zb1Txl/GXzhkqoE2OGA5qGQYVZ2NVwCLGYxY4pdxNNLDgBfF47mv8zMxS0sX06zYUZoQBPRuJxQ2hZxnSbgM1i79wQyNDhxFz+rf42/rqyDCZor9Nzphtq2blafJ2K6jpyM4PoaI1JUzfRPIPqd9P4a0tv5CAcM08lIyYtfj8SoYmBKW/p82dhJly6B89uovY2WgQy9vMZy+zepnbuff32DCPHKVWyRM2YX6sg6iZKLaiycSDOB1OGFWHDtoMAgElDCwXLoGVpdOPtFCTtAMCFVtC20LmOgSkYqOJZ9q5nhAKoGVKAj3Y0GuUwwi7RYyOogS2RhvtrvB5iobZ55ghzdkbI+fe+AletXrVqlev/XnHPPfegsrISWVlZmDp1KtauXet4/quvvoqpU6ciKysLo0aNwn333Wc759lnn8WECROQmZmJCRMm4LnnnuN+b2pqwnXXXYcRI0YgOzsbs2bNwjvvvMOdc8stt6C6uhq5ubkoLi7GnDlz8NZbb3Hn7N69G4sWLUJFRQVyc3Nx1FFHcYyqr7zyStyCYv9P63vnnXdwyimnoKioCMXFxZg3bx42bNjgtgv7LIbSfGvEYkffPepiqlrgmT+4F1pjNlnuiwtLiQhWRIbJ46rKcN+3j8I5UwZb7SNF0D2SmAC9I2LXNFJQwZRqAxPBjMWJT66MtXLJcZW2cwfkC5ZBMknKEgjL6zP+snXjg+0NxnFReCFliGtFSJj8KewMh1ZqiUSuk4nIMywtMCk/JtceyurjfiOaTpbI2a2XmBcqfvO7ZMFNVhmZKN4qENC4+pz6oTjHekdCQU1pVaapAJza7dUyGI3p5kI8UOH2TUu0x3nJy030jGTX2bTFqs1sgo2GiJhu5dcryLKTYxjtMX5ncY2OCh3BSsfANk0ytllah7hpdMUmSFyxAOCrfYYGX+xn0VrJae51StZkr8PpkXG517jySRsDGjeHHD2yxFHA0zR5yIATbr/A8gDJNC2tMZtFnfWpowAmEX4eWTzdbBvgkUAmwfzl9JzZT2w+VcWCxmK6qfCrIvHzonJR04BxFdbvy06zOAjYmGHeBBazuGZrZ9WAPDx95UxzTFPSMDr2bO7KAXtZTFigLtuyOd9pX2FZc61jTgQy7FhWKMC9dz85zUhjQN8rWcgGXacs0j35eicqJILcOyMjemHlud+nsOdMQyvobf/8r59w5FSANaYoaWB2hjxmm1qNP2HKN4dUPhqZX2jsaiJlrE2h1zdlQXfC4Lnnnuvq/3nnneep8pUrV+K6667DT3/6U7z//vs4/vjjcdppp2Hr1q3S8zdv3ozTTz8dxx9/PN5//33ccMMNuOaaa/Dss8+a57zxxhtYuHAhFi1ahA8++ACLFi3CggULOEFuyZIlWLNmDR577DFs3LgR8+bNw5w5c7Bjh6WRHjt2LO6++25s3LgR69atw8iRIzFv3jzs22cxSS1atAiff/45Vq1ahY0bN+L888/HwoUL8f777wMAZs2ahV27dnH/lyxZgpEjR2LatGkADMF0/vz5GD58ON566y2sW7cOBQUFmD9/Pjo71X7b/QGXzxqJgQWZuHTmCM5iRyci6n+tWn/azRgj98Ig0zBlx93oPt3VZDt34TTL3160HL799QGcWjNImVCXQtyMOdG2M7D7ZvTcybiJsgVhAol1YBAFVOreUUQ39Y4bIGtxASwCkYOCNYFbkITy6EIki3WkONjaSTYy/G9iInZxMRPBrqcLv5ObqPNGzPgbi+mmoFO7R06847bcb04fbp0j3GzTIbsFULVRFS2mImRXfU5ioQKaxqX8cOqHTPKuhgKacuxw77SjoKL8SQqa7kGWHw8Q0mYIz1kl9NXuts8NDCqrmyz+VYwPBCQCaYJ7jumWomOQkIrFLCPeHqYkk+WSFOsXY5wpMYYMNIcXV7eLeUqcNwbH7+NrwYVcFmtmKfP0BG6iiZU34nnDBOXkpn1WewqynZ2oIlFdEAYdTwfAu7Kz1Apf7WvBC3FCEAa2TjiVybw56FhkyhlzUxw/LnMhFCH2nyjUOK1dlgXKLpAAVv9Tki+65rC5m1qvsklf0efErPws16uZbkRidTuuqgzTK0u4OEOZp4nYLVbaDo0bfwCwi7ACUzZlwJjnfnWBPFYXsPrlM7L3YPdD281cJdm+YXBRNqe8yY3vYSibqIwAylynBPIlN2EHtH80jW9fTHd+F0Ww6lgdTJBncykr4k8SD5HOqI6DrR14dv12s/2Xzaq0nRcO8jkDhxYbY0aMjeYJCq26KcOqbewnUM72a8tgLBZz9T8adXZJEnHHHXfgiiuuwJIlSzB+/HgsX74cw4YNw7333is9/7777sPw4cOxfPlyjB8/HkuWLMHixYvx29/+1jxn+fLlmDt3LpYtW4bq6mosW7YMp5xyCpYvXw7AYD599tln8etf/xonnHACqqqqcMstt6CyspKr9+KLL8acOXMwatQoTJw4EXfccQcaGxvx4Ycfmue88cYb+MEPfoDp06dj1KhRuPHGG1FUVIT169cDADIyMlBRUWH+Ly0txapVq7B48WJzoH7++eeor6/HrbfeinHjxmHixIm4+eabsXfvXqVQ3F9QnJuBN5edgp+dUyP4u1sTEaUNVk007WbMYOI6xZhB9veoEUW2cy+dNdKqWyxcImuo6hfb7SbGkQmfu+Iuem5o4kW6Z6cE3KJbTicpn9OQOy368b+sDy0yHn6TylkGHbRsrQLFtSgcbjvQak7S4gZXNQGrulg2ZiJRuSsJkEBoIdYK1veJEk5b19qPjR9UgNtI3Kh4b2K8J6AW0hIRWcguO2pEMVcu50IV0JR9ekxlifk5FAwox7dMW03BBFh5NIgakWjMUrSoxgMpU8zxp9ocTx6mfpaqa2Qxg5cfOzLh9W42EmwTnShfHosZdMqbKWMgpN8TMZY6bRqVdcZP0fU4vb8uV1rJXG2pwsvJGuG0FojjWXY8GOBJOhJZh2l7VG0SUUKeC+uDvU3tNjdpU7BxuCnGzEhPYWuIZva34M7vQtHHILIzO1m8TMsgY8LWxN+NA5QohyqI2HEzZiugcb/TtZCRujChzrL0WdeK9dJ1UjbOxWcXlHhGyJSNxbmWJbskNwMf/Ww+zj9qqHK+ZMVOGV5kux/aHuZCzJ5BIKBxyhtNGB/RmC61/lIWX+pmKQupEEMi6LREhSajPDVfgAysnTFdN4VfQC7Ai4hEY7hl1ccmeVNAMyy+x1bxDNCluZmc5xJb28cIDNd0LAWJZZCOzUTx3+K70FdjBl0JgyUlJdi/fz8AYPHixWhqUmtK3aKjowPvvfce5s2bxx2fN28eXn/9dek1b7zxhu38+fPn49133zWtaKpzWJmRSATRaBRZWfyGKjs7G+vWrYMMHR0duP/++1FYWIjJkyebx4877jisXLkSBw4cQCwWw1NPPYX29nacdNJJ0nJWrVqFuro6XHbZZeaxcePGoaysDCtWrEBHRwfa2tqwYsUKTJw4ESNGjJCWAwDt7e1obGzk/vdFsIksRCZZkU2NIaEw6MZFKT6rbdzRAMDuVkJBhYIcQUOeJyGcUbVPnBzYpO5kdRNJA5zYvRhs7kAOG7r5Eytwwthy8zulqhZZ9VQQg/ff/OoAALsw5WQZpGgTkrnqgsS942CbuZm3CYMKoVVFUMNioegz62Qxg5KNjqOlgWhkvSyKgNsxy58jbZ9LoUSE7LZo+ZombJI1dfwOfe5hB8tgKMF4iCg2kYlAyTdU48HJMqiqz+l9UOczFDcQciubfaMhbwNF7R5j/RVjVRhYkR/tNOY4JysO24CJm9uIxLLA1WHO10JqCVceDNY5PDuq0Bc290KLpOO9LfW4+v+tj7fFuQ6n3+hZIWGce0E0JuZ0S3w9rc8ppYgzOYwBJvhRrwFTGAQ/TzuteQyJHqOT0sLyvlGwica/UyGEet4wV0AWA61pGmfpp82m8doA0By/f5lrJ3u3qDJC5mki9ktI8v6zPmTrdF5myCZ4sboTvUMydmV6jPUNE1xCAU1KEkfdQM13Ksi3CQDqmjrMeNuAZk86P7I0B0vnjuWOcUQrAbtlUEXsJgO7dtO+FvzomQ/M44z92Ond64zq+POGneZ3q4/tlmsq/LL5TNwPUJbtgGb3qqB10LL5786Ww74CV8JgR0cHGhqMheWRRx7hcgwmi7q6OkSjUVsC+4EDB2L37t3Sa3bv3i09PxKJoK6uzvEcVmZ+fj5mzpyJn//859i5cyei0Sgef/xxvPXWW9i1i3fP+Otf/4q8vDxkZWXhzjvvxJo1a1BWVmb+vnLlSkQiEZSWliIzMxNXXnklnnvuOYwePVra/hUrVmD+/PkYNsxyP8zPz8crr7yCxx9/HNnZ2cjLy8Pq1avxwgsvIBRSu6bcdtttKCwsNP/TMvsiOK0WWVTnTSAELYrRyiYRNwswc2EcGScOcBKY6Esuuol+b3aV/R5UlhDhOHPpcdo47Y2fsz+eP01k1ZLWE2CLvqABVrix/eRUK/aiepBFZkPb60wUALMe6uIlLghbD7SQa+zlHT2yGABwcrWcoIVhQEGW+bzEVCCyxLkAP6mfNM4SfqvK7YmcLcugLGZQ3S5qGaSxDG4gGwOiy56oeZS1j5L+cNcmIEb6uq7VdiwsaMJtlkFFWbRd+5rbOY26arMl6yf2jL3kGWTXsQ2TisiAy01pSy2R+P21sX8qrhHp0wOaJqUct8ejJF6Si7KNslVEPow0isUFO23c2cblk12NnJY8oWUwfrwjIriJetgMAvGNmiKXqtRNNH7tr/7vM8c6nZoRDGiYPNSw9tI5h/a9yiOCxbbNGFWKq0+y1nlKpCVruwyjB+QhGNBQmpuhjP+kZTnNQWyOoJYWVqZoGXSXZ5Bvv7j+OA1T9h6p0uxYlkM5262lDIoLDXubeUUTaXiQzL1Gu5igYXe3ZM+XrpMyMh2RQIy+P9QyGIvpplIyJyMozGvW9Z0K5TZru+iqKLY7U2J5ml5ZgoAGjCGxlqyZdA9F5yfWJ7mZIc6tc7Dgbn7TmRNs6cDE9Bf0/vSYN8sgvZ31Ww+anxmZk9O729DGh6CwsWZTmAYC5jqlE2FQnL+HFvMpUexWbPu6sEVId5HIcthX4IpNdObMmTj33HMxdepU6LqOa665BtnZ8niFBx980FMDxI7Wdd1xEyA7XzyeqMzHHnsMixcvxpAhQxAMBnHUUUfh4osvNt07GWbPno0NGzagrq4O//u//2vGHg4YYCwgN954I+rr6/Hyyy+jrKwMf/7zn3HRRRdh7dq1OOII3ld8+/btWL16NZ5++mnueFtbGxYvXoxjjz0WTz75JKLRKH7729/i9NNPxzvvvKPs52XLlmHp0qXm98bGxj4tELL3p7UjYmqbM0IBzBxdSs6RjwuVO4oMFYIQ4SQw0Zdc3FR/c7q9r91YFgArvYKTxn7MgDx8sbfZyjPoxoLkwU1UrJ8uxgGHd4mCutvQ1A6iS+vo8jz868v9yrY8dPl07GtqtyW/FZWfnZGYMs/gAInrJGCQUDCrKl3U2b3T23OyhriyDBJ3GbdyjKxcUesrxnfKMLwkx4y9kLVNBdFtBhByMQmWwGDAIHXa1WBXCFLlSc2QQo4NMhwMcOyWVvn2NkVi3vqQ4VBnFB8yEiOPlhlALdjR88LBAJdjUFVNTkYIJbkZJkOlQTBhP/lfX9a5asNZkwfjLx8YGnExRlcEe4/YZttJIcA2eX9avwN/Wr8DX//qDADuhUHRxcwdO671mbqsJdpUqZgP5cKgsxLr8SXHYE/jIVQNsPpQtAwWZdsFtGevmoW9TYcwZmA+Jg4uwOqPd2PTvhZbeIObtagsLxOv/PAkZGcETYILGax7VhcqW0ssN1F+XXBa8xjEX5irolmfgzQoCnvi82HtoTF2oaAWTxdiKeVYOZVludzzzCZWVOqVQTGqLI/7nZZHPWhkrsbivcpcSFvaI2ghnizZGUGphQ8wnnNds11ZJyO5kZHKiMJpQNMwtDgH//zhSaZiiJYXjVn3RcseXZ6H7fVtCGggljyZsG4fF3R4acKaEPOoBJW9mzkZQVMAlRXBxkZjm8gwHG+fKAyGNG5/ElF4Y4njQ0UeRDF2YD5e37Tfuu5wEgYff/xx3Hnnndi0aRM0TUNDQ0OXrYNlZWUIBoM2K+DevXttlj2GiooK6fmhUAilpaWO59AyR48ejVdffRUtLS1obGzEoEGDsHDhQlRWVnLX5ebmoqqqClVVVZgxYwbGjBmDFStWYNmyZdi0aRPuvvtufPTRR2Z+xcmTJ2Pt2rX4/e9/b2M5feihh1BaWoqzzz6bO/7EE0/g66+/xhtvvIFAfIJ94oknUFxcjOeffx7f+MY3pH2RmZmJzEw501tfBGMVC2hWvibGhsmQaKLxsgG0klTHr5VaBokw6JCfJlH96g2VekFlTHosJYUb1wMxcJ/lBlLVT9tL74/e6uAiuZBl1Gf8NRhgrbJEK51Ms0qRlxmSEn6IDIftkSg21xn3JLrNqvqHCja8xYuPpwEsjfQBSVoCN+x5MUWshhNkxYr3LY69hja7y3CugjDliwRENrJ+44VBu5voikuPxrLnNuJH88cJ7SRKBPC5sFTCoKxfowoWwkSIxnSMGZiH97ceVJKmbJLEqDCoXkc6N4hW2UYJmQ/DsOJscyyJrlUMopZZGbc4tNAUBhMJeWycM/cvp7lDJRCoXDfF6+zCoLIqE9xGMma5mqrcCel10vhAqYCorl/TNORnhZEvWON4Czhw4bRheOGj3TiFWA8Lc8IojM/NoWAAEwYXYtO+Fhxs7eQ22G6t2owMxY2yyQmq0AqjbOMvO0NF7EIhtl8ca27IZ1QWSPZO0HkuqGkIBwLoiMYQienY1dCGu/7+BQAgJ57z7nuzR+OjHY04rsryzqJeGbROFsYhG9+ymEExlCEY0GyuoAA/99JUPjkZdjdRhtYO+RzB6uTWx/h1NB+visCEpkVh7QZg5lqlx+h9xDj3WM32fGRDkWcT5c/hYxATj1XZMxlJ7oUq2xjyMkNoOhTBOkF5ZgrUQpmhQIDbn1ikfcI41vjnLg5rqceYxGOBIlGcfrrClTA4cOBA/OpXvwIAVFZW4rHHHjOFr2SRkZGBqVOnYs2aNRwL6Zo1a3DOOedIr5k5cyb+8pe/cMdeeuklTJs2DeFw2DxnzZo1uP7667lzZs2aZSsvNzcXubm5qK+vx+rVq/HrX//asc26rqO93dDwtLbGEyOLFOLBIGJCHIWu63jooYdwySWXmO1kaG1tRSAQ4CZf9l0spz9jcGEWdjYc4vy73VK/M7hZf9kG1Uwa62gZtFuSrN/s56vqV1oMHRrM6maClTiJOdXDJuaCrDCaDkWUG2NafRNZ2OjC6ESEQt1taOyQnZaafPawwd95kHeD64jG8ONn+PyLVh3ycqnFUiYYcm6i8XuoLMvFW5sPcOU4xtcQBYNJeuDyPmWxoKKWW9y0yRhCm9vlMaWThxWaVlkZZE6fzYf4sSC6iU4YXIDnv3es7To6zirLcjlWUtH11KxfsywCDF2JGWQbuLI8OWnKuIp8M17YltRcpcwRNgy0vZRkxHadZIMpYpRgDVcJeLRvzdxmSuWTUQbbuMqUB+a5Cu8ElYufVYdcGPQSMwTw8U22/KQSYV0eH+hcBwDkZ4a4OU7eLutzKBBAXmYIT1850/EaFnYQjcU8bYid6hbB+lp0M2Z51ADY3PooWNFuwgdU7RGTvrsRBjuj8v4YUZqDLftbTRZwdg5z6W/tiOKqx98zXV5ZO/9jfjVEsCmdzZni3sFpvFAhRuwLauWlroR0n9JBXERpuQC/ts4ZPxCrPrDi3Bga43kDRSUEABwxtAhfxxVF4nqqEuKpAidiCuJ2AZVj/wy4mwdlFjQ2D3IEMh6VQQw033BZXgbqmnmFLJtvV6zbLJRlbx9g9AFnGZTkXTTay69FNvKgBH2hOqcvwrMIu3nz5i4LggxLly7FAw88gAcffBCffvoprr/+emzduhVXXXUVAMMV8pJLLjHPv+qqq7BlyxYsXboUn376KR588EGsWLECP/zhD81zrr32Wrz00ku4/fbb8dlnn+H222/Hyy+/jOuuu848Z/Xq1XjxxRexefNmrFmzBrNnz8a4ceNw+eWXAwBaWlpwww034M0338SWLVuwfv16LFmyBNu3b8dFF10EAKiurkZVVRWuvPJKvP3229i0aRN+97vfYc2aNTj33HO5+/zHP/6BzZs344orrrD1wdy5c1FfX4/vfe97+PTTT/Hxxx/j8ssvRygUwuzZs7uln/sCqCvL3kbD6iy+dInzfSV+KUXLoFMCXhXRRUCTT8i0fYzB76YzJyR0tZK2M75JY1oyN5ZBkdCFudOI+boYqMYxi0vhYdXl7A5EJ1trwRLdO90SyIig1OsA8NGORhurXaJ20pyJVKBn53MEMlG7JpjBqd00biUWc78oAnKW2ETMsTIBvVDi0ga4eCckPw8gAk5A45MpO41D2obMUIDrbyqIJ3LPNN1EPbOJWvFnKqs7rVq8FdX8Ir77shgfGaixJijRwAPAby6axH0X3dgZaA7HRPdoboTjTZOxBdJ2ycASTKtc2S2iBUHx48pNzPoc03U8+fY2AMB+wSIvdRN1sPSo6gB410J1u8g85XKDx67JzQy5ErLc1C3CjC0jz2LcwHwu/YxTyIG4LrixDIp9Ks6JzpZXVo+c2I2NT6rg4DflfOyjc/oZfj2PClZmJ7diXU/sDg0ApSTXJq2PzdNMgZPI40EEiwWU7TP2NVmedyUCG7BqDmbzL31WMkFTF9xjZe+ZCCdWVrG8RJBNW5TZWWZZUyndRCZVs4xQwKxnd0MbXvncSAknvifiemATBmXjx+O+tK+gV+2ZCxcuxPLly3HrrbdiypQpeO211/DCCy+YLJq7du3i0itUVlbihRdewCuvvIIpU6bg5z//Oe666y5ccMEF5jmzZs3CU089hYceegiTJk3Cww8/jJUrV+KYY44xz2loaMD3vvc9VFdX45JLLsFxxx2Hl156ybTaBYNBfPbZZ7jgggswduxYnHnmmdi3bx/Wrl1ruoSGw2G88MILKC8vx1lnnYVJkybh0UcfxSOPPILTTz+du88VK1Zg1qxZGD9+vK0Pqqur8Ze//AUffvghZs6cieOPPx47d+7Eiy++iEGDBnVfZ6c5aA4c5vL2uSS/lxuNpBNoAHh7JGq6HcgWnILsMEaV56KiIAvDii1rjJOVjglYbGMwZkCesl0q9xFaDjvHHUsfuLojLinoAT65tFMqCFV91E3p1JoK7jxa3lf7+FxiTigWhNiRDjnzVO2k7qdhiaVXdpns+ToKg/HfYjFvrGoAMFxyTzsl8XiJUK5IDp5o3Mh+HSzkFZRtBGSg4ywjFOByOolxiBTiu2cRyDg23YYIsc64Up641PCK988lJHZo5OZ91oZ2SHG29NzSXP655SqEliwSN/raF8acpRIAaAwrAAwvVZNPbZHEmQIWMYVKMWFaBiOim6j7OZi2EQCeemcrd56MeETuEpr4WJuCYIpiE3leYpyWCgPzWQLz5Mct4CxcMcUV7bfr547lLIW2xNe0PGFdcJVn0OY66H4DzPqeeW+o3OiY1wtrB5vvRc8IJ+FaJJCJRPn3n49/59tOk867Vd5Z75ZFHsPmPZFkhUG1zjPFj2x+ZczcgN0inIg5mgrZoheG0Xae8EUsLpGl3RTAzHEFeMszaD+H9yKxP4yqAfbYdgDYsr+F+8tALYPUmtgs5IIUXXvFpsmVCc7f+ypcuYmmEldffTWuvvpq6W8PP/yw7diJJ55oI3oRceGFF+LCCy9U/r5gwQIsWLBA+XtWVhb+9Kc/OdYBAGPGjOES3qvwxBNPOP4+d+5czJ07N2E5/RlUy8QsA0eR/DvWeYBqWXfjqm1ZBmO44U8fYc0ne4xrJS90MKBh9XUnIKbrHGW3Lpq+CNhkEiHEL6rTix3yf7FL3MT9WHXzm0CZqwgFPc4np6VaOnW9Zn2EVn1kaY5Nk0nrGT9ITnrhVD6DJLWTCTcU/zRVhYx4ikEWv+joJqpYZN1A9mwGK6xDzuU4W4lUkMW8UaFO03iXKTdCMWDsP6k7Kx1HohAj5qrrUFDSi6goyMLuRkvg7IzqCcc8uMWf/0lMk8AgbtaywhaJjNPeh1rLczJCcu8DCaPpqLJcLu7HOM96JoyMwg0xlNFmdRvHV+Tjtdp9tuPsmZTkypUMbJzT/gfUsat8e4gwSPpIjBF3axmUPTfxrGMqS/Hyp3sc2zVpaJHZF27jfnjXO3m7XZXj9F7Fnyd9l0vzMtB+kCdgoeAI9Vhqifh3VwQywm8DHdxQbe1lioIo77rJwCxpYq5XUYkhludUl+gmyuZD2mcmPwARYphLvDiEwkFNygJq5de0u1/LBE9AzSbK+oEn6LLfq2iVTbTW0f7mUkKQsRqLWeufbW1T7IWscmBeC+gCEY+0acqyGI4kuW1lSi6V58+4CmPOmDKsyCQPM9phJZ2nLqeDBKI5cW53w+5sc2cn11CX4r6Gvhnp6KPfgU6yUWFCp/DCNCuth0yYz67fbh5XLcbhYACZIZ42WjW50/LbyYZ2e71c++60GItsjW4o51nd0ZiOP767zaSeV21saPV8PiJ7mTKwn3RYMYOyzaBbdlJb+4TvotBAod4YW/dOrRw0v5DYJBl7p9MiR0kMvGhIjbrt5zkJvSqo9q6J2iGzRGUIzLI7G6zYTTeuzYBB4MC5GztYBlXPNdGm+p5vH4XzjxxiCu+RaCyh2xc96nYsipu8sGSDJYOYv0t2riz3YKaLfISAO0tmojaK57Lxq6JiZ2Dzk7hRFRVBMtAqKXPuz86eKLRNvM6+WQPsscXsXIoCSV5YEfXETdWtqyd1vXOTv09ZjsMlLMct776vceNXzJ8m27yzrnbDeCz+ROf1/AR9Kd6LyADJ1qP9zXyuV5EAzWyLy7kXsMcMypSBVChi5+0QxpCSdI2ssewclgaK86ghn/cmSPvTSqzWsvdcnCPUrMfO6xZvyWPH7MKgnE3ULuiy8mgqC3cxw7K2WwdlnkyqeYhdJ0v8TttnHhdTA3FKcHvbpMziwjG6XvbVHIOALwz6SBNo5kSlk1QAkhfR4V0TXZZkYJtSGwtegkmM1qsip6DldBJhcNLQIkWZ6jrHCZT/+1vkC4qsjbqu4z+e+dA8rnQnUyxefIxY4phBGnuRKC1DMhslBieLbKLFAgCGElffSuI6J7YpK2TfjDtrp42/ybCJypotSyicCKfVGC7lU4mG1Wibczs6JYIYIzZg19MUBk73RcdKVpinWqfPQXQ9VG3UE/XhUcOLccfCKSbjLZdfSyUMcpsjUWCQx106aY+9rP2yNskUNTJrvCyPplIB4uQyaDuX/5FZZROxiU6K5+mj7TolQZ5QBrphpIySYr4z2SZVNk+PHWj3NhCvnRVnoHRyNadpVpwsdRSWAOPdK0BWjgwm66QQgytz57/yhFEAwDH90rXVaGviODlbzCBRkC0+tlJ9I5JrRWvJrrjgJcb3BYR2MrixDJoxgyyFgJk6iFwrWK90XTeVtjVDeKu0Kl6ZJnZn1rWx8XFDXzvaB8NL5NYiJiSX5trTQ1w2a6R5TCSVovMzhWwN1CRrr86xf7pTHm0nwjL7nXlHcLGfLsZ+ophEmXJHtQ9h14kK3IAmr0dUmtBzdN1+jVPMqex7Ml4B6QLPwuD69euxceNG8/vzzz+Pc889FzfccAM6OuyU7D58uAF7oZ7fsBO3v2gkFJYx3TltEN24KLGXddsBd5pABtmkKj/P+Es1b2EFQ6CTsU+0BIo00tLyBDdRBjculJzAFnA3uVENq5N7Hscm6mHGETeHUV3HxMHGon3nwsl8HSptqSKXIm/94q+RWQadrJJUW+wlkB6Q91cylsGzJw/GE0uOwf2LpiYsnyIs+X1gvuVKo2nuFzv6WzgYUKZkEK1Hqo2324WVbRTe/Gp/QiFGU3x22w5x8+RFuSEXBt0JiLIx4ZaYyknQEONj71hTC0Cd7oEhw4z7sjaCdyyYoqxHhExrnyjPoKbJ50xZGzXhvGkjivHsv83EU99Vs4OKG0U34IQDIfG5F3iJdweMeY1Ww+a56+eOxVPfnYFLiTAhlm26iXoQBvPJ2prI+pFoQz0w7gavC+cHTWGFL88xZjBe9ie7jJgz5l4tuzdWLA1v6BDi/hhUMaZ0rhcVfyo3UZVgOarcWNOpOz0r47o5Y2z3yHDSOLnSJRH7OlUK0HVKPE/2eKlAbx+r7mKonc7ZRbxPZMy46tRRxvGMIJ97UpZAHnB2oc/JCErWBHsZ4vNQEQ32NXie/a688krU1hoLxldffYVvfOMbyMnJwR//+Ef86Ec/6vYG+jg8wCaIJ9+2SARkG1XR9UpWhhuIE06iBdwtU5j4WzCgSe8DSLTI8d/zMt2w4Rl/RcFFpVUTGdxkcFr4rcWFpMCQuaokuXn+yWnVGF6SY2qiqXuLGMuktpIQYTAsFwbFzXK7JM+RisUUAEdi4NU6INuoq2LXnBAIaJhVVcYx3wGJF6fbzj/CdowumMGAaAlzEizIZjUgX4xZW7nvijLdjpV9LKGzppnuXslsStwSyNDmezF0y9oke1/omD2msgQTBhXg9CMqbOfJ8mEC9o2s0xAQx8cfXv0KALCnsV3ZPsB6f557fwcAg+SiUMFa7FRvh4Lswmi38D0gzzPohmE0oGmYOqJEydYKQJoYPBGolclM9J2E94PqmoXThknPCQnvJRszWeEgZowq5RQK5jwd4y2DznHQ/HeaiF3l9mi202GzDFiWMLZmsJ81Mo9ybXEYwEyIqCo3rHOMSGurhBiJlUKVmIzcxW2MKDstqtu9EFR7BFU3M2IYShDzdZwIpTA7jHkTBuLI4UW2WFoZ27VYJ6C2YNHYdkPBklh5lEPCCdjPjL2Uxii6mXdlFkzKHlsmIUNTk2UZfVHfanfxlt2HqHwTFZjiOBCNBoCzskPMG9uX4FkYrK2txZQpUwAAf/zjH3HCCSfgiSeewMMPP+yKTMWHDxlkc4gsTs5tXi8V2MQruhx6cRP1EoMTjcWUC40jaYBw72IQvryNRnkie5nKYkrvuYWwbMUcfOwpqKaR5fNr7bQTkvDxBu43SuMHFeC1H83GwqOHme1SWX5Uz4RuZumGhnNVFLp2gGSMiQmqZXXrNBbDpTQoG3ey3IPJwumd+Ns1x2GMxMWO9llLe0Rw81XXRa/LCPFubDTOyG3+ULdW5LMnDwaQOCUHIBBrCPWq+qpNiC9N1u3ZrWXwELmPm86cgBeuPR45GSFbe1VkBUVCmhFn1177byythKrNgOUGz4RvrwoM9hyou77NvVVUrGma1F1WmubHdk7iNjFLjRdQ0i4vcVP2cuzHnv23mbj9Qiv1CE2PkZcZ5vpCFnsqtpFNc27YRMV7oIq0YQq3R+ta/rs4/th6yNwLRWEqpusYUkQtUeq6RpQYz4yt50xpN0mWH1fjy4vpVtyimItX5bpuWoJJTlmZZdDNvMAUKlQxydyvNU3D/ZdMw3NXH2t7tiqFhnieXelm/KVkR/KYQXvZsnsz+RcIh4JokZdBZEc12mR9lgl+bQojAJu/qKs4e9e9uqwGA3YvLjHsQiw3oPHvSrUguPcleGYT1XXdTIb+8ssv48wzzwQADBs2DHV1dd3bOh+HDeRac9nmic+hwzMduqnH+CtazxIJkm5d5cRFNCcjpHYT9bBJU8UzycprESZOVUJieh+Uup5qZlVpKWh9uq6bOQFb2p1jm7y4iVr1GH8pFbj4DFSbIZWbKBVORE10phAz+LuLJnObE1v74m35eGcDThhTDsC9xUi2Sc2SuKkmC+fE0iptq/W5pT3KxTU6jVkaS6vr/GYkQ5H7ClBvnt0KWpkmO2EUhdlhNLR1KvPK0RLdxIeIx8XNkydhUHKu7N5bSHJ0On418HqLRKkl3LRRds8btx80P6viVyMCiZYTqZYMrFoVDT5gn3sCmtwzxK1lMGGbuuDeySUwT2qOk61/fEE5GSHc9c0j0dYRQUVhlqOChYL9wtrHBCdnNlH+O42jThTSLPOOoTCFwU7GJsqEqXg7YzpH6OJUH1VIAtZ4EuPs+HqsdYvNE6KSQTknETdRXeOPcUIC+dLcLk8twcY33dPIFMeJ3KcZcoQ5z+7+aSktLQ8Wexyu7N5lCkH216tlULYfinHu4vbfVcpw1hfZGZTExc7SapYj5kUVrOtiX8sEV7deYn0NnqetadOm4Re/+AUee+wxvPrqqzjjjDMAGMnoBw4c2O0N9HF4QPZSbZOwcPITZ/ILvji3fL3fOf8dLVrmgsIgox3+uk5ethd30zwXbHjs3mTacxloU6n1kC6+TpsM6nbCLAOjyuzadbfxlsp6yAKssgy62RhTV096v6JigG4kMkMBXDB1qGP7mHvZqLI8z65isv5wik/0CqdxrWoitUpXlucK8aTqugqywgjHY5lKcjO4PuCTzrsjOHG7OWfP61BnlNvkyEDfXfFeVJv4QUQTH9D4vIue3ERdrrb0HXJKcK9iGBbb5NRG2ftdQCyLKiVIMlY0CnYvVIi0vdMSpcHocnu+MallULERdkIy7p2mclHXzfQEyc1x9mOyOe3syYOx8Ggj2TxVWjkrKI2/ZtJ5F2yiTgQyiSBz76Vg93UoEuV+p2sz9QBymg7FOHkxETwFawUVINn5Yh475dxIhH9TMRk/V8bgCsjT9wDWekStXjJh0O52q3rvNW5PJD4HK1aSD2ewvyuysu3lWORJ3ghkZApmKuyJ+7pvHTOcm4Mp2FjqkJDYyN5DkWxKVPKLfU2ZtFXXUPRl0dCzMLh8+XKsX78e3//+9/HTn/4UVVVVAIBnnnkGs2bN6vYG+jg8IJtEZCycYYFRjcKNliZAJkSKcRJ3Odl1ADh2RRF2rbw8XyL7zW05mS7UzUzjuy9BTIdZh4PLnKodFOaiGtPNTZ1sAxOULCReIBM6xQ2GyhWXLpwD8t3l73NaUGUYFmcp5UgkuiAMunEJdosJDm4rbiyDYmxSItbDD26ehw9unme4iVINKreAumyHyz5k532+u4m4P8nPpcKEaHFQtYOPL3VmJKVg7z0jiHA7JviYTUp0JAiDLvvNq3DCxnDNkAKli7nbGCsVWJvYJk7T1EKDdY3K4qMu3/zuorlivK0bsDEuWlu8Qsp8mKCP6RWuWJ/j392xifLfafmiS6WqPgbVePwsTvrCfqdWVp7lUT0fKi2DQbtFh51L1xMn4VEGSzFp7SEsNlT5unFMZYm0rOIcw5OilHhUyL2hRCWQ+rnRMaNy/zRiBo3PmmYXgGRjUUaOY1oGiULHlXtsgnFNx9rJ1QPwi3NrlIpBdrSi0K60Epvyj38/0ZbbmXo+hAIBW/8fNbzYVi49xW5VlTazT8Czm+ikSZM4NlGG3/zmNwhKXkAfPtxAtsmUmei5uCSbG5EbYdD4K7o/JbJC0LKd4zPs14mMfbIyRYiTkpvFigVhu811w1k4yNaC9ozj5p8KaSalt7NmsyvkCjGifRfvURZ7JZ5XSCweojKAYf7EgVwb3XQlqyMS804gI2W96z5ZUDn2AHUbqQBC8zUZ1zjfGHMXBvh3gZKdiBYttVDqrhMPxMkDRpbm4rPdTa7LFDfbSrIUYYMl5qZS4ZfnHYHb/u8zXHuKoTAV57P/PHOCoo3UiqpW2CTKhaa6jkJ0KQesmLJSRcJ5AGhSWDvcgjWRxQzK5izxeQQDmivLCZCcZfDCqUPx+pd1OG5MWcJzrXos5aKlqHJ9OWkf/33swDyTFMUNHGO743+ZUOWGTVSc92m3RxzItAD7vYiPbE+jkaNyQEEmPt/TZHM7jMV0TtAV3fj5uixhHLDGUzgkGRPxUtnziem66X0k7iVUPcPWhl0Nbbj/ta+4NgQU69wPTq7C5roWnDV5MK558n3rnPj5PEusbHyL85S7fYPKTZT2Z0CTWRDt5crWALM8spa6Wd4DAQ3XnDIGexoOYeW72+z3QMZyRWGWIbCSgnMygqa7eLuEDZZZYsUxLLKT0+tZvUw4Zvd0sNVO0uXkJuombj1d4Xna2rZtG7Zvt5J1v/3227juuuvw6KOPIhx2zybmwweFbH5rbrcTadB8e12yDHqgrxbbVy+ZIFRtCAY017E9FPsVTIFOOCIefH7AoX0UKjKNepd1s+brJLVEoiStybjYs7ZFyYbLresMlwidWDlU1rc/LJpmixFLBDOQngiD7hOauzotaThZF1RtFFkLeWHefd30utED5K6PRjvk17u1sDBXRsrmqiyTEwYFjbiiq6jAZCQmdjc+xg8qwKOLp2PqCMMyQOMYn/ruDCw+rlJ6Hc2zVZCtXlOVwqAHy+AASTwxc/ty2nRWStzBvYA9B+YiJ4s5lMWWyjZniSwZqnNEFGaHseKyo3F5gjx6fLnGX4NR2ei3vY3eWUnFd3H5wiM9xTA6sz7zAlMybKL0XFluUopElibmqscENyvmzlqbaQ1OYQ+icpdtxmmaEObSPGNUKVePrlvzo7je1itIvNi9/dcLn5qsqiahimI9zc8K438vmYazJw9GLpkD2DOj/SUf3/I2yMBZBiVeSoDo1qnZ8hYmep9EN0w6HtzO2UvnjsXtF04yWZIZCRhgkfoAVh/Re6FKtUFxiyBVlrP1wE2/vbel3vzMyqDnSXOYOgiDiazm6QzPwuDFF1+Mf/7znwCA3bt3Y+7cuXj77bdxww034NZbb+32Bvo4PCCbRGTxKrnE8iBq/1wJg8zNw6NlkC7WTmQuMpcYlaDpZZPmtCkUy+uMeDctUeFIdKVIVF9MBx5YuxkA8OmuRtt5nKUtCemHumIxyns7KYG8XLpJcusK5DUmjAmc0VjMc57BZFzKvEDVL0510/v/cHtD0jGf9LnT+Ca3qSXceiJaLIS8+5MMTlZO1fxB30WDQMb6zcvTowRGTtbf3Q2HzM+cNdulydi+kVefK7tnNhc4sx13bdyyvndyiZaxzsq0+7K22DaCKXrPqGsja0cyLrTiWFQpEDmQU9ylADL6mrHFeskzSL+rUiVZ9Tm/V+w7UwCIbpZRXXdNSKSR/t+yvwWrPtgJgO+/hy+bjgcumYZjq0pt17BnJaYzUIWCyDgHzPaTx66a06jlT2YZHFaSY7tG3G84PbeQi5hBkfClKEfI+yppu2wNYPcrCpde8JsLJ+Pebx2FX11gpTgqIilqZII29cxicyqdW1XphRLNAWws0HdJZqnlYwb531WxjX0Bnmetjz76CNOnTwcAPP3006ipqcHrr79uppfw4SMZyCaRHEm8Ct0MiK4dbjYoVmJbb6klKKiPvwiZKxe9t1+cW0N+U9dR6IEe3jrH+Nt0yHtqAurekOHS/EMX1d1x15/aPc228yibWjJ7MvZco7puMuiJiXw1TcOJY8tt11JNXTio4YxJgzC4MAsnjrOfK9YHuBNemVUyEtUtpj6XM6v4XPOzQnjo8qPdXewCzrFEimvI8/9sd1PSqUFo35XnZ6JmSAGqK/IxUMzxqSjSrcBBN+R6AjddzuopxuIo7k3MSckrC9z3h6ZpOKV6AEaV5eJIRRwxoI6REjfIUUU6B7dsrbJzASsGyEnA6LowaPxlJBolEgWULYYwEECxJJeh3E1U6IPuI+jlQC1TzOLmxDycqBwvoHOgG8GOjR6Wt67ZwdXX5mYbAC4/diRKcjOwcPpwx3YlsshY5EE8myhNLaEa2/a6LOHsibe2msepQD68NAdzJgw0x4TsmYnr7a8umIT8rBBuPot35d60176+sXFK9yMq11aqnGPzjyoFj3ie+d3hWe8hVmmlm6iQCkIU7hO5iVr9GBcuuZhBZdOkyM0M4bQjBnHhBbIYSrqeUqZZNjfL2qxp/Ge3imjKWCzbC8ni339xbg0KskJYOnesqzrSEZ5jBjs7O5GZaSzmL7/8Ms4++2wAQHV1NXbt2tW9rfNx2EC2Z5VZNejCImqV3Qh01K2HLzdxG93UI9OCqqwRTgKeaMXy4gIrY8BKBJoWwO2kKbroqEDzoSWjoaeabbbwiDTaAPDw5Udj9cd7cNXj75nHqFUnJyOE3198FGIx3fEe3T4jBlNYjVkxjW6FBMpwWlGQhTeWnSy9troiH5/tbuoyiyOFKFAz0HvODAWE8eu+fLpJyAgG8JfvH2dLOSHWR8Go5xPBHIeS3F8iJg8rwt8/24uinLDdiq+4OTEOR+Yy5RYPXDpN2gcUTQoqehEqV3IVcYQMsnmFueU5WiC6yTLYHq/LTXmhoDxm0J2irGvtVZbLCTCJY/GU5QjtUyUWp6ACtNN8w35h8zSLly7LVys1xbU1oGm4+ayJuOmMCQnXh0RuouxZMwWk5XYIs320flk6Eats46+u6zbFn/oaS4C0nhl/zpRhRfjgP+fZ7vXI4UWcMAJYrvN0zW5RvMN8KoO4JSpoP0bhxdI8sjQHX8cTn6vmAdEyKI4d2eOVE8hY6x47ngxBnAjaBywWlj6HiYML8PFOwwOJ3UmexHDAxQN6eCcrCrJM5bZ0viFlsTH87RkjcPH04Ul5PqULPAuDEydOxH333YczzjgDa9aswc9//nMAwM6dO1FaWtrtDfRxeMAtmxqd5N1u5ig0YQLzcq1Zrwf3Gk0Dp6Kimj+nDYotHtLDhkfMk+eERxdPx9ubD+DMSZbPvlcXR12HGXR9O3H3YAg5MCK6QZDUw4Qn2djQNHueIC6lgWRhkYF3tUncPlbnu1vqMTIeS+X2PmmMSDBgX5gZHrzsaKxYtxmXzhzpqlyrTPVvqibSPly+cAre/vqA+d3L88vJ5KnvNU1LqMGlUFGyi6Ab8kQxg5cfOxINbZ2YP7FCYnmSXyQSIHlVFlCo+oDCLTmLqm4v8XKyeYVtvlNrGTSub/MiDAbkZFxu9sqpdxO11hRXLp4CbJY4F+0dV5GPH506DhUFzq5p5jiPL3kRUwBSd5xIdiQjSVHWl8BNlJVhuiMLZe9pbOfeAacYfRUHgBuPCJ3mhpT0t+xenQiMaJ27iKs3BbXcmfFw1AVXMnbEOp0I7JzmJnY/D7/+NTnHnSeBTCEoCpfdpXARc/8B/POhQjcTAmUhIOLaKkNGKGAjfeGEc6nyyfpMY0v7siAIJOEmevvtt+MPf/gDTjrpJHzzm9/E5MmTAQCrVq0y3Ud9+PAK2UQim9DpS10muJvJrEVO13PHPUxkXoTBoKZhD1kYqDDoVI4YiOyGoc6KxXAfxHzC2HL8cP44ZY4kJ1DLINuQVFfYUxmEBWp+r6B9yjZcKs2vauMB8KQCTqCGTldU2fH7y8sMeWYTpfmtnJo3uCgbN505AcNL7TElThheqrYkqhYves9jBuYJMZ/u687PdDfWVX08XBI/43Q9jRlUlZmfFcZNZ07A9MoS18mcRWWGm9igrsCtoDVrtFz56oYq3qkuZhlMZcwg07wz668T6y2DpmkJ3bbU13psoEtQwaIrm2I3jI4yXH1SFc4/yjkPKiuKzU2qXK0Uqjg/N0ikjGDPKyK4iTI27LVf7OPOH1qkngeo1wiFKtG7cY1xUUeUWnPdTWyydYeVR38b6WKelgmR0qTzopuok9XTYR2Xu39qtvNcxwyy5xjjLbxdBR2XbKzQ8UfdcZnSQpauYgRZ+1RzxI9PrQYAXHXiaPOYUy5rAGhoswTA7vTU6W14tgyedNJJqKurQ2NjI4qLi83j3/3ud5GT422j4sMHg+xdlS1AdOKkrjQFWSFX7hS0yPzMkOmS5WWxc1qoZYvosBLLTZJq9Zw2W+Ik46Z9rF1dZbRyIsjh67M24SZFvEyzSSf3ZFyoZONAla7DIf5BRjcuAx1XbjZ2jFmxuT1iumC53RDS+0iFYDFxsFOeQflxGsCfEQwKGwz3baTa2mSEQfdxl8bfqOD+lPA6oU00boWCjmlNU7MGdhcGFWZhe72zq/dr/zFbqRhwswlkkD0X5oLlVYj0grK8DNQ1d5ixVW6tabJNO3OLc0Kq3ESt1BLuhCy36Nb2mgKr8deN0JqscGpcK1QvfGfvNYuBZb+PKs/DB9sOesqzqrIMVjgQebBrPtx+EOPjRDFu5xqpZTpeHhWY3NyCjEBGao2UpFhRgf5kd/+UlB0MuHIrl1kcxZjB7nARBUQCN74ugF9X2OdMibWUj+2Tt+3yWSMxY1QJl2faKZc1wOcrTpXHQW8gqbDqYDDICYIAMHLkSAwYMKBbGuXj8INsopLlM6IvNd20Dy12p4igExaleveS223nQbkLCGCfzAOC618GJ2io6ygTcny5IsdJwjIow1mTB2N6ZUnCYGiqlbVSS0hcez0KVyJkt65KXOuUcNvJdUh1jZt9HbX2sg2OW5cRmRa0O+GU4Ff1LKjCIhxK3i3SrTCoKtKttl7Okpf4OrG/VWyzIUEYTpZd1S0euHQaJg8rwqOL1Z42ThZitzGZgLzvWZzt1gNqIcvtu6QCc+9iqSXcWu1FGnwAJoOkE7oqvKpAGTC7EjMoCsPdOa5EAhk37qw2pWYXPGciAvERe69FApmc+LzjFO8ngg0bXdc5d1LnmEF2DUmz4fKZyeZTaa5YF2WZBDLk+nZJGg1xXnJ6VwIOApBcyHPnoswLmfxfK1WJslmeQOdblr6D3ksxx35q1C2LGUyUvxEwnvvEwYXc73Rukyl2nPIM9mV4tgwCwDPPPIOnn34aW7duRUcH78+9fv36bmmYj8MLsneqUMIct2V/i/n5IPHXdnILoVAlne7wIEA55dhqEOIbbBtOSi3tsMAWZPOvppeYQeoDP3fCwITXicjNDOHpK2e6rk9PYBmkoC4WbiGbcFWLvXgqpXp2u8ngg+UTX0NjNE0XO5drBF14UqFkzAxb5Y8bmI/P9zQlrI8KtzkZIWm8iKu6Q3zMoApdtQyyd4MyEKrIcfjy1e+m6rxAwP69u1FdUYDnv3ds0td7IZCRgeUNG6+g1weA1g5+vr1CkTNRBbb5ZvOB23lBRt1+FslRpqwvRXs2NmQMhZg8B6qrcrr4zJzAimKulG7aKbbHm+cMf67IAGtZBlmeQXB/DwnEUbqDaEWZhPk61C8mtRpGHWIGZZApI2SCpCxfoAgm1DmFvgD2sRB0QY4ju+6gJHeiyI4MyBXj9B5ZHmKaX1esuyugz66yLMdWPx1PNOUWJX4B+PXNy76jieS3lrrt9lNh0PNSdtddd+Hyyy/HgAED8P7772P69OkoLS3FV199hdNOOy0VbfRxGCCRSyhDHUlISlNPuJ2HuI0tKV6mkVPBqS5xHjUsCdZ3p6SwFKImywubKLUM0lQW3Q3WpFc+32sG/Mu0ltzkLaHOTlyPZGy4dBOtKs/D3RcfiSe/M8O1G4umGCMqUM3toQgTBt3VxREipWBhyQxaAllxLr8pUwlMWeEgHl08HQ9eNg2F2eGkUylQinAnUhRVH7vdoLHrIwJleiK4z1XJW7a5GMo0dBNyso47gW1yOhnLo8N4FHOT/cf8cV6aaHM1U1Hxq67j6p6XuO7ucmETQRViLD9kMu+xLRVGKiyDLOm8i9Qh4jvpjWDN+VrWHka+ERTGwj8+28ud39KuXpupm26Ri1y8AFAezykY0CxmVbfPLF9igZJdultBIEMRliQ5l62f4lhwG+spvisqTgXxPFk4BT2FKflENtFUzIWsTD4lUABPfXcGHrhkGueyKcaY02tEwkAntHVY+yfZuAhy7K/pN/8nC8/C4D333IP7778fd999NzIyMvCjH/0Ia9aswTXXXIOGhoZUtNHHYQDZRCJ7EanVgr6IXskmAD7fjpc4O6dJT2xHZigg5IOyfnNy97AlXHYlDBp/mWXw/KOGYGACprmu4JN4bNFT72wzj8m0llQAluWOTASxv8WcUE7napqGMycNxkwF2YYMTguq6nx2CdNqu10jvNblFdQyKDIEOlV3wthynFw9MH5ecm2kG6dN++z5uRKV6T7FCb8pcSqTQnzH3GzARTbQT3c1umpjT0KcVpzuiwrQ7D1lyiQnYZwKzqcfUeHIcChtY/xyVlelA9ERhWxNcEqRkGrQXKtsXvpCkms1EcTb6lbLYLws3bQMJhaAvDDSJrpWfM+YQpeNIVlcGIVTmg1WdEzXhZg99eafjXMj1t2bMCgmpwfkc5uqdprMXsaU6SZ21m3M4Fd1LdxvJbn2tgPu3ERpG0viSj5WFxtP3bV8bdxhyRFMiUj3TcGAhhmjSjFH8Hq6+ewJyAgGTDIY2k+jHLy5RNCxc1BiUeTCBg5nYXDr1q2YNWsWACA7OxtNTYbb0aJFi/Dkk092b+t8HDbw4grIUEryLHlNUA3wMUZehEG3eQZDAS0eM2j9Tv3dnQhNbEyHLoUSwFrgUq21miJJnC2rM+TSNVYFmzufw+bAppVOogu6kjqA5Zdyq9mnm4ZUCIMZDgQ1bp8FbwlzXzftgxEOyhpVX7kdvxarnbeYQbfPiMYWBzR+szB5aJGrMnoSorurU19QxQqbbztdCAuyfGleIHoxJDN/M2R5SKXT3bCEEavfpgwr8lyOG7KPZMHKFmMG3T5fwNu8nSi1BFOYmvHVGri/IjodrDqi1ZMh5nANFbjaI4lzalLIlJ01gwttx2R8BwBwzSljzM9MKM3KcI5RE+GYNoNcXy24eatDK0SlmPM5ImGOyArbVRxbZSlu2VOkj1P1rCYOLsQHN8/DT06r5toHeEv3QpWKMkuwLPVFf4DnWbyiogL79+8HAIwYMQJvvvkmAGDz5s2m5smHD6+QaVgSTdCnTxpkfna/cbQ+082jKkmstAyHt4YumswSQ1tWmpeJ/5g/Dj8+tVrJXgh0zU2UJcV1S8CRLKQbM4mFgLKJJpODy21sFyDZVCUxWcuC5ROBDaXPdhvKMbebi2biPpmKx+V0/24Xb1qEVxe4hy8/GhdNHYqLjxnuqnzuuGdhMGY71h0QrbeU6TNV7oddgRcCGapYMS2DLtxE+dxoyQuDzIvB7bwgzvM3nZk4CXoqYcasxXSz35KZ4+yWwW4UBuN/mRJjfzzmy9FN1DaPuq/PbhnkL1aR5ajmFpVgZVxr/KU5Ro3v6vbR8Wp5crjrb5k3j2z8qerPlaTboa78buDWoiue5yaPqlgGAxc6Ef+8L07uctv/fcYd7yoWHj3M/CwT6p3GLVXccV5YHuYoOo5OramQ1J9aBvDegudZ/OSTT8Zf/vIXAMAVV1yB66+/HnPnzsXChQtx3nnndXsDfRwekGkeZRow+qLm0DQNbq0cZCKhsXXeGDjdaVTZRktMavq92VX4t5NGwwluc6BRsEWJ1bvzoDM9fVcha5PMpSeZzaIIKgDualDflziOxL53g2TcIpmVmjEx7m9udzrdBE07kiidQFch3oqbuDoA2NNEg/K9LX4njRuA31w0GfkO6UpUJbqOGYyfxsUMduMaTduxo74NEwZZ6TrSUTFsixl0eM4jS3MRDGjIzwqZm3STYMShE3lhMAnhJ96mdo+WQXre8JIcz8Q13Q0251ICma4Ixwxu3003sNxEjb9OnhUMXckzuLeJj5dLJJSwe1fNLZfOHKmsi7rpUoIU0SpGwQuD3iyDMkGf3s+iGSMAAN+fXSW9ns4dDNSVP1Fo2+ShdiskhVM6BWWcvXBLsvee85YJ8Epn2TldAVWSs1jicuKe63qvJ8QZugW1acmU2zxLaRouAEnCcwDP/fffj1h80rvqqqtQUlKCdevW4ayzzsJVV13V7Q30cXhAGqgrOTYgPwu18ZiMUBLkG3TBoZvHPA/EJsy1RAaZMDjMZTwjhTjJuGMTNf6yM4cWZyvP7Q7I2iSz2tF7cYrlcKwroAHxbneKgxQXChnldCJwlkGX17Dnzu7Obawmtd6WS+JRuhNiLia39za4yBpHqRB+1GyiLoXB+HleYwbdggpTI4SUDunIJmfPtaluY3FuBl645nhkh4P4xv1vADCSccvKoejqhsh0E2XWNI/PWmxDb4Faprrint+VGD23ZbO3g83bmQ7utTY2UQ/tEde7RIIlK1rstjOOGIRvzxiB6ZUlyrrYva3fehDrtx40rps0yHHNDcZDN3QdeHdLvXHM5f0lSjVww+njMW/iQBw9Ut7m8vxMrL7uBI7MxcnTRURhjnN8LL0Ntx41blyUOe8QRV+lwi+QpZ5xm6aIgt5X2MM7mYiZnta/p9Gd0rcvwPNOKRAIIEBWxwULFmDBggXd2igfhx+kjJGSF/iH88dhc10LrjppNLeR9uIqZMT98G5l1Jc/EZwC2ulEsSvOKHZqTQUm/6sQRw4v9lAHv1C7uT+LYt+YlkXCkO6GrE2yY/RexJxTbkH7tVxCv23Vr77OLZLZiDFtM2OlTcbtrTg3NUQYl80aiddq9+G8KUPwtw93mcfd3qdT3GF3QEkg49oyyCxaxDLY9WaZEHNcUerx3nATSsTI6ya/GMW4uBVFjAFyjo22Prd3ere+s35jlO+uLYOkTengoUWTnh+Iu1+GXVjeRNhJPLrcNKvs+F8WxsOsLY5uwB5IiESI66P4bEVmR1nydcBIr5SI+Et2CxMH261vIphOcnhJDrYeaJWmjJDBKek8YLgpHj+m3LGMcYLVMhDQcPbkwdiyvyVhvGlWgrHF5cATnllOpjs2UZlVmo4V1bjxwtjpFkx5TIXBPY2JmVoBvi+2OORMFcH2hyrQNfvLvd7JotIVSeUZPHToED788EPs3bvXtBIynH322d3SMB+HF2RKK9n7OGVYEf71k5MBABu3N1jXe1isggENsailyf3L94/jKIoTodGBJp9OQOPjLiFZ4SCe//5xrstPFmLy7VTH0rjt83B3WQbjcNqAd4eGPZlrmPDHiIhc0/n3AE31LWdPBABs2HaQO56Ma7XbfJ5eoCrTrUBtuommKmaQlJURCiDUmdrckImQyA0x2dQSFgEVc91Un0vLPGaUe6Ze63rjLxMGndIHyNoIJEdG1d1gzdF1Ha1xKwazZngrJ4WWQea1EJ96mVDo1g0Y8KZUEwUmcV4TQzJUbqJu+kB2zkQJoYuI/MwQmtojZhhBhSR/pQyHJCmonPL+ucVd3zzS1XmJ1k+ZOyeDyhLsZr6gz0Y1FtwK1G4wuDALOxsO4YghxrOkRFfJrFvHVZW5rjuRTJuMt1FfgOe7evHFF3HJJZegrq7O9pumaYhGvU+EPnzIJphE68/AAstC5D0pLnEp86jIzXGwuNF2ZIe9a4i7AnHzluq9kthv5x05RHoe55qbpPaQ2wS6dF8DknNhSyZeh9XLhEHXMSg96PYmLvpuxwefZ7A7W2RAtYnwahmkeslujRkk9x8OBno96XAiJY8tR1ySsZdu3UTdxKDZ6zKuZ6mCZJvsRPWmA3kDm9uiMR0F2ca9JDPHiV2diltjgoSVF059blfYRBPFu3cK3iGWm6h3AVTWLDceMQFzvo57crh8j2WCQE8ySibqE86NWugcul+iEPtQHjNo//xf5x2BG57baB7vTv7I+y+ZhnVf1uGcKcaegsaAuhU66W0kE9eswkgPaSr6EjzP4t///vdx0UUXYdeuXYjFYtx/XxD0kSxkC3sibR2NgfLiomALmHY5mTPK40tnjVSeQyfSnnYhSKV22U19x49JrH1zovx2glthUPwpmT5IxuIgssy5TttArkv1piJ5IcE6z4sF3S1Gl+dJj9e5JOFhGyBmcdC07mX5pONte31rrwskicaJSLzltomsHztcuInS+/YS8yRezwQnt3liOetvGsQMsj461Bkz89YOLvL+jvRIzKBuWAXZFOyFadiLwjRRjKDo+mklFncuRwZZP7lRToRMYZAp79zdoEwYTDVrNwB8e8ZwaBpw5YnOxHO0y0RFqMoy6DW1BPtcKQhFRTlqkjCvqBlSiKtOHG0+Szqfu93riR4dbuEUBtSf4dkyuHfvXixduhQDBw5MfLIPHy4hTvyv/+RkxwB3gNcAtrnULAN2DZbbhffRxcegvrVDmniWgU7AToHvqYC4uKfajUp8ZiNcJI72QtTD1UXdVFLk3iQrw63oaov5SaLelFsGPcaSya5LhcCq0tpS4honsCZZFo/ubSN9luMq8rmYlXSwTolIViFiCmguEnE7Udi7qiu+3zI3di6LyM+0NpzpkMqKWds27Ws2Y8GSeUfsMYPdN65YUTGdX/vc5suVfXeCeP+iW/Po8jyU52eaqQnY6cnkQZX1kxsrUEAQBt16kMj6oSdmgFvPrsG1p4x1jJcH+D4T+0YlELlREnIEMooYz2QVvV7hVnGUrEt5Os7pPQHPIvCFF16IV155JQVN8XE4wx48nljLRCc3L5ZBMcG8l02xkyBolGUV1h0pFbzAvglMbX3iBOukEb/pzAmYP3EgTqsZpDzHsS7XlsGuC8TJrAWb61qSqpcy0zY5xKJ2B+waYLdCAvmcgkGlep7uU0vwlsHubqJI186IoVJRlxvQ+mXQNE3q1pUIQVs/uhMWuuImarqkJhEHlA7kDUwJObo8jyRzT4ZAJjlFjauy43916CZ5jFGH0zzKf/cak+9UFgAMIl4/qphBd5ZB+zE36y4TWNkzcyvAy4TGKcOLXF3bFQQCWkJBEHCO7VMJyfaYQXfliu+9l/QNyeCebx2FOeMHYMnxo1ydT9vshfUzDRwOegWe1fR33303LrroIqxduxZHHHEEwmF+037NNdd0W+N8HD5wMyE5wUtOvZLcDJP5DehelzKm7QR6Pp7IHhOW2vpFwcApVuOK4yq7lBMs2ZjBZIL7k9EMThlWhLc2H1C2Q4XSXGuBp9enAmKL3A5P2h+psAx2ObWExm/svIz7rHDATDytgmgZra7Ix9ov6ri6exKjXMSsMJIswH0b2WkdLnL/0X1fInZTGWzPzOV1dDN+RIKcaz2BkjgDcFTXTZfX7nhHunPuNp+/LqRfcdi724RTT5ZBZzZR8RgrW5Ql3vhqf8K6ZP3kRhgU34lEcwCDTNA/MgEDaE+C3rroZq/qFzdCuMxNNDeDX+/rWzuQSpx+xCCcfoR7ZTJd+kcPcB/n990TRuPOl2txvoIDob/C8yz+xBNPYPXq1cjOzsYrr7zCDSRN03xh0EdSsGsTvS2GXhieUhmfQf3mu2vjLE66KiTDxtYViMJnMhYCt3BL2uEmGD4RknlsYg4/t5unnlQYiG7XbjecbgXxZKFqhts+NIlPPAoWgHdXtGAgwG2qeiNuzc1jM9rsTThmz5ZZqN3GlCWVZD1eNosBdM2+m2YEMmz8xGK66SaXDvkPKSw3UZ13E/XQzhyXa5CsXNn4458j+8uf54aVVXYLbtZd0cLnNsxELPvKE0ahKEHuv54E7cPcDH5PpIrtFbtL9rxkbqLiepLqvMZekayb6JUnjkLVgDyTI+JwgedZ/MYbb8Stt96KhoYGfP3119i8ebP5/6uvvkpFG30cBujqpirHgzAoTujduXYXZFnCYHcFlk92qXncKuTSSfWeRHxmyRBJJFOXp9QSSTQpmU2meO9u4yfoWJwwKHF+rK6A3paXsZHqmEEVvCYiTyZm0M25tB0HWtp5YbAX9v1u2hyUbLYT4eOdjdz3A81qTT9VfiQlDMbbxCwybt9TanVKB5mLjb0YsQymnzBotEcHXLuJishKEL9PQV3fjXrs53y2u8nWDnE9cZPuQbZvcDMeReHgxAS5Ac36hOumKZLL9xZo+0S3UpWXDG/1S1wuO0dU/sa8pxtNKTRBiecWWeEgzpg0yFHIf+iyo5GfFcJ93z6qS21MJ3iexTs6OrBw4UIu8bwPH11Fhy2Oz9uC6oVMoKtWSLdld3XjXFFgLIaJEtEyjBnIszKm2moh5otK5SaI5lfqiKpXna5QojPQS9zmDBPzP4lxqSrQ9v77vLGurkkWybJgdpUsJBE0hS0v2aTzhyLuyaRmVw8AYOUElZZP7rk0L5OLvekN65QrYdCBSEKFI4XYpyEOmv48YnVIpgtYonrLrd6l9bKX+14E6+eoDkTju+GeVJi4AWtNTHQT9TIHeLgn5jrrVM9Rw4vNzyytSDLdJrvGzRxFzynKCaPQJROmaFFMs0fNPSdxHKrGpZt1gVckMssgLwOMHShnhe4t0D1ld+upZ1cPwIc3z8OpSXIgpCM8d9Gll16KlStXdlsD7rnnHlRWViIrKwtTp07F2rVrHc9/9dVXMXXqVGRlZWHUqFG47777bOc8++yzmDBhAjIzMzFhwgQ899xz3O9NTU247rrrMGLECGRnZ2PWrFl45513uHNuueUWVFdXIzc3F8XFxZgzZw7eeust7pzdu3dj0aJFqKioQG5uLo466ig888wz5u/MjVb2X6zv4YcfxqRJk5CVlYWKigp8//vfd9V//QVutInO17tXS4l6jO7cU3B5frqY2+bebx+FxcdW4rsnuAuYTjaPXLJoFghPUhmjSMlV6lvUFgubm2gSqzW9j71NzmQdDGK8pJPASkEX6FS62QLyuA+v1yWTtzERdAVnq/uYQaE8D6R2N5w+HpfNGonfXTTZ1fm6zlseesMK5MpNNAnLoDgmnISaTJJDVVQKuQGL2WZEYW7bmG5uomwticXS1zLImqPrOqc0TVU73YRhUIVKfWun8rxEkK05mS7y+9J795JKwKZITtNnDdjnatXzlgl69nLtCkGRGdwLo3tPQBaX2p1INSdDT8NzzGA0GsWvf/1rrF69GpMmTbIRyNxxxx2uy1q5ciWuu+463HPPPTj22GPxhz/8Aaeddho++eQTDB8+3Hb+5s2bcfrpp+M73/kOHn/8cfzrX//C1VdfjfLyclxwwQUAgDfeeAMLFy7Ez3/+c5x33nl47rnnsGDBAqxbtw7HHHMMAGDJkiX46KOP8Nhjj2Hw4MF4/PHHMWfOHHzyyScYMsQIGh07dizuvvtujBo1Cm1tbbjzzjsxb948fPnllygvN1wKFi1ahIaGBqxatQplZWV44oknsHDhQrz77rs48sgjMWvWLOzatYu7h5tuugkvv/wypk2bxvXZ7373O/zmN7/BMcccg0OHDh12LreDCnkttNcXzYtl0E2Ae7IIOWjmvOLI4cU4kmhQvdQNpH6zRJOvuo1rTBZF2WHTilA1QK2BFAXirj7bMQPyE58EYPygfPxto/WuT3ZJbkEXqVS62Rp1kS8euoU2q9AFy69XtLTLNxFuu0Mc517yXVUUZuGWsye6Pj+m69jfTMmnXF/abXDzXje0WYmZk2GNBZw3UJmhAMrzM9F8KIJhLqneKcYMzMPne5oSxgx+94RRuP+1r7B0rmE1p7HhrQk2n27IgboKSoTDmFHTzjLI3ERtlsFU1ef8HeDXYJZnVBwDi10QjsnGjZv+5z143M+7PZ3L1yu+JqzWomuk6j45JaGiK+g5jfG5RXTHTTclCF0HUp1mqz/AszC4ceNGHHnkkQCAjz76iPvN6wb+jjvuwBVXXIElS5YAAJYvX47Vq1fj3nvvxW233WY7/7777sPw4cOxfPlyAMD48ePx7rvv4re//a0pDC5fvhxz587FsmXLAADLli3Dq6++iuXLl+PJJ59EW1sbnn32WTz//PM44YQTABhWwD//+c+499578Ytf/AIAcPHFF9vaumLFCnz44Yc45ZRTABiC57333ovp06cDMOIp77zzTqxfvx5HHnkkMjIyUFFRYZbR2dmJVatW4fvf/77ZV/X19bjxxhvxl7/8xSwXACZOdL9B6Q9INgcag8rVTAbbpicVzG3dXK6rurvBRdILqCUr1QvBhMEF+CJOJe8lZtBNu8ryMpUJzkX3TxVEWm03ORcBQXmQamGQkn15uK4zavXB0SmIkbn82JF4tXaf7bhXFkyv1yWDgqwQ8olGvFfcRF0MkwunDsUz7203znfbj8KocNpUa5qGF689Hu2RGBcn7Ras7M64R4eqiT+aPw5nTRqMCYMNN15KZNKeQBgMBwI4hNQKg2x+iek6Nu5oAJB+FgPWHJpaQtNS1043AhP1mmHTHj3vtvOPwEljE8fxJesmmqzrezrktnTC6AF5+GC7MQ7F91d1n272LPTSQST/6/s3zcWRP18DABjiMi9sT4EKv+kmqKYjPAuD//znP7ul4o6ODrz33nv4yU9+wh2fN28eXn/9dek1b7zxBubNm8cdmz9/PlasWIHOzk6Ew2G88cYbuP76623nMAEyEokgGo0iK4sPTs7Ozsa6deuUbb3//vtRWFiIyZMtd6LjjjsOK1euxBlnnIGioiI8/fTTaG9vx0knnSQtZ9WqVairq8Nll11mHluzZg1isRh27NiB8ePHo6mpCbNmzcLvfvc7DBs2TFoOALS3t6O93drANjY2Ks/tCxAnLq8LVbQLMYPduSbSsr2ku+gO2PswtfVR95pUCzJ0w+m0SU2G1Obhy4/GT//8EX586jjbb24XEdqmi4+xezWokKy7UjJIVjlA3QCzHNKHJIvjx5RjzvgBKM/PwpNvbzWPu+17UYhJxbC/4fRq/P3TvTj/qKH484Yd5vHe2GS4Ee5KSdyW2yZ6dbEuTZBz1QnMatGZIP1FKBjgUkjQdSGRK3ZTe2rzdgIkZjCmo2pAHnYcbEPjoc4EV/UsqGWQLZNe5gIvTKKAO8VumIZTxMcCPa+6It/VHkDqgupCW0JzVIrEa04Q5790Ew4zknBhp92ljhm0jlMX3+LcDPz6gklY+e42/PjUao+tTS1CaRZfnO7oNRaYuro6RKNRDBw4kDs+cOBA7N69W3rN7t27pedHIhHU1dU5nsPKzM/Px8yZM/Hzn/8cO3fuRDQaxeOPP4633nrL5tL517/+FXl5ecjKysKdd96JNWvWoKyszPx95cqViEQiKC0tRWZmJq688ko899xzGD16tLT9K1aswPz58zkh76uvvkIsFsN//dd/Yfny5XjmmWdw4MABzJ07Fx0d6tio2267DYWFheZ/J8GxL8ANo5UTvCSdF90nUkUgs7vRXbxZd0EUhFI9ATaTzVaqXaNaSF1OsZhiM9wsiDVDCvH8947FrNFltt/cdiG1kp7hIRcStTx63XR5BR0PXrYwRwyxNuPJMEcmQjCg4YFLj8ZPzxjPH3fZ+WKMUCosHt89YTRWXjkTuZkhrl29scdwk8+L2wi5jr3sOc8CtqFkAl0yVTUdchb2Brlgo+wqeDZR414GF6aXhYR1bUzXk2Lc9fpo3MzBVHnI1o5kXDdlt+FmvE8dUWx+rq5wFwoAAIMF61dBCtzmuwLah41tzkqJ8+J59OhYaFYoULhYROHZLDh6GJ79t1ldUg6lAm7TUfkw0OuUoOLCreu642IuO188nqjMxx57DLquY8iQIcjMzMRdd92Fiy++GMEgvxmbPXs2NmzYgNdffx2nnnoqFixYgL1795q/33jjjaivr8fLL7+Md999F0uXLsVFF12EjRs32tq9fft2rF69GldccQV3PBaLobOzE3fddRfmz5+PGTNm4Mknn8QXX3zhaIVdtmwZGhoazP/btm1TntsXQF/WZDZzWS6Cxq26+O+pchOta5K7HqYKqUyZIUNxCnIqqpBNBCWnutzkuPICt+7HdIH00hd5mVYfpkLQokiWAHrMwHzcffGRePrKmd3bIAFZgmXUa55B1ffuhts0J6lCJJpYlKfj0W0TxfHRVQIsJ9je0yTsuYmuSAXZkQh2H51RHf/6cj93LF3AxiiNGfQyF3idQ8XzE+UZZP3FpwJIToHhFsmGOBRmhzFnvGVscGOF7ElwniYOe6K8zBBujCvf3PRhqknEUoFUE8j0N/TaSC4rK0MwGLRZAffu3Wuz7DFUVFRIzw+FQigtLXU8h5Y5evRovPrqq2hubsa2bdvw9ttvo7OzE5WVldx1ubm5qKqqwowZM7BixQqEQiGsWLECALBp0ybcfffdePDBB3HKKadg8uTJuPnmmzFt2jT8/ve/t7X9oYceQmlpKc4++2zu+KBBhhVhwoQJ5rHy8nKUlZVh69atUCEzMxMFBQXc/76MZNjvAOAHJ1chFNBw7Snuaflrdzdz31M1T6TadVKEPcdeaidASiaSyo0jwLukOS3e3S1Qud1rHGyzrDUejNSca2hPsol6Mg0COHPSYEyvTG1OrVAwwLk5ubX29zSpA7WY9QYxgRuLFx1Luw6681DwwibaVXSH4ipRPO/B1tS7a7I+o66G4TTbLLPHGkvSTdS7ZTDxWr6rwRqTbCw4MWG6qcsLwlzMorcyZldbsYzpKvgD9hQfFAuPHmauqfQeCrLkkWOUrMkL4U5vgosZ9N1EE6LXnmpGRgamTp2KNWvWcMfXrFmDWbNmSa+ZOXOm7fyXXnoJ06ZNM1lNVefIyszNzcWgQYNQX1+P1atX45xzznFss67rZpxea6sx+Yv5FoPBIGJC9k1d1/HQQw/hkksusbGvHnvssQCAzz//3Dx24MAB1NXVYcSIEY7t6U+gmwMvmsh/nzcOH94yDzNHl7q+5phR/Ka2O93K6AYlFWQbTuhq3KX3+gLSz6mpy7qX2j1Nrs7rDrgtjQbP5ysWVBnCoeQsismALvqqdA69DX5j4s4FK5UxwDLwsSiprUuGkS7Jiczzy7ydzxDxotXwCJurfhIdmUhZsGCaEToxID917msyYSDNwsjIGLUIZDwJUR4fjZsclzR3rkXCA9uxROiO9897TmPrc7oJ/rTfnAQgul7Re1AN3RKSgL2vWAbpGheNpZZIqj/A8w7utddeQyRi9yuORCJ47bXXPJW1dOlSPPDAA3jwwQfx6aef4vrrr8fWrVtx1VVXATBcIS+55BLz/KuuugpbtmzB0qVL8emnn+LBBx/EihUr8MMf/tA859prr8VLL72E22+/HZ999hluv/12vPzyy7juuuvMc1avXo0XX3wRmzdvxpo1azB79myMGzcOl19+OQCgpaUFN9xwA958801s2bIF69evx5IlS7B9+3ZcdNFFAIDq6mpUVVXhyiuvxNtvv41Nmzbhd7/7HdasWYNzzz2Xu89//OMf2Lx5s81FFDBSWJxzzjm49tpr8frrr+Ojjz7CpZdeiurqasyePdtTf/ZlcHE4Hq/NyfDGgyQSdXTnho66cP1wfmqTiIsIBlN3XzKEe5BNlJb/9uYDyvO6XQB2WR63CHvoC6dYjO4GZxhMsw0rA81VFQ4lZx1ItWWQp2LvuY3R01fOxAVHDcWNZ05IeC7Nu+p27yb2W2YKPRvEDWUyvZhIVv3ByVW44KihWP6NKUmU7g6yx59u+daYC66RdD6eysPDuPUSjw+4y1tH3f7ZfEmJd9wqxsT5/rbzj3B1HV2nva5dXGxjD3v/JAKXh1NyXw9cMg0Lpg3FwqMtjgkullzxqOnSlG6usSpkhqwx1unCtf5wh2c20dmzZ2PXrl0YMGAAd7yhoQGzZ89GNOp+Ily4cCH279+PW2+9Fbt27UJNTQ1eeOEF0yK2a9cuzlWysrISL7zwAq6//nr8/ve/x+DBg3HXXXeZaSUAYNasWXjqqadw44034qabbsLo0aOxcuVKM8cga+uyZcuwfft2lJSU4IILLsAvf/lL02oXDAbx2Wef4ZFHHkFdXR1KS0tx9NFHY+3atWbKh3A4jBdeeAE/+clPcNZZZ6G5uRlVVVV45JFHcPrpp3P3uWLFCsyaNQvjx/MECQyPPvoorr/+epxxxhkIBAI48cQT8eKLL9qsiP0ZPRmHI7rjdacgQzcCFQWpJzCgEDWBqe5HygiXauZUqr1MdWwdxY56d0xzyQarF2VnICMYgKbxG6RUoC+4ykwYVIBPdhnMyG6F4562DAZ7cK6imF5Z4tpVdyjR/ItKIhXEYZtKt2XqJggkp8SJJRBSinIy8LsFkx3P6Spkz78zActpjyPeRF3XTSVBQwJyEQqviiMuhY3isdL62dzZ1mGtnUU5ahdHClr+0SOL8c3p7picjxhaiL9/ZvA/eJ0XqZt2uuWUTLSPmjNhIOZM4MOw6D2o2FE5L6A+YhmkPBKlee7G0+EMz8KgiuBl//79yM317o5y9dVX4+qrr5b+9vDDD9uOnXjiiVi/fr1jmRdeeCEuvPBC5e8LFizAggULlL9nZWXhT3/6k2MdADBmzBg8++yzCc974oknHH8vKCjAihUrzHjEwxF0v5Jyi5bNgtZ9FdLJtKfzTYl7vlRv/qlWtDyFrlgA/4xERrdUwm3upGCSOY2yM4L4v+uOh4aejRlMVz0pXcDdpAUBetcymK7boowk3I/Ffkvl/CW+V0mxifZA6ohEkL3r6UZjbxLIkM9emujVFdJNqgL6/JkAQ9mUC12ydCab15fuAbwaurJJeol0E4y4eGaX7z09T6Vfoeekm2usCr2ltOurcC0Mnn/++QCMBeKyyy5DZqa1+YtGo/jwww+VsX4+fCQCr01M7Yu7ua6F+96d1Xl1qelO1AuECame/yJEA57KuByAj1+68Qy5hT0VcJtXj8otXoXw0eV5ns5PFn2BUe0Lkv/LNYmEjR24O1tkBxWu9jX3LGOwW9DNrtvxKM67qXT97g5X/XSwysj6aH5NRS+0RA3WQkogU+YhDUBjghQeIviYQfk5VFmxp9F4h644rhJrv6jzlKeVlu9lw9+VtAMThxSiuiIfxTkZGJjfs94/iZCMhxV971WkTLww2DfcRP2k897gWhgsLDRyTem6jvz8fGRnW5qdjIwMzJgxA9/5zne6v4U+DgskQ4WeLCYMKsCH2xvM792pNVLl6ekJiG6pqdaGFRO2slTHuzWReBIvZEFdhXvtat9aeNItWTLD2IH5eG9LPQAg12UssCjspFqZROPxRiVJzpJqUMvKARd5CQH7vJvKYWxPTJ6Em2gajuFpI4pdEx/1FNjUpOu62Wdenq0TK6UMmgtrHbUujS433qFR5Xl47UezvdVFbPNeliDq1eJ17OVlhvDidSd4uqanwAu53q9XvVG03HSLk1Qh2Tj+wxWuhcGHHnoIADBy5Ej88Ic/TMol1IcPFYIuXEu6C+JmsTvrS3XclxNsSedTPGfzC0Rqn1kWCQbvyQB2t2OjryW4Tb9ttIFWEjdUmJOebKIF2day6TYer6cxgzAmJ0o+zWDP15i6jrTnGfSOXnTCMCFaONPx3WcCk04sg6l8tpy1TtEf3WW1obn0vNxTRhdSS6Qzuuwa6cZNtI/0F7cm+26iCeF5Jbv55puRmZmJl19+GX/4wx/Q1GTQvO/cuRPNzc0JrvbhQ47mdmsTmOq5xp50vvvKzsv0HIbbbehpApmedB3JJf2ayN2xO93H3HYhxzDXBxbLNDSqAEiOAtymBEk1ARUZ6+m6MaLae7cpIuwxg93apAR1pWc/JoJ4H+noQseaqMf/AamNdXWTZzDUTfNlKEnhZ3+LZS3vT4IC7YNkhFyVtZ12kW8Z7J/wvHPdsmULTj31VGzduhXt7e2YO3cu8vPz8etf/xqHDh3Cfffdl4p2+ujnKMm1rACp3hik0q2s1KNLTXdCnKNT3o+BxIt+d8HLrQQDWrflSNvX5C4mjOsLf+FJGgdavCcKtxPIdFdr5KBW8L6wMXLr5teTRDx2hVzffGfEdz0db4OtA7GYZU31sjZ4vSU3hCScm2aXhEGrHC8z/mAJgU1/gJu0Hk5QrZuUCyHdSHNUCHfTGDtc4Hklu/baazFt2jTU19dzcYPnnXce/v73v3dr43wcPtBcaBO7C3RicMtY6BbfmD4cpx9RgV9fMKlby3WDnt4U00U/1RZRL7fSnRtLt0IlrbE/aZp7Gsm8jjblToo5Pun4SmdmvV9fOAlzxg9wTbdvjxlMpSth+gtRbiDOsTvqU5tiJxmwNuogMYMe3jOvajX6LFUpLDiFShcWqiBNmO7B3YFj3eyrg0+CZkL2kyoBiIZspDP6mrdOb8PzDm7dunX417/+hYwMXts4YsQI7Nixo9sa5uPwApd0vgctg90dfpYVDuKeb03t3kJdojtIGbyAamVPGFue0rqOGGoQWJW5yBfUHUmfBxZkYk9jOy6ZOcLV+VRoDKaxgMCQrm4zjFnQC8R3ONV7Oy7nVhonYF4wbRgWTBuW+MQ47LHU3d0iWnbPKq5SBfE+Jg8r6p2GOIAmnWfyUioVJrRPVLl2OwkJU7AL7xDd5HvJdUurTNe5MBkMKyH5RbtxIqTPMZ0VYBRhTlHQiw3pI/AsDMZiMWli+e3btyM/P79bGuXj8ENP5u7qyQT3PYmejp2iVpzMFGsLp44owYOXTcPwkpyU1sPw1x8cj/Vb6zFn/MDEJ4NPQdEXNM3p2sL8rBCaukBlD/RsrGxfcZlyA3FPnEqlnJ30x31dAc0QbLyyXKYCYrPT0QJhtlG3rGdemulGAUfhJm6NMlF3xTmHlu82DRAgxDWm4TNLFnQd7k6np9K8TDxz1UzkZIT6THwv7YtIErHohxs8D5e5c+di+fLl5ndN09Dc3Iybb74Zp59+ene2zcdhhGTzBSVXV/90EbFvilNcH1GvpjphOgCcXD0QVQMSK5wKsrruslqen4n5Eytca42pi1JOLzLK9nW4TTZNYbMypZpFlwiAh7rBCp0u6ElrXVdi7e5cOAV5mSH813lHdHOrvMNGINMD86BX8G6i7FjiDv/FuTXIywzhP8+cmFR9gPq58uzL3WMZ9KIcoPP6V/v6D/EhXYe7ex81bWQJJgwu6NYyUwlqGezN/M99BZ53TXfeeSdmz56NCRMm4NChQ7j44ovxxRdfoKysDE8++WQq2ujjMEBPxgxSjVk/kgV73E2UVpdOeet6Q3NZmmslce4LmtPuItjpbhxXVYan3tnmKX9fz1vErfK9JO9Od4jdlkr3ua5Yc8+ZMgRnTRqcFhYdsd1diUHXtFS5s1E3UZ0ecsS3Z4zAxdOHe+5nN+kNqHs1dRn1CjrXdkbdl0PH36R4CEJ/AGUD7U/ur8kgGUblwxmehcHBgwdjw4YNePLJJ7F+/XrEYjFcccUV+Na3vsURyvjw4QW8NrHnYgb704TZ0xaSHJIUvCAJi05/wvDSHPznmROSsmz1BtLRnQ0A/n3eOGSFg7jgqKGergsGNFP7m+o7o/NHT1jEewpiHFlP5aKTfU94fZqMX7EZXXmvwoEAOjwING5hWgZ1b5ZBILl+dlM2XZtorsCuwMt+PxDon3uAbOIq259CYLqKmC8MJkRS/lTZ2dlYvHgxFi9e3N3t8XGYgk7OqZ7D+mvMoLio0QTeqQDVgqfTpri31vbFx1X2TsVJIF2HfXl+Jm4525tbGsC7AfVkSpXuZiPuTdhjBlNYly3pfJoOyAQQx1pLh7d4V4pQUEMqpmwztUSSMYNe4UaApJbB3G5iovbiCkgVOulMAuUVVEGbLgqT3sSo8lxs2d+KKcOLerspaQ9Xb+GqVatcF3j22Wcn3Rgfhy96K2awP02Y4r401QQLVABMp17sC26aPlKHnswz2J+sCj2ZZ7C/ppY4udod4ZQMqYpft2IG4dky2JX6nJAK2n8vwmB/ZROlcXL9566Sx3P/diwa2joxqND3WkwEV8Lgueee66owTdOkTKM+fCRCz8YM9lxdPQlxgU+1xjOdrIEU/eiR+nCJ3IwgWuJmlVQrk4pzLCVLf/IsEKeLVN5bo5B/rq8qcERBoitzYlN78lZFJ7Cu1XUduuesgd7hRrgKpcBNs8ND7GFA635hNB1AE623pdgzqC+gMCeMwpy+EbrR23AlDMZ8WlYfKQbVih5o6UhpXf2WTVRY1FKt8aTlD1Tkk+oNqBId+7DQV93yVOhJN/NMsuFPh/QG3YWezDNYns8T7/TV/biNTbQLNzKsJBvbDnR/0nr2rut6T1kGrbJVwidvGewepWJds/scpcEUCKPpAOq10J/mJh+pR/c4a/vw0UXQBaS9C+xibkDdKfuTm6jdMpj6e3v6ypk42NqBwUXp44aRGQog4mtFDytweUpTLA1qmoanr5yJhrZOVBSmjxKkqxB7rSfzDPZVC6stz2AXYkiLczJSIwyabqK6yTaZSqcRN88yFa7WXta7YD+1DNIY5mA/yoHqI/VIShj8+9//jr///e/Yu3evzWr44IMPdkvDfBxeoOvHyFL3tPLJgIsZ7KObEBlswmAPLAbTK0tSXodXlOdnomV/a283I73Rf4Y9ADHmOPX1peO47yp6NM9gD5LVpBI2y2AX5tyfnFqNSx58G1efNLqrzeJgEsjEAJiZJfpfzGBH1EvMIBVG0zPcIRlQN9H+JOT6SD08C4M/+9nPcOutt2LatGkYNGhQn/X195Fe4DX7qa2LBpr3JxeR3Ew+2Xl/YknzgmMqS/H1/lYM7kdWm+5G/xn1BvqrgqcnEREUu6mcG+0EMn3zmYn30ZWIvFlVZfjwlnkcI2R3gCeQST2bqJtxE+7GtWlIUTZ2HGzDtBHFrq+hqQZiaZQjt6vIybD2AP1pb+Mj9fA869x33314+OGHsWjRolS0x8dhip5k92rrtFwI++geRArRRelwXQz+ff5YdEZj+OYxw3u7KT56CP01XUxPYl8TH6vds26iKasqpRDbTfO8JYPuFgQBGjNo5RlM5bN1U3ZelnWfXU2B9D8XH4mH//U1/n3eWNfX0NyGhyL9J6SA7gH6W1y4j9TC88zT0dGBWbNmpaItPg5j9KRmf0C+ZTHanoIYjd6CSF7QFZelvowB+Vm4Y+GU3m6Gjx4EHfq+LJgcKstyuO+pdRMVLIN9dOMqCj7p6JpnJZ3vmTyDbhAOBlCWl4EDLR2oLOtaWMhRw4tx1HD3VkEAyAhaQvuw4hyHM/sWaGhITzDH+ug/8GyrX7JkCZ544olUtMXHYQwu5ifFKxUtvj8xbomWwfwsn1LZx+GBniSQ6a8Q592Uuon2E8sg0LNrV1KINynWQ5ZBCicPzD9/71j85QfH9QoJEx3bmWmaIikZcO63vizowwM8WwYPHTqE+++/Hy+//DImTZqEcJjfcN5xxx3d1jgfhw96Ms8g3Tj2J2FQtARmhfvPIueje5Fqxt6eRqAH54/+CjHNTk8mJu/Lrr0BTTPjztIxVZHpJor0sQwCwNDiHAz1ZtDrNlALWrrmy00GdA8Q84VBHx7gWRj88MMPMWXKFADARx99xP3ma2R9JIuedBPlmcT6z5jNDAUdv/vwwZCb0b/GBlWI92XBojchzoWp7Eab0NSHH5kx3uLCYBquJ5abqOU4eLjv1ehzinhgIU130PvqT4puH6mHZ2Hwn//8Zyra4eMwB90cpFq72tM09D0FUcOZjhsTH+mB/rYZ5NxEe7EdfRn2pPM9RzLSlwX4QABAnIMkHW+D9bWRdN4QfNKwmT2KUD8VmjRNw/9eMg27G9owYXBBbzfHRx+Cn3TeR1qALqKpXlCpkNTfNsXjBxXg012Nvd0MH2mO/jXq/ZjB7oCohEtlL/YXNlGAH3vpqIDjU0uwYz3Tzu316UnQRu8/p595ScydMLC3m+CjD8K1MHj++ee7Ou9Pf/pT0o3xcfiiJ6nhtTRfvLsCvR/lTPKRQvSvYc8pkPrZK91jEPinejRmsC/L74Ee9GpJBqxJMV23YgZ7KExuZGl6MnX215hBHz6ShWthsLCwMJXt8HGYg24OUi2g0QW7v20cO6P9ixjER2rQz4a98E73t7vrGYhMmKnsRjubaN99ZrTl6cgmSt1E9R62DKarspW2yxcGffjwIAw+9NBDqWyHj8McvOtmauvic5Kl52KVLLbsb+3tJvjoA+hv454joPL3dkkhqPFzcCrHSF8W/pyQlpbB+F8jtUTPeo6k63POy7S2vmV5mb3YEh8+0gN+zKCPtECwB2N+tDR36+kKBhZkYcfB9IzT8JE+6GfDno857nd2z54Bp5BLdV39iECGwrcM8khXy2BORgjP/tsstHdGMbCg5/Mc+vCRbvCFQR9pgZ5cNGhd/c2KkJ/lv9I+EiM9t2jJI6D1nGdBf4XWg662YvF9WRiktrZ0lH1om2I9nGcwnT0Qpo7opSSHPnykIfrZVthHX0VPalT51BLpu1j58NHdGDMgDwBw3JjyXm5J98LPM9h1BHtwXswWGBz78iOjpF3paAljlnKDQCZ+rMcsgz1SjY8uYvJQgxNkSFF2L7fER2/BNyP4SAvQvD+pZsTsSebSnkY6bkZ8pA+Wf2MKnn5nG646aXRvN6Vb0Z9JoXoK3NyR4j4MCy4ZffmZ8ZbB9LsR1iRdB/Y2HQLQc/3dnxK692fct2gqHli7GZfMHNHbTfHRS/D1Nj7SAnQRTXWMe6Afbxz/Lb7J/+b0Yb3cEh/piImDC/Gzc2owqLB/aYC/3Ntsfk5n17R0Bq8kS21dlNof6NvPLBKzFqxQGi4oNLUEI06h70sqsfWAT2jWFzCoMBs3nTkBI0pze7spPnoJvmXQR1qgR2MG+zEN/RlHDELVdXkYVZbX203x4aPHMLIsFx/vbATQt10OexOhHvSYEIWmPv3IiPIylIZ+kexZ6rCE7jED83uk7vGDCnqkHh8+fHQNvT5z3XPPPaisrERWVhamTp2KtWvXOp7/6quvYurUqcjKysKoUaNw33332c559tlnMWHCBGRmZmLChAl47rnnuN+bmppw3XXXYcSIEcjOzsasWbPwzjvvcOfccsstqK6uRm5uLoqLizFnzhy89dZb3Dm7d+/GokWLUFFRgdzcXBx11FF45plnzN9feeUVaJom/S/WBwD79+/H0KFDoWkaDh48mKjr+hWogKYjxW6iNDYmDTW5XYGmaaiuKPBzJ/k4rJBDYtD6m4KnpxDoQSWZKDT15WfW0+kavMJyE9URjVsxs8JBhyu6D/1sefXho9+iV3eMK1euxHXXXYef/vSneP/993H88cfjtNNOw9atW6Xnb968GaeffjqOP/54vP/++7jhhhtwzTXX4NlnnzXPeeONN7Bw4UIsWrQIH3zwARYtWoQFCxZwgtySJUuwZs0aPPbYY9i4cSPmzZuHOXPmYMeOHeY5Y8eOxd13342NGzdi3bp1GDlyJObNm4d9+/aZ5yxatAiff/45Vq1ahY0bN+L888/HwoUL8f777wMAZs2ahV27dnH/lyxZgpEjR2LatGm2+7viiiswadKkLvdrX0Qg0HNuou0kMbu/WPnw0feh9WPX754Cdd1MdReKbqJ9mdU57YVBWKklmDAYTPEDZkyd8ydWpLYiHz58dAt6dQq+4447cMUVV2DJkiUYP348li9fjmHDhuHee++Vnn/fffdh+PDhWL58OcaPH48lS5Zg8eLF+O1vf2ues3z5csydOxfLli1DdXU1li1bhlNOOQXLly8HALS1teHZZ5/Fr3/9a5xwwgmoqqrCLbfcgsrKSq7eiy++GHPmzMGoUaMwceJE3HHHHWhsbMSHH35onvPGG2/gBz/4AaZPn45Ro0bhxhtvRFFREdavXw8AyMjIQEVFhfm/tLQUq1atwuLFi20xEvfeey8OHjyIH/7wh93VvX0WqV5bC0j6hb6skfbhw4cB+hb773Ry6Mn0HHY30b77zGLpLQuayhEdQJSllkixxuTOBVPwy/Nq8O0ZPiGJDx99Ab0mDHZ0dOC9997DvHnzuOPz5s3D66+/Lr3mjTfesJ0/f/58vPvuu+js7HQ8h5UZiUQQjUaRlcUnGs3Ozsa6deuUbb3//vtRWFiIyZMnm8ePO+44rFy5EgcOHEAsFsNTTz2F9vZ2nHTSSdJyVq1ahbq6Olx22WXc8U8++QS33norHn30UQRcqkjb29vR2NjI/e8vSLWbaIj0cX9zE/Xh43CEn2ew6+jJeTE73H9SS6Q7WN9GYzpe37QfQOqJboaX5uBbx4zoMXdUHz58dA29JgzW1dUhGo1i4MCB3PGBAwdi9+7d0mt2794tPT8SiaCurs7xHFZmfn4+Zs6ciZ///OfYuXMnotEoHn/8cbz11lvYtWsXd91f//pX5OXlISsrC3feeSfWrFmDsrIy8/eVK1ciEomgtLQUmZmZuPLKK/Hcc89h9Gg5bfuKFSswf/58DBtmMT22t7fjm9/8Jn7zm99g+PDhTl3G4bbbbkNhYaH5n5bZ15FqyyB1UYoQl1EfPnz0TVAdWl9mpuxNBHuQQEbTND/faw+BvQ8NbZ14rdYIc/FTEPnw4YOi1z31xYVb13XHxVx2vng8UZmPPfYYdF3HkCFDkJmZibvuugsXX3wxgkFeizV79mxs2LABr7/+Ok499VQsWLAAe/fuNX+/8cYbUV9fj5dffhnvvvsuli5diosuuggbN260tXv79u1YvXo1rrjiCu74smXLMH78eHz7299W3rMMy5YtQ0NDg/l/27Ztnq5PZ6Ta64ZqwHc3tqe4Nh8+fKQa/TldTE+BCgg90YXUauTLgqmDrGt9YdCHDx8UvSYMlpWVIRgM2qyAe/futVn2GCoqKqTnh0IhlJaWOp5Dyxw9ejReffVVNDc3Y9u2bXj77bfR2dmJyspK7rrc3FxUVVVhxowZWLFiBUKhEFasWAEA2LRpE+6++248+OCDOOWUUzB58mTcfPPNmDZtGn7/+9/b2v7QQw+htLQUZ599Nnf8H//4B/74xz8iFAohFArhlFNOMfvn5ptvVvZfZmYmCgoKuP99HUOKjNxnU4YVpbQeahkcM8BPweDDR1+H1oNMmP0V1HWwJ6yrPZnK4nCGrG+Dfn/78OGDoNeEwYyMDEydOhVr1qzhjq9ZswazZs2SXjNz5kzb+S+99BKmTZuGcDjseI6szNzcXAwaNAj19fVYvXo1zjnnHMc267qO9nbDktTaaiRTFWP8gsEgYrGY7bqHHnoIl1xyidlOhmeffRYffPABNmzYgA0bNuCBBx4AAKxduxbf+973HNvT3/DMv83E/YumYuncsSmtJ0yemb8o+vDR90ENHf4bnRx6Muk8AIRJegn/maUOsiXOj5X34cMHRa8mnV+6dCkWLVqEadOmYebMmbj//vuxdetWXHXVVQAMV8gdO3bg0UcfBQBcddVVuPvuu7F06VJ85zvfwRtvvIEVK1bgySefNMu89tprccIJJ+D222/HOeecg+effx4vv/wyRw6zevVq6LqOcePG4csvv8R//Md/YNy4cbj88ssBAC0tLfjlL3+Js88+G4MGDcL+/ftxzz33YPv27bjooosAANXV1aiqqsKVV16J3/72tygtLcWf//xnrFmzBn/961+5+/zHP/6BzZs321xEAdjiC1ns4/jx41FUVNTFHu5bGFSYjUGF2Smvh1oGg6nm2Pbhw0fKEXAIE/DhDj1tqeOEQf+ZpQyyZ5lqAhkfPnz0LfSqMLhw4ULs378ft956K3bt2oWamhq88MILGDHCoCPetWsXl3OwsrISL7zwAq6//nr8/ve/x+DBg3HXXXfhggsuMM+ZNWsWnnrqKdx444246aabMHr0aKxcuRLHHHOMeU5DQwOWLVuG7du3o6SkBBdccAF++ctfmla7YDCIzz77DI888gjq6upQWlqKo48+GmvXrsXEiRMBAOFwGC+88AJ+8pOf4KyzzkJzczOqqqrwyCOP4PTTT+fuc8WKFZg1axbGjx+fsr704R65Gdawb2jr7MWW+PDhozvgk5F0HT3NyNraESF1p76+VGNEaU5vN8E1cjN7devnw4ePNEOvzwhXX301rr76aulvDz/8sO3YiSeeaObxU+HCCy/EhRdeqPx9wYIFWLBggfL3rKws/OlPf3KsAwDGjBnDJbxX4Yknnkh4DsNJJ51kkuL4SA0KcyxX3aZDEYczffjw0TfgE8h0FdRjoicE6kYy9/YHyyBVMqYTZF37rWP8/H8+fPiw0Otsoj589CY6ItHeboIPHz66CM4y6EuDSaGTpNnpCdmsipB39eVHduUJowAA/z4vtbHuyUIU7M+YNAjl+Zm91BofPnykI9JTleXDRw+hvsV3E/Xho6+Dc3HsxXb0ZVDLVk8Ig8F+Euf5k9Oqsfi4SgwsyOrtpkghdq3vRu3Dhw8RvmXQx2EN34rgw0ffh590vuvoyaTzAC+k9OVHpmla2gqCgP1Z+pxpPnz4EOELgz4Oa/huoj589H3weQZ7sSF9GAGtZ4XBnhY+D1eIPesrQH348CHCFwZ9HNbIzwonPsmHDx9pjZ4WZPojglzS+dTXF/AF+B6BaCn3c+v68OFDhC8M+jgs8dPTxyM3I4gfzhvX203x4cNHFxHoJy6HvYkgdbXtgfqohUrzIz1TBvF9CPqStw8fPgT4BDI+Dkt854RRWHxcpb8w+vDRD0CtTIc6fdfvZED7sD0Sczizu+qzPvsCfOrgu4n68OEjEXzLoI/DFr4g6MNH/wB9k1s7fGEwGdD5cHfDodTX57v29gjsBDJ+X/vw4YOHLwz68OHDh48+DRoXlc7MjukMKjRMGFzQo/X58knq4LuJ+vDhIxF8YdCHDx8+fPRpcEnn/b1uUqBCQk8IDDQdiG8ZTB1EAhm/q3348CHCFwZ9+PDhw0efBm9l8ne7yYAKgOFA6rcGvmWwZ2CzDPqd7cOHDwG+MOjDhw8fPvo0+KTzvdeOvgwu1UMP7Az4PIOpr+9whWh1rW/t7KWW+PDhI13hC4M+fPjw4aNPQ/PJSLqMnk4Cr/nW3B6B2LNZYX/b58OHDx7+rODDhw8fPvo0/JjBriPYw26bQZpaIvXVHbYQn2VxTkbvNMSHDx9pC18Y9OHDhw8ffRpc/JkvWiQF6hoaS32aQd4t1bcMpgxi3/rKEh8+fIjwhUEfPnz48NGnQfe3vlyRHEJEGgwFU9+JgR52S/VhwHfJ9eHDhwhfGPThw4cPH30afsxg10EFwBGlOSmvj1qo/EeWOtiSzvumQR8+fAjwhUEfPnz48NGn4acp6DpCREioKMhKeX1UKPGfWeog9q0vC/rw4UOELwz68OHDh48+DZ5Axt/tJgPOutoTSed9a26PQOxb303Uhw8fInxh0IcPHz589GkE/Jx1fQ6+NbdnIHatL3j78OFDhC8M+vDhw4ePPg1uf+tvdvsEejqv4eEKsWuD/q7Phw8fAvxpwYcPHz589GnwLoe92JA+jlmjSxEMaDitZlDK69q0r9n87MuCqYPoFuoL3j58+BAR6u0G+PDhw4cPH12BHzPYPXj48uloaOtEeX5myuuaOLgQH25vAODnhkw1NA3QdfbZ72sfPnzw8C2DPnz48OGjT4MKE75lMHlkhAI9IggCPHup/8xSC99y7sOHDyf4wqAPHz58+OjT4HLW+VamPoEoM1WBT3jvo/tB3wg/z6APHz5E+DOwDx8+fPjo09B8Zso+h2jUEgazM4K92JL+D5651X9BfPjwwcMXBn348OHDR5+Gn7Ou7yFGLIPhoP/MUgouprb3muHDh4/0hC8M+vDhw4ePPg3OTdTf7PYJUDdR31qVWtDe9ZUlPnz4EOELgz58+PDho08j4Oes63PoiMR6uwmHDXwCGR8+fDjBFwZ9+PDhw0efhuZbBvscmtsjvd2EwwYa5ybqvyA+fPjg4QuDPnz48OGjT8MnyOh7iMb0xCf56Bb4MbU+fPhwgi8M+vDhw4ePPg0+JqrXmuHDA+qaO3q7CYcNuPfD3/X58OFDgD8t+PDhw4ePPg3f8tH3cPmxIwEARw4v6tV2HA6gr0Rze7T3GuLDh4+0RKi3G+DDhw8fPnx0BVzMYO81w4cHnH/kEMRiOmaMKu3tpvR7UNfpstyMXmyJDx8+0hG9bhm85557UFlZiaysLEydOhVr1651PP/VV1/F1KlTkZWVhVGjRuG+++6znfPss89iwoQJyMzMxIQJE/Dcc89xvzc1NeG6667DiBEjkJ2djVmzZuGdd97hzrnllltQXV2N3NxcFBcXY86cOXjrrbe4c/5/e/ceFNV5/3H8A8tyERAFLJfgrWrUaGMEmigTr7GoqYqjEzF1iLRqpY2NiVNb8RaTVkNTayfWS4xBxyZOIAlVGTUaHO+RpPUSB9GYaLwL8VIVjQZBnt8f/bG6YUGJwu6y79fMzsA5333Oc85894HvnnOeU1xcrJSUFEVGRiowMFCxsbH68MMPbeu3bt0qLy8vh6/K7e3fv1/PPvusmjdvroCAAHXs2FFvvPFGrY4hAHgy7hl0Pz4Wb418vIVahQc6uysN3p0fCX9fi/M6AsAlObUYzM7O1osvvqhp06Zp37596tGjhwYOHKiTJ086jD927Jiefvpp9ejRQ/v27dPUqVP1wgsvKCcnxxaTn5+v5ORkpaSkaP/+/UpJSdGIESPsCrmxY8cqLy9P77zzjgoKCpSYmKh+/frpzJkztpiHH35YCxYsUEFBgXbu3KlWrVopMTFR58+ft8WkpKTo8OHDys3NVUFBgYYNG6bk5GTt27dPkpSQkKCioiK719ixY9WqVSvFx8dLkvbs2aNmzZrp3XffVWFhoaZNm6b09HQtWLDggR5rAGiovHmoNlCtW7duT9Zj5aZBAN/jZYxx2pReTzzxhGJjY7V48WLbso4dO2ro0KF67bXXqsT/8Y9/VG5urg4dOmRblpaWpv379ys/P1+SlJycrJKSEn300Ue2mAEDBqhp06Z67733dOPGDQUHB2vNmjX6+c9/bot57LHHNGjQIP35z3922NeSkhKFhIRo06ZNeuqppyRJQUFBWrx4sVJSUmxxYWFhev311zVmzJgqbZSVlSkmJkYTJkzQjBkzqj0uzz//vA4dOqTNmzdXG1Nd/65cuaLGjRvf8/sAwN39M/+4Zq4plCQtfS5eP3skwsk9AlxHqynrbD9n/bobl+YCHuJeawOnfUV08+ZN7dmzR4mJiXbLExMTtWvXLofvyc/PrxLfv39/7d69W2VlZTXGVLZZXl6uW7duyd/f3y4mICBAO3furLavb731lkJCQtSlSxfb8ieffFLZ2dn673//q4qKCmVlZam0tFS9e/d22E5ubq4uXLig1NRUh+srXblyRaGhoTXGlJaWqqSkxO4FAJ7Ii4dqA9V6qEmA7WerhTODAOw5bVS4cOGCbt26pYgI+29wIyIiVFxc7PA9xcXFDuPLy8t14cKFGmMq2wwODlb37t31pz/9SWfPntWtW7f07rvv6rPPPlNRUZHd+9auXaugoCD5+/vr73//u/Ly8hQeHm5bn52drfLycoWFhcnPz0/jx4/XqlWr1KZNG4f9z8zMVP/+/dW8efNqj0t+fr7ef/99jR8/vtoYSXrttdcUEhJie9XUJgA0ZN48VBuolo/l9mfCauHzAcCe078i+v7N/saYGicAcBT//eV3a/Odd96RMUYPPfSQ/Pz8NH/+fP3iF7+QxWJ/Y3WfPn30+eefa9euXRowYIBGjBihc+fO2dZPnz5dly5d0qZNm7R7925NmjRJzzzzjAoKCqr0+/Tp09q4caPDy0crFRYWKikpSTNnztTPfvazauMkKT09XVeuXLG9Tp06VWM8ADRUXmI6UaA6Fm8evQKgek57tER4eLgsFkuVs4Dnzp2rcmavUmRkpMN4Hx8fhYWF1RhzZ5tt2rTRtm3b9O2336qkpERRUVFKTk5W69at7d4XGBiotm3bqm3bturWrZvatWunzMxMpaen6+jRo1qwYIEOHDigTp06SZK6dOmiHTt2aOHChVVmOV2+fLnCwsI0ZMgQh/t28OBB9e3bV+PGjdP06dOrO2w2fn5+8vPzu2scADR012+W237mn13A3p2TxjT2tzqxJwBckdPODPr6+iouLk55eXl2y/Py8pSQkODwPd27d68S//HHHys+Pl5Wq7XGGEdtBgYGKioqSpcuXdLGjRuVlJRUY5+NMSotLZUkXb9+XZLk/b2ZuSwWiyoqKqq8b/ny5Xruueds/bxTYWGh+vTpo9GjR2v27Nk19gEAYK+R7+3vNblnELDnfceHwt/X6ReEAXAxTn3o/KRJk5SSkqL4+Hh1795db731lk6ePKm0tDRJ/7sU8syZM/rnP/8p6X8zhy5YsECTJk3SuHHjlJ+fr8zMTL333nu2NidOnKiePXvqL3/5i5KSkrRmzRpt2rTJbnKYjRs3yhij9u3b68iRI5o8ebLat2+vX/7yl5Kkb7/9VrNnz9aQIUMUFRWlixcvatGiRTp9+rSeeeYZSVKHDh3Utm1bjR8/XnPnzlVYWJhWr16tvLw8rV271m4/N2/erGPHjjm8RLSyEExMTNSkSZNsZzUtFouaNWv2AI82ADRMIQG3v2Tz4jpRwM6dk8b7WXjOIAB7Ti0Gk5OTdfHiRb366qsqKipS586dtX79erVs2VKSVFRUZPfMwdatW2v9+vV66aWXtHDhQkVHR2v+/PkaPny4LSYhIUFZWVmaPn26ZsyYoTZt2ig7O1tPPPGELebKlStKT0/X6dOnFRoaquHDh2v27Nm2s3YWi0VffPGFVqxYoQsXLigsLEw//elPtWPHDtsloVarVevXr9eUKVM0ePBgXbt2TW3bttWKFSv09NNP2+1nZmamEhIS1LFjxyrH4IMPPtD58+e1cuVKrVy50ra8ZcuWOn78+P0fZABo4Hx9bp/tqHDe05IAl3Sr4vZn4s7PCgBITn7OIB4cnjMIwFNt//K8nlv2b0nSO2MeV492XFUBVLrzOYNf/nkgBSHgIVz+OYMAADwId36jGejn1AteAJfTKfr2P4E+3FQL4HsoBgEAbi0s0Nf2M//sAvbunGDXm88HgO+hGAQAuDV/6+0/ZRb+2QXsMKkSgJpQDAIA3Jqfz+0ZEn28+bMG3IlHbwKoCX81AQBu7c77BDkxCNhjmkAANaEYBAC4tTsvEy27xX++wJ2+/Oaqs7sAwIVRDAIA3Jr/HZeJckkcYK9dRJCzuwDAhTEHNwDArXl7eyk1oZWKr3yn9hHBzu4O4FIs3EcLoAYUgwAAtzdrSCdndwEAALfD10UAAAAA4IEoBgEAABoobqMFUBOKQQAAAADwQBSDAAAAAOCBKAYBAAAaqP9+e9PZXQDgwigGAQAAGqj4Vk2d3QUALoxHSwAAADRQL/V7WHtPXFJK91bO7goAF0QxCAAA0EA1D22krZP7OLsbAFwUl4kCAAAAgAeiGAQAAAAAD0QxCAAAAAAeiGIQAAAAADwQxSAAAAAAeCCKQQAAAADwQBSDAAAAAOCBKAYBAAAAwANRDAIAAACAB6IYBAAAAAAPRDEIAAAAAB6IYhAAAAAAPBDFIAAAAAB4IIpBAAAAAPBAPs7uAB4MY4wkqaSkxMk9AQAAAOBMlTVBZY1QHYrBBuLq1auSpObNmzu5JwAAAABcwdWrVxUSElLtei9zt3IRbqGiokJnz55VcHCwvLy8nNqXkpISNW/eXKdOnVLjxo2d2he4B3IGtUXOoLbIGdQWOYPacLV8Mcbo6tWrio6Olrd39XcGcmawgfD29lZMTIyzu2GncePGLvFhgPsgZ1Bb5Axqi5xBbZEzqA1XypeazghWYgIZAAAAAPBAFIMAAAAA4IEoBvHA+fn56eWXX5afn5+zuwI3Qc6gtsgZ1BY5g9oiZ1Ab7povTCADAAAAAB6IM4MAAAAA4IEoBgEAAADAA1EMAgAAAIAHohgEAAAAAA9EMehhFi1apNatW8vf319xcXHasWNHjfHbtm1TXFyc/P399eMf/1hvvvlmlZicnBw98sgj8vPz0yOPPKJVq1bVerteXl4OX3/9619tMb17966yfuTIkT/wSOBeuWrOXLt2TRMmTFBMTIwCAgLUsWNHLV682C6mtLRUv/vd7xQeHq7AwEANGTJEp0+f/gFHAbXhzjnDOOMcrpoz33zzjVJTUxUdHa1GjRppwIAB+uqrr+xiGGecw51zhnGm/jkjX7Zv367BgwcrOjpaXl5eWr16dZU2jDGaNWuWoqOjFRAQoN69e6uwsNAups7HGAOPkZWVZaxWq1m6dKk5ePCgmThxogkMDDQnTpxwGP/111+bRo0amYkTJ5qDBw+apUuXGqvVaj788ENbzK5du4zFYjFz5swxhw4dMnPmzDE+Pj7m008/rdV2i4qK7F7Lli0zXl5e5ujRo7aYXr16mXHjxtnFXb58uQ6OFCq5cs6MHTvWtGnTxmzZssUcO3bMLFmyxFgsFrN69WpbTFpamnnooYdMXl6e2bt3r+nTp4/p0qWLKS8vr4OjBWPcP2cYZ+qfq+ZMRUWF6datm+nRo4f597//bb744gvz61//2rRo0cJcu3bN1g7jTP1z95xhnKlfzsqX9evXm2nTppmcnBwjyaxatarKtjIyMkxwcLDJyckxBQUFJjk52URFRZmSkhJbTF2PMRSDHuTxxx83aWlpdss6dOhgpkyZ4jD+D3/4g+nQoYPdsvHjx5tu3brZfh8xYoQZMGCAXUz//v3NyJEjf/B2jTEmKSnJ9O3b125Zr169zMSJE6t9Dx48V86ZTp06mVdffdUuJjY21kyfPt0YY8zly5eN1Wo1WVlZtvVnzpwx3t7eZsOGDdXuM+6PO+eMMYwzzuCqOXP48GEjyRw4cMC2vry83ISGhpqlS5caYxhnnMWdc8YYxpn65qx8uZOjYrCiosJERkaajIwM27LvvvvOhISEmDfffNMYUz9jDJeJeoibN29qz549SkxMtFuemJioXbt2OXxPfn5+lfj+/ftr9+7dKisrqzGmss0fst1vvvlG69at05gxY6qsW7lypcLDw9WpUyf9/ve/19WrV2vYa9wPV8+ZJ598Urm5uTpz5oyMMdqyZYu+/PJL9e/fX5K0Z88elZWV2bUTHR2tzp07V9t/3B93z5lKjDP1x5VzprS0VJLk7+9vW2+xWOTr66udO3dKYpxxBnfPmUqMM/XDWflyL44dO6bi4mK7dvz8/NSrVy9bO/Uxxvg8kFbg8i5cuKBbt24pIiLCbnlERISKi4sdvqe4uNhhfHl5uS5cuKCoqKhqYyrb/CHbXbFihYKDgzVs2DC75aNGjVLr1q0VGRmpAwcOKD09Xfv371deXt7dDwBqzdVzZv78+Ro3bpxiYmLk4+Mjb29vvf3223ryySdtffH19VXTpk3vuf+4P+6eMxLjTH1z5Zzp0KGDWrZsqfT0dC1ZskSBgYGaN2+eiouLVVRUZOsL40z9cveckRhn6pOz8uVeVMY6aufEiRO2mLoeYygGPYyXl5fd78aYKsvuFv/95ffSZm22u2zZMo0aNcrumzVJGjdunO3nzp07q127doqPj9fevXsVGxtb7T7g/rhqzsyfP1+ffvqpcnNz1bJlS23fvl2//e1vFRUVpX79+lXbv7v1H/fPnXOGccY5XDFnrFarcnJyNGbMGIWGhspisahfv34aOHDgXfeHcabuuXPOMM7UP2flS1307X625QiXiXqI8PBwWSyWKt8inDt3rso3EpUiIyMdxvv4+CgsLKzGmMo2a7vdHTt26PDhwxo7duxd9yk2NlZWq7XKLF14MFw5Z27cuKGpU6dq3rx5Gjx4sB599FFNmDBBycnJmjt3rm07N2/e1KVLl+65/7g/7p4zjjDO1C1XzhlJiouL0+eff67Lly+rqKhIGzZs0MWLF9W6dWvbdhhn6pe754wjjDN1x1n5ci8iIyMlqcZ26mOMoRj0EL6+voqLi6tyCUJeXp4SEhIcvqd79+5V4j/++GPFx8fLarXWGFPZZm23m5mZqbi4OHXp0uWu+1RYWKiysjJFRUXdNRa158o5U1ZWprKyMnl72w9hFotFFRUVkv73B9lqtdq1U1RUpAMHDlTbf9wfd88ZRxhn6pYr58ydQkJC1KxZM3311VfavXu3kpKSJDHOOIO754wjjDN1x1n5ci8qLxW+s52bN29q27ZttnbqZYx5INPQwC1UTq2bmZlpDh48aF588UUTGBhojh8/bowxZsqUKSYlJcUWXzm17ksvvWQOHjxoMjMzq0yt+8knnxiLxWIyMjLMoUOHTEZGRrVTMVe33UpXrlwxjRo1MosXL67S9yNHjphXXnnF/Oc//zHHjh0z69atMx06dDBdu3Zl+u465Mo506tXL9OpUyezZcsW8/XXX5vly5cbf39/s2jRIltMWlqaiYmJMZs2bTJ79+41ffv2Zcr3OubOOcM44xyunDPvv/++2bJlizl69KhZvXq1admypRk2bJhd/xln6p875wzjTP1zVr5cvXrV7Nu3z+zbt89IMvPmzTP79u2ze6RFRkaGCQkJMf/6179MQUGBefbZZx0+WqIuxxiKQQ+zcOFC07JlS+Pr62tiY2PNtm3bbOtGjx5tevXqZRe/detW07VrV+Pr62tatWrlsFD74IMPTPv27Y3VajUdOnQwOTk5tdpupSVLlpiAgACHz9o5efKk6dmzpwkNDTW+vr6mTZs25oUXXjAXL178AUcBteGqOVNUVGRSU1NNdHS08ff3N+3btzd/+9vfTEVFhS3mxo0bZsKECSY0NNQEBASYQYMGmZMnT97nEcHduGvOMM44j6vmzBtvvGFiYmKM1Wo1LVq0MNOnTzelpaV2MYwzzuGuOcM44xzOyJctW7YYSVVeo0ePtsVUVFSYl19+2URGRho/Pz/Ts2dPU1BQYNdOXY8xXsb8/x2RAAAAAACPwT2DAAAAAOCBKAYBAAAAwANRDAIAAACAB6IYBAAAAAAPRDEIAAAAAB6IYhAAAAAAPBDFIAAAAAB4IIpBAAAAAPBAFIMAALiAWbNm6bHHHnN2NwAAHsTLGGOc3QkAABoyLy+vGtePHj1aCxYsUGlpqcLCwuqpV/ZOnDihhx9+WOfPn1fjxo2d0gcAQP3ycXYHAABo6IqKimw/Z2dna+bMmTp8+LBtWUBAgIKCghQUFOSM7kmS1qxZo969e1MIAoAH4TJRAADqWGRkpO0VEhIiLy+vKsu+f5loamqqhg4dqjlz5igiIkJNmjTRK6+8ovLyck2ePFmhoaGKiYnRsmXL7LZ15swZJScnq2nTpgoLC1NSUpKOHz9+1z6uWbNGQ4YMcbju0qVLGjVqlJo1a6aAgAC1a9dOy5cvv59DAgBwARSDAAC4qM2bN+vs2bPavn275s2bp1mzZmnQoEFq2rSpPvvsM6WlpSktLU2nTp2SJF2/fl19+vRRUFCQtm/frp07dyooKEgDBgzQzZs3q93O5cuXtWPHjmqLwRkzZujgwYP66KOPdOjQIS1evFjh4eF1ss8AgPrDZaIAALio0NBQzZ8/X97e3mrfvr1ef/11Xb9+XVOnTpUkpaenKyMjQ5988olGjhyprKwseXt76+2337bdp7h8+XI1adJEW7duVWJiosPtrF+/Xj/5yU/UvHlzh+tPnjyprl27Kj4+XpLUqlWrB7+zAIB6RzEIAICL6tSpk7y9b1/EExERoc6dO9t+t1gsCgsL07lz5yRJe/bs0ZEjRxQcHGzXznfffaejR49Wu52aLhGVpN/85jcaPny49u7dq8TERA0dOlQJCQk/dLcAAC6CYhAAABdltVrtfvfy8nK4rKKiQpJUUVGhuLg4rVy5skpbzZo1c7iNsrIybdiwQenp6dX2Y+DAgTpx4oTWrVunTZs26amnntLzzz+vuXPn1naXAAAuhGIQAIAGIjY2VtnZ2frRj350z7OCbtmyRU2aNLnrMw6bNWum1NRUpaamqkePHpo8eTLFIAC4OSaQAQCggRg1apTCw8OVlJSkHTt26NixY9q2bZsmTpyo06dPO3xPbm5ujZeIStLMmTO1Zs0aHTlyRIWFhVq7dq06duxYF7sAAKhHFIMAADQQjRo10vbt29WiRQsNGzZMHTt21K9+9SvduHGj2jOFubm5SkpKqrFdX19fpaen69FHH1XPnj1lsViUlZVVF7sAAKhHXsYY4+xOAACA+rd371717dtX58+fr3IvIgCg4ePMIAAAHqq8vFz/+Mc/KAQBwENxZhAAAAAAPBBnBgEAAADAA1EMAgAAAIAHohgEAAAAAA9EMQgAAAAAHohiEAAAAAA8EMUgAAAAAHggikEAAAAA8EAUgwAAAADggSgGAQAAAMAD/R+snxeY26clMgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1000x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### MFR - Zoom ###\n", + "tstart = 300000;\n", + "plt.figure().set_figwidth(10);\n", + "\n", + "m_CFD = np.mean(-360/alpha*mass[tstart:,1]); # Mean value\n", + "\n", + "plt.plot(mass[tstart:,0], -360/alpha*mass[tstart:,1], 'tab:blue');\n", + "plt.plot(mass[tstart:,0], m_CFD*np.ones(len(mass[tstart:,1])), 'r', label = 'Mean value');\n", + "plt.xlabel('Time / s');\n", + "plt.ylabel('Inlet mass flow rate / kg/s');\n", + "plt.legend();\n", + "\n", + "plt.savefig('./Output/5-b_MFR_zoom.png',dpi=600, facecolor='w');" + ] + }, + { + "cell_type": "markdown", + "id": "5dc63e54", + "metadata": {}, + "source": [ + "# 6. Discharge coefficient" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c9c13053", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass flow rate:\n", + "\t CFD: \t\t0.009387937810511999 kg/s\n", + "\t Theory real: \t0.00947140508235179 kg/s\n", + "\t Theory ideal: \t0.009657313671324285 kg/s\n", + "\n", + "\n", + "Discharge coefficient:\n", + "\t Real: \t\t0.9911874456731539\n", + "\t Ideal: \t0.9721065432914174\n" + ] + } + ], + "source": [ + "### Calculate CD value ###\n", + "\n", + "# Input\n", + "kap = 1.4;\n", + "Cstar_i = np.sqrt(kap * (2/(kap+1))**((kap+1)/(kap-1)));\n", + "Cstar_r = 0.67155;\n", + "d = 0.001;\n", + "p0 = 200*10**5;\n", + "T0 = 300;\n", + "R = 8.3144626;\n", + "M = 0.002016;\n", + "R_M = R/M;\n", + "\n", + "# Area of CFD model\n", + "A_CFD = 360 / alpha * np.sin(0.5*alpha*np.pi/180) * np.cos(0.5*alpha*np.pi/180) * 1/4 * d**2;\n", + "\n", + "# Mass flow rates (Theory)\n", + "m_th_r = Cstar_r * A_CFD * p0 / np.sqrt(R_M * T0);\n", + "m_th_i = Cstar_i * A_CFD * p0 / np.sqrt(R_M * T0);\n", + "\n", + "# Discharge coefficients\n", + "CD_r = m_CFD / m_th_r;\n", + "CD_i = m_CFD / m_th_i;\n", + "\n", + "# Display\n", + "print('Mass flow rate:');\n", + "print('\\t CFD: \\t\\t' + str(m_CFD) + ' kg/s');\n", + "print('\\t Theory real: \\t' + str(m_th_r) + ' kg/s');\n", + "print('\\t Theory ideal: \\t' + str(m_th_i) + ' kg/s');\n", + "print('\\n')\n", + "print('Discharge coefficient:');\n", + "print('\\t Real: \\t\\t' + str(CD_r));\n", + "print('\\t Ideal: \\t' + str(CD_i));" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Workshop/Input/Cyl_D1_meas.txt b/Workshop/Input/Cyl_D1_meas.txt new file mode 100644 index 0000000000000000000000000000000000000000..35ab7968699d53d3247e0294938ca12902d56264 --- /dev/null +++ b/Workshop/Input/Cyl_D1_meas.txt @@ -0,0 +1,201 @@ +z r +-0.9518087 0.614441116 +-0.9429014 0.609777601 +-0.9339942 0.605116062 +-0.9250869 0.600719494 +-0.9161797 0.596532892 +-0.9072725 0.59247636 +-0.8983653 0.588328045 +-0.8894580 0.584004383 +-0.8805508 0.579940337 +-0.8716436 0.576147142 +-0.8627363 0.572705671 +-0.8538290 0.56929007 +-0.8449218 0.565788101 +-0.8360146 0.562435474 +-0.8271074 0.559242874 +-0.8182001 0.556156497 +-0.8092929 0.552863363 +-0.8003857 0.549895261 +-0.7914784 0.547283119 +-0.7825712 0.544489231 +-0.7736639 0.541812728 +-0.7647567 0.539244504 +-0.7558495 0.536625758 +-0.7469423 0.534136493 +-0.7380350 0.531878528 +-0.7291278 0.529593151 +-0.7202206 0.527475997 +-0.7113133 0.525556115 +-0.7024060 0.523777292 +-0.6934988 0.522055315 +-0.6845916 0.520287207 +-0.6756844 0.518725032 +-0.6667771 0.517416149 +-0.6578699 0.516228551 +-0.6489627 0.514833245 +-0.6400555 0.513559751 +-0.6311481 0.512646378 +-0.6222409 0.511979498 +-0.6133337 0.511246759 +-0.6044265 0.510555364 +-0.5955193 0.509919499 +-0.5866120 0.509438483 +-0.5777048 0.509006114 +-0.5687976 0.5085585 +-0.5598903 0.508216524 +-0.5509830 0.50773359 +-0.5420758 0.507326975 +-0.5331686 0.507099933 +-0.5242614 0.506846418 +-0.5153541 0.506678943 +-0.5064469 0.506599304 +-0.4975397 0.506411188 +-0.4886325 0.506239804 +-0.4797251 0.506056473 +-0.4708179 0.505914042 +-0.4619107 0.505739432 +-0.4530035 0.50552297 +-0.4440963 0.505262675 +-0.4351890 0.505069842 +-0.4262818 0.50500698 +-0.4173750 0.504795259 +-0.4084675 0.504586949 +-0.3995599 0.504454582 +-0.3906524 0.50478731 +-0.3817459 0.505134925 +-0.3728384 0.505387076 +-0.3639309 0.50540835 +-0.3550244 0.505490514 +-0.3461169 0.505565256 +-0.3372094 0.50560267 +-0.3283018 0.505645601 +-0.3193953 0.505664463 +-0.3104878 0.505597573 +-0.3015803 0.50546197 +-0.2926728 0.505349728 +-0.2837663 0.505254566 +-0.2748588 0.505219121 +-0.2659513 0.505346669 +-0.2570448 0.505500889 +-0.2481372 0.505474538 +-0.2392297 0.505401604 +-0.2303222 0.50539622 +-0.2214157 0.50542251 +-0.2125082 0.505371566 +-0.2036007 0.50542381 +-0.1946932 0.505454988 +-0.1857867 0.505372383 +-0.1768792 0.505360119 +-0.1679716 0.50535427 +-0.1590651 0.505409279 +-0.1501576 0.505492048 +-0.1412501 0.505524536 +-0.1323426 0.505483079 +-0.1234361 0.5053793 +-0.1145286 0.505335024 +-0.1056211 0.505269117 +-0.0967145 0.505245954 +-0.0878070 0.50536816 +-0.0788995 0.50526141 +-0.0699920 0.505251437 +-0.0610855 0.50536701 +-0.0521780 0.505343072 +-0.0432705 0.50512874 +-0.0343630 0.505064347 +-0.0254565 0.50492722 +-0.0165489 0.504827998 +-0.0076414 0.504589848 +0.0012651 0.504249356 +0.0101726 0.503933756 +0.0190801 0.503632058 +0.0279876 0.50335203 +0.0368941 0.503234509 +0.0458016 0.50312994 +0.0547091 0.503084326 +0.0636157 0.503117688 +0.0725232 0.503241547 +0.0814307 0.503241747 +0.0903382 0.503078699 +0.0992447 0.502914302 +0.1081522 0.502734055 +0.1170597 0.502556506 +0.1259672 0.502423286 +0.1348738 0.50236321 +0.1437813 0.502296997 +0.1526888 0.50218385 +0.1615953 0.502194139 +0.1705028 0.502092951 +0.1794103 0.501899042 +0.1883178 0.501716335 +0.1972243 0.501604701 +0.2061318 0.501544343 +0.2150394 0.501322878 +0.2239469 0.501178198 +0.2328534 0.501004549 +0.2417609 0.500810889 +0.2506684 0.500693868 +0.2595749 0.500650383 +0.2684824 0.500680857 +0.2773899 0.500680851 +0.2862974 0.500594011 +0.2952040 0.500432568 +0.3041115 0.500255458 +0.3130190 0.500150711 +0.3219255 0.50007848 +0.3308330 0.500029407 +0.3397405 0.500059052 +0.3486480 0.500045736 +0.3575545 0.500015158 +0.3664621 0.500009054 +0.3753696 0.5 +0.3842771 0.50007373 +0.3931836 0.500174331 +0.4020911 0.500225399 +0.4109986 0.500291516 +0.4199051 0.500412535 +0.4288126 0.500576497 +0.4377201 0.500801775 +0.4466277 0.501111522 +0.4555342 0.501574533 +0.4644417 0.502026091 +0.4733492 0.502335546 +0.4822567 0.502617647 +0.4911632 0.502972201 +0.5000707 0.503373409 +0.5089782 0.503821451 +0.5178848 0.504233299 +0.5267923 0.504721053 +0.5356998 0.505328948 +0.5446073 0.505886823 +0.5535138 0.506234948 +0.5624213 0.507023125 +0.5713288 0.507877533 +0.5802353 0.508487744 +0.5891428 0.509031866 +0.5980504 0.50968972 +0.6069579 0.510218027 +0.6158644 0.510658973 +0.6247719 0.511115624 +0.6336794 0.511680605 +0.6425869 0.51221325 +0.6514934 0.512782018 +0.6604009 0.513385346 +0.6693084 0.514046756 +0.6782150 0.514806481 +0.6871225 0.515507891 +0.6960300 0.51601559 +0.7049375 0.516550022 +0.7138440 0.517254894 +0.7227515 0.517948968 +0.7316590 0.518649476 +0.7405655 0.519299778 +0.7494730 0.519851486 +0.7583806 0.520182441 +0.7672881 0.520643964 +0.7761946 0.521124475 +0.7851021 0.521653071 +0.7940096 0.522399179 +0.8029171 0.523137121 +0.8118236 0.523931187 +0.8207311 0.524798485 diff --git a/Workshop/Output/1-2-1_Ideal_Tor.png b/Workshop/Output/1-2-1_Ideal_Tor.png new file mode 100644 index 0000000000000000000000000000000000000000..044e3515d560cca0898d06c8930ed44f8e6d1a4f Binary files /dev/null and b/Workshop/Output/1-2-1_Ideal_Tor.png differ diff --git a/Workshop/Output/1-2-2_Ideal_Cyl.png b/Workshop/Output/1-2-2_Ideal_Cyl.png new file mode 100644 index 0000000000000000000000000000000000000000..b873762a4d1846f5facd6255ef93ddf40b64b6be Binary files /dev/null and b/Workshop/Output/1-2-2_Ideal_Cyl.png differ diff --git a/Workshop/Output/1-2-3_Meas_Cyl.png b/Workshop/Output/1-2-3_Meas_Cyl.png new file mode 100644 index 0000000000000000000000000000000000000000..b98983408f51eee4203010fbc7195b13c109db28 Binary files /dev/null and b/Workshop/Output/1-2-3_Meas_Cyl.png differ diff --git a/Workshop/Output/1-2-3_Meas_Cyl_Enlarged.png b/Workshop/Output/1-2-3_Meas_Cyl_Enlarged.png new file mode 100644 index 0000000000000000000000000000000000000000..c5aecd03ddc10d88cd177aeca429726916220fda Binary files /dev/null and b/Workshop/Output/1-2-3_Meas_Cyl_Enlarged.png differ diff --git a/Workshop/Output/5-a_Residuals.png b/Workshop/Output/5-a_Residuals.png new file mode 100644 index 0000000000000000000000000000000000000000..eff1c9c1ddf3aafc17d42684deb8fb6e9e637b41 Binary files /dev/null and b/Workshop/Output/5-a_Residuals.png differ diff --git a/Workshop/Output/5-b_MFR.png b/Workshop/Output/5-b_MFR.png new file mode 100644 index 0000000000000000000000000000000000000000..41bc12140092de3c951435b0241d8c7251c5ef1b Binary files /dev/null and b/Workshop/Output/5-b_MFR.png differ diff --git a/Workshop/Output/5-b_MFR_zoom.png b/Workshop/Output/5-b_MFR_zoom.png new file mode 100644 index 0000000000000000000000000000000000000000..fe2da933dcff63e0bde7798810f2887db249eb8b Binary files /dev/null and b/Workshop/Output/5-b_MFR_zoom.png differ diff --git a/Workshop/Output/Ideal_Cyl.out b/Workshop/Output/Ideal_Cyl.out new file mode 100644 index 0000000000000000000000000000000000000000..fa57bf989d85f4a6a13cc112899e56669db9e156 --- /dev/null +++ b/Workshop/Output/Ideal_Cyl.out @@ -0,0 +1,5 @@ +BSz ( 0.000000 0.009000 0.018000 0.027000 0.036000 0.045000 0.054000 0.063000 0.072000 0.081000 0.090000 0.099000 0.108000 0.117000 0.126000 0.135000 0.144000 0.153000 0.162000 0.171000 0.180000 0.189000 0.198000 0.207000 0.216000 0.225000 0.234000 0.243000 0.252000 0.261000 0.270000 0.279000 0.288000 0.297000 0.306000 0.315000 0.324000 0.333000 0.342000 0.351000 0.360000 0.369000 0.378000 0.387000 0.396000 0.405000 0.414000 0.423000 0.432000 0.441000 0.450000 0.459000 0.468000 0.477000 0.486000 0.495000 0.504000 0.513000 0.522000 0.531000 0.540000 0.549000 0.558000 0.567000 0.576000 0.585000 0.594000 0.603000 0.612000 0.621000 0.630000 0.639000 0.648000 0.657000 0.666000 0.675000 0.684000 0.693000 0.702000 0.711000 0.720000 0.729000 0.738000 0.747000 0.756000 0.765000 0.774000 0.783000 0.792000 0.801000 0.810000 0.819000 0.828000 0.837000 0.846000 0.855000 0.864000 0.873000 0.882000 0.891000 0.900000 0.909000 0.918000 0.927000 0.936000 0.945000 0.954000 0.963000 0.972000 0.981000 0.990000 0.999000 1.008000 1.017000 1.026000 1.035000 1.044000 1.053000 1.062000 1.071000 1.080000 1.089000 1.098000 1.107000 1.116000 1.125000 1.134000 1.143000 1.152000 1.161000 1.170000 1.179000 1.188000 1.197000 1.206000 1.215000 1.224000 1.233000 1.242000 1.251000 1.260000 1.269000 1.278000 1.287000 1.296000 1.305000 1.314000 1.323000 1.332000 1.341000 1.350000 1.359000 1.368000 1.377000 1.386000 1.395000 1.404000 1.413000 1.422000 1.431000 1.440000 1.449000 1.458000 1.467000 1.476000 1.485000 1.494000 1.503000 1.512000 1.521000 1.530000 1.539000 1.548000 1.557000 1.566000 1.575000 1.584000 1.593000 1.602000 1.611000 1.620000 1.629000 1.638000 1.647000 1.656000 1.665000 1.674000 1.683000 1.692000 1.701000 1.710000 1.719000 1.728000 1.737000 1.746000 1.755000 1.764000 1.773000 1.782000 1.791000 1.800000 1.809000 1.818000 1.827000 1.836000 1.845000 1.854000 1.863000 1.872000 1.881000 1.890000 1.899000 1.908000 1.917000 1.926000 1.935000 1.944000 1.953000 1.962000 1.971000 1.980000 1.989000 1.998000 2.007000 2.016000 2.025000 2.034000 2.043000 2.052000 2.061000 2.070000 2.079000 2.088000 2.097000 2.106000 2.115000 2.124000 2.133000 2.142000 2.151000 2.160000 2.169000 2.178000 2.187000 2.196000 2.205000 2.214000 2.223000 2.232000 2.241000 2.250000 2.259000 2.268000 2.277000 2.286000 2.295000 2.304000 2.313000 2.322000 2.331000 2.340000 2.349000 2.358000 2.367000 2.376000 2.385000 2.394000 2.403000 2.412000 2.421000 2.430000 2.439000 2.448000 2.457000 2.466000 2.475000 2.484000 2.493000 2.502000 2.511000 2.520000 2.529000 2.538000 2.547000 2.556000 2.565000 2.574000 2.583000 2.592000 2.601000 2.610000 2.619000 2.628000 2.637000 2.646000 2.655000 2.664000 2.673000 2.682000 2.691000 2.700000 2.709000 2.718000 2.727000 2.736000 2.745000 2.754000 2.763000 2.772000 2.781000 2.790000 2.799000 2.808000 2.817000 2.826000 2.835000 2.844000 2.853000 2.862000 2.871000 2.880000 2.889000 2.898000 2.907000 2.916000 2.925000 2.934000 2.943000 2.952000 2.961000 2.970000 2.979000 2.988000 2.997000 3.006000 3.015000 3.024000 3.033000 3.042000 3.051000 3.060000 3.069000 3.078000 3.087000 3.096000 3.105000 3.114000 3.123000 3.132000 3.141000 3.150000 3.159000 3.168000 3.177000 3.186000 3.195000 3.204000 3.213000 3.222000 3.231000 3.240000 3.249000 3.258000 3.267000 3.276000 3.285000 3.294000 3.303000 3.312000 3.321000 3.330000 3.339000 3.348000 3.357000 3.366000 3.375000 3.384000 3.393000 3.402000 3.411000 3.420000 3.429000 3.438000 3.447000 3.456000 3.465000 3.474000 3.483000 3.492000 3.501000 3.510000 3.519000 3.528000 3.537000 3.546000 3.555000 3.564000 3.573000 3.582000 3.591000 3.600000 3.609000 3.618000 3.627000 3.636000 3.645000 3.654000 3.663000 3.672000 3.681000 3.690000 3.699000 3.708000 3.717000 3.726000 3.735000 3.744000 3.753000 3.762000 3.771000 3.780000 3.789000 3.798000 3.807000 3.816000 3.825000 3.834000 3.843000 3.852000 3.861000 3.870000 3.879000 3.888000 3.897000 3.906000 3.915000 3.924000 3.933000 3.942000 3.951000 3.960000 3.969000 3.978000 3.987000 3.996000 4.005000 4.014000 4.023000 4.032000 4.041000 4.050000 4.059000 4.068000 4.077000 4.086000 4.095000 4.104000 4.113000 4.122000 4.131000 4.140000 4.149000 4.158000 4.167000 4.176000 4.185000 4.194000 4.203000 4.212000 4.221000 4.230000 4.239000 4.248000 4.257000 4.266000 4.275000 4.284000 4.293000 4.302000 4.311000 4.320000 4.329000 4.338000 4.347000 4.356000 4.365000 4.374000 4.383000 4.392000 4.401000 4.410000 4.419000 4.428000 4.437000 4.446000 4.455000 4.464000 4.473000 4.482000 4.491000 4.500000 4.509000 4.518000 4.527000 4.536000 4.545000 4.554000 4.563000 4.572000 4.581000 4.590000 4.599000 4.608000 4.617000 4.626000 4.635000 4.644000 4.653000 4.662000 4.671000 4.680000 4.689000 4.698000 4.707000 4.716000 4.725000 4.734000 4.743000 4.752000 4.761000 4.770000 4.779000 4.788000 4.797000 4.806000 4.815000 4.824000 4.833000 4.842000 4.851000 4.860000 4.869000 4.878000 4.887000 4.896000 4.905000 4.914000 4.923000 4.932000 4.941000 4.950000 4.959000 4.968000 4.977000 4.986000 4.995000 5.004000 5.013000 5.022000 5.031000 5.040000 5.049000 5.058000 5.067000 5.076000 5.085000 5.094000 5.103000 5.112000 5.121000 5.130000 5.139000 5.148000 5.157000 5.166000 5.175000 5.184000 5.193000 5.202000 5.211000 5.220000 5.229000 5.238000 5.247000 5.256000 5.265000 5.274000 5.283000 5.292000 5.301000 5.310000 5.319000 5.328000 5.337000 5.346000 5.355000 5.364000 5.373000 5.382000 5.391000 5.400000 5.409000 5.418000 5.427000 5.436000 5.445000 5.454000 5.463000 5.472000 5.481000 5.490000 5.499000 5.508000 5.517000 5.526000 5.535000 5.544000 5.553000 5.562000 5.571000 5.580000 5.589000 5.598000 5.607000 5.616000 5.625000 5.634000 5.643000 5.652000 5.661000 5.670000 5.679000 5.688000 5.697000 5.706000 5.715000 5.724000 5.733000 5.742000 5.751000 5.760000 5.769000 5.778000 5.787000 5.796000 5.805000 5.814000 5.823000 5.832000 5.841000 5.850000 5.859000 5.868000 5.877000 5.886000 5.895000 5.904000 5.913000 5.922000 5.931000 5.940000 5.949000 5.958000 5.967000 5.976000 5.985000 5.994000 6.003000 6.012000 6.021000 6.030000 6.039000 6.048000 6.057000 6.066000 6.075000 6.084000 6.093000 6.102000 6.111000 6.120000 6.129000 6.138000 6.147000 6.156000 6.165000 6.174000 6.183000 6.192000 6.201000 6.210000 6.219000 6.228000 6.237000 6.246000 6.255000 6.264000 6.273000 6.282000 6.291000 6.300000 6.309000 6.318000 6.327000 6.336000 6.345000 6.354000 6.363000 6.372000 6.381000 6.390000 6.399000 6.408000 6.417000 6.426000 6.435000 6.444000 6.453000 6.462000 6.471000 6.480000 6.489000 6.498000 6.507000 6.516000 6.525000 6.534000 6.543000 6.552000 6.561000 6.570000 6.579000 6.588000 6.597000 6.606000 6.615000 6.624000 6.633000 6.642000 6.651000 6.660000 6.669000 6.678000 6.687000 6.696000 6.705000 6.714000 6.723000 6.732000 6.741000 6.750000 6.759000 6.768000 6.777000 6.786000 6.795000 6.804000 6.813000 6.822000 6.831000 6.840000 6.849000 6.858000 6.867000 6.876000 6.885000 6.894000 6.903000 6.912000 6.921000 6.930000 6.939000 6.948000 6.957000 6.966000 6.975000 6.984000 6.993000 7.002000 7.011000 7.020000 7.029000 7.038000 7.047000 7.056000 7.065000 7.074000 7.083000 7.092000 7.101000 7.110000 7.119000 7.128000 7.137000 7.146000 7.155000 7.164000 7.173000 7.182000 7.191000 7.200000 7.209000 7.218000 7.227000 7.236000 7.245000 7.254000 7.263000 7.272000 7.281000 7.290000 7.299000 7.308000 7.317000 7.326000 7.335000 7.344000 7.353000 7.362000 7.371000 7.380000 7.389000 7.398000 7.407000 7.416000 7.425000 7.434000 7.443000 7.452000 7.461000 7.470000 7.479000 7.488000 7.497000 7.506000 7.515000 7.524000 7.533000 7.542000 7.551000 7.560000 7.569000 7.578000 7.587000 7.596000 7.605000 7.614000 7.623000 7.632000 7.641000 7.650000 7.659000 7.668000 7.677000 7.686000 7.695000 7.704000 7.713000 7.722000 7.731000 7.740000 7.749000 7.758000 7.767000 7.776000 7.785000 7.794000 7.803000 7.812000 7.821000 7.830000 7.839000 7.848000 7.857000 7.866000 7.875000 7.884000 7.893000 7.902000 7.911000 7.920000 7.929000 7.938000 7.947000 7.956000 7.965000 7.974000 7.983000 7.992000 8.001000 8.010000 8.019000 8.028000 8.037000 8.046000 8.055000 8.064000 8.073000 8.082000 8.091000 8.100000 8.109000 8.118000 8.127000 8.136000 8.145000 8.154000 8.163000 8.172000 8.181000 8.190000 8.199000 8.208000 8.217000 8.226000 8.235000 8.244000 8.253000 8.262000 8.271000 8.280000 8.289000 8.298000 8.307000 8.316000 8.325000 8.334000 8.343000 8.352000 8.361000 8.370000 8.379000 8.388000 8.397000 8.406000 8.415000 8.424000 8.433000 8.442000 8.451000 8.460000 8.469000 8.478000 8.487000 8.496000 8.505000 8.514000 8.523000 8.532000 8.541000 8.550000 8.559000 8.568000 8.577000 8.586000 8.595000 8.604000 8.613000 8.622000 8.631000 8.640000 8.649000 8.658000 8.667000 8.676000 8.685000 8.694000 8.703000 8.712000 8.721000 8.730000 8.739000 8.748000 8.757000 8.766000 8.775000 8.784000 8.793000 8.802000 8.811000 8.820000 8.829000 8.838000 8.847000 8.856000 8.865000 8.874000 8.883000 8.892000 8.901000 8.910000 8.919000 8.928000 8.937000 8.946000 8.955000 8.964000 8.973000 8.982000 8.991000 9.000000 ); + +BSy ( 1.500000 1.366138 1.311119 1.269195 1.234098 1.203394 1.175833 1.150671 1.127420 1.105742 1.085392 1.066181 1.047965 1.030627 1.014074 0.998228 0.983024 0.968407 0.954330 0.940751 0.927636 0.914954 0.902676 0.890778 0.879239 0.868039 0.857159 0.846585 0.836301 0.826295 0.816553 0.807065 0.797821 0.788810 0.780025 0.771457 0.763098 0.754942 0.746982 0.739212 0.731625 0.724217 0.716983 0.709917 0.703016 0.696274 0.689689 0.683256 0.676971 0.670832 0.664835 0.658977 0.653256 0.647667 0.642210 0.636881 0.631677 0.626598 0.621640 0.616802 0.612081 0.607476 0.602985 0.598606 0.594338 0.590179 0.586127 0.582181 0.578341 0.574603 0.570968 0.567434 0.564000 0.560665 0.557427 0.554286 0.551241 0.548290 0.545434 0.542671 0.540000 0.537421 0.534932 0.532534 0.530225 0.528005 0.525873 0.523828 0.521871 0.520001 0.518216 0.516517 0.514903 0.513374 0.511929 0.510568 0.509291 0.508097 0.506986 0.505958 0.505013 0.504149 0.503368 0.502668 0.502050 0.501514 0.501059 0.500685 0.500392 0.500181 0.500050 0.500001 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000 0.500489 0.501119 0.501748 0.502378 0.503007 0.503636 0.504266 0.504895 0.505524 0.506154 0.506783 0.507412 0.508042 0.508671 0.509300 0.509930 0.510559 0.511188 0.511818 0.512447 0.513076 0.513706 0.514335 0.514964 0.515594 0.516223 0.516852 0.517482 0.518111 0.518740 0.519370 0.519999 0.520628 0.521258 0.521887 0.522516 0.523146 0.523775 0.524404 0.525034 0.525663 0.526292 0.526922 0.527551 0.528181 0.528810 0.529439 0.530069 0.530698 0.531327 0.531957 0.532586 0.533215 0.533845 0.534474 0.535103 0.535733 0.536362 0.536991 0.537621 0.538250 0.538879 0.539509 0.540138 0.540767 0.541397 0.542026 0.542655 0.543285 0.543914 0.544543 0.545173 0.545802 0.546431 0.547061 0.547690 0.548319 0.548949 0.549578 0.550207 0.550837 0.551466 0.552095 0.552725 0.553354 0.553983 0.554613 0.555242 0.555872 0.556501 0.557130 0.557760 0.558389 0.559018 0.559648 0.560277 0.560906 0.561536 0.562165 0.562794 0.563424 0.564053 0.564682 0.565312 0.565941 0.566570 0.567200 0.567829 0.568458 0.569088 0.569717 0.570346 0.570976 0.571605 0.572234 0.572864 0.573493 0.574122 0.574752 0.575381 0.576010 0.576640 0.577269 0.577898 0.578528 0.579157 0.579786 0.580416 0.581045 0.581675 0.582304 0.582933 0.583563 0.584192 0.584821 0.585451 0.586080 0.586709 0.587339 0.587968 0.588597 0.589227 0.589856 0.590485 0.591115 0.591744 0.592373 0.593003 0.593632 0.594261 0.594891 0.595520 0.596149 0.596779 0.597408 0.598037 0.598667 0.599296 0.599925 0.600555 0.601184 0.601813 0.602443 0.603072 0.603701 0.604331 0.604960 0.605589 0.606219 0.606848 0.607478 0.608107 0.608736 0.609366 0.609995 0.610624 0.611254 0.611883 0.612512 0.613142 0.613771 0.614400 0.615030 0.615659 0.616288 0.616918 0.617547 0.618176 0.618806 0.619435 0.620064 0.620694 0.621323 0.621952 0.622582 0.623211 0.623840 0.624470 0.625099 0.625728 0.626358 0.626987 0.627616 0.628246 0.628875 0.629504 0.630134 0.630763 0.631392 0.632022 0.632651 0.633281 0.633910 0.634539 0.635169 0.635798 0.636427 0.637057 0.637686 0.638315 0.638945 0.639574 0.640203 0.640833 0.641462 0.642091 0.642721 0.643350 0.643979 0.644609 0.645238 0.645867 0.646497 0.647126 0.647755 0.648385 0.649014 0.649643 0.650273 0.650902 0.651531 0.652161 0.652790 0.653419 0.654049 0.654678 0.655307 0.655937 0.656566 0.657195 0.657825 0.658454 0.659083 0.659713 0.660342 0.660972 0.661601 0.662230 0.662860 0.663489 0.664118 0.664748 0.665377 0.666006 0.666636 0.667265 0.667894 0.668524 0.669153 0.669782 0.670412 0.671041 0.671670 0.672300 0.672929 0.673558 0.674188 0.674817 0.675446 0.676076 0.676705 0.677334 0.677964 0.678593 0.679222 0.679852 0.680481 0.681110 0.681740 0.682369 0.682998 0.683628 0.684257 0.684886 0.685516 0.686145 0.686775 0.687404 0.688033 0.688663 0.689292 0.689921 0.690551 0.691180 0.691809 0.692439 0.693068 0.693697 0.694327 0.694956 0.695585 0.696215 0.696844 0.697473 0.698103 0.698732 0.699361 0.699991 0.700620 0.701249 0.701879 0.702508 0.703137 0.703767 0.704396 0.705025 0.705655 0.706284 0.706913 0.707543 0.708172 0.708801 0.709431 0.710060 0.710689 0.711319 0.711948 0.712578 0.713207 0.713836 0.714466 0.715095 0.715724 0.716354 0.716983 0.717612 0.718242 0.718871 0.719500 0.720130 0.720759 0.721388 0.722018 0.722647 0.723276 0.723906 0.724535 0.725164 0.725794 0.726423 0.727052 0.727682 0.728311 0.728940 0.729570 0.730199 0.730828 0.731458 0.732087 0.732716 0.733346 0.733975 0.734604 0.735234 0.735863 0.736492 0.737122 0.737751 0.738381 0.739010 0.739639 0.740269 0.740898 0.741527 0.742157 0.742786 0.743415 0.744045 0.744674 0.745303 0.745933 0.746562 0.747191 0.747821 0.748450 0.749079 0.749709 0.750338 0.750967 0.751597 0.752226 0.752855 0.753485 0.754114 0.754743 0.755373 0.756002 0.756631 0.757261 0.757890 0.758519 0.759149 0.759778 0.760407 0.761037 0.761666 0.762295 0.762925 0.763554 0.764183 0.764813 0.765442 0.766072 0.766701 0.767330 0.767960 0.768589 0.769218 0.769848 0.770477 0.771106 0.771736 0.772365 0.772994 0.773624 0.774253 0.774882 0.775512 0.776141 0.776770 0.777400 0.778029 0.778658 0.779288 0.779917 0.780546 0.781176 0.781805 0.782434 0.783064 0.783693 0.784322 0.784952 0.785581 0.786210 0.786840 0.787469 0.788098 0.788728 0.789357 0.789986 0.790616 0.791245 0.791875 0.792504 0.793133 0.793763 0.794392 0.795021 0.795651 0.796280 0.796909 0.797539 0.798168 0.798797 0.799427 0.800056 0.800685 0.801315 0.801944 0.802573 0.803203 0.803832 0.804461 0.805091 0.805720 0.806349 0.806979 0.807608 0.808237 0.808867 0.809496 0.810125 0.810755 0.811384 0.812013 0.812643 0.813272 0.813901 0.814531 0.815160 0.815789 0.816419 0.817048 0.817678 0.818307 0.818936 0.819566 0.820195 0.820824 0.821454 0.822083 0.822712 0.823342 0.823971 0.824600 0.825230 0.825859 0.826488 0.827118 0.827747 0.828376 0.829006 0.829635 0.830264 0.830894 0.831523 0.832152 0.832782 0.833411 0.834040 0.834670 0.835299 0.835928 0.836558 0.837187 0.837816 0.838446 0.839075 0.839704 0.840334 0.840963 0.841592 0.842222 0.842851 0.843481 0.844110 0.844739 0.845369 0.845998 0.846627 0.847257 0.847886 0.848515 0.849145 0.849774 0.850403 0.851033 0.851662 0.852291 0.852921 0.853550 0.854179 0.854809 0.855438 0.856067 0.856697 0.857326 0.857955 0.858585 0.859214 0.859843 0.860473 0.861102 0.861731 0.862361 0.862990 0.863619 0.864249 0.864878 0.865507 0.866137 0.866766 0.867395 0.868025 0.868654 0.869283 0.869913 0.870542 0.871172 0.871801 0.872430 0.873060 0.873689 0.874318 0.874948 0.875577 0.876206 0.876836 0.877465 0.878094 0.878724 0.879353 0.879982 0.880612 0.881241 0.881870 0.882500 0.883129 0.883758 0.884388 0.885017 0.885646 0.886276 0.886905 0.887534 0.888164 0.888793 0.889422 0.890052 0.890681 0.891310 0.891940 0.892569 0.893198 0.893828 0.894457 0.895086 0.895716 0.896345 0.896975 0.897604 0.898233 0.898863 0.899492 0.900121 0.900751 0.901380 0.902009 0.902639 0.903268 0.903897 0.904527 0.905156 0.905785 0.906415 0.907044 0.907673 0.908303 0.908932 0.909561 0.910191 0.910820 0.911449 0.912079 0.912708 0.913337 0.913967 0.914596 0.915225 0.915855 0.916484 0.917113 0.917743 0.918372 0.919001 0.919631 0.920260 0.920889 0.921519 0.922148 0.922778 0.923407 0.924036 0.924666 0.925295 0.925924 0.926554 0.927183 0.927812 0.928442 0.929071 0.929700 0.930330 0.930959 0.931588 0.932218 0.932847 0.933476 0.934106 0.934735 0.935364 0.935994 0.936623 0.937252 0.937882 0.938511 0.939140 0.939770 0.940399 0.941028 0.941658 0.942287 0.942916 0.943546 0.944175 0.944804 0.945434 0.946063 0.946692 0.947322 0.947951 0.948580 0.949210 0.949839 0.950469 0.951098 0.951727 0.952357 0.952986 0.953615 0.954245 0.954874 0.955503 0.956133 0.956762 0.957391 0.958021 0.958650 0.959279 0.959909 0.960538 0.961167 0.961797 0.962426 0.963055 0.963685 0.964314 0.964943 0.965573 0.966202 0.966831 0.967461 0.968090 0.968719 0.969349 0.969978 0.970607 0.971237 0.971866 0.972495 0.973125 0.973754 0.974383 0.975013 0.975642 0.976272 0.976901 0.977530 0.978160 0.978789 0.979418 0.980048 0.980677 0.981306 0.981936 0.982565 0.983194 0.983824 0.984453 0.985082 0.985712 0.986341 0.986970 0.987600 0.988229 0.988858 0.989488 ); + +BSd 167; \ No newline at end of file diff --git a/Workshop/Output/Ideal_Tor.out b/Workshop/Output/Ideal_Tor.out new file mode 100644 index 0000000000000000000000000000000000000000..28b8f070e27d6273682d9e505efe842be2314f0a --- /dev/null +++ b/Workshop/Output/Ideal_Tor.out @@ -0,0 +1,5 @@ +BSz ( 0.000000 0.009000 0.018000 0.027000 0.036000 0.045000 0.054000 0.063000 0.072000 0.081000 0.090000 0.099000 0.108000 0.117000 0.126000 0.135000 0.144000 0.153000 0.162000 0.171000 0.180000 0.189000 0.198000 0.207000 0.216000 0.225000 0.234000 0.243000 0.252000 0.261000 0.270000 0.279000 0.288000 0.297000 0.306000 0.315000 0.324000 0.333000 0.342000 0.351000 0.360000 0.369000 0.378000 0.387000 0.396000 0.405000 0.414000 0.423000 0.432000 0.441000 0.450000 0.459000 0.468000 0.477000 0.486000 0.495000 0.504000 0.513000 0.522000 0.531000 0.540000 0.549000 0.558000 0.567000 0.576000 0.585000 0.594000 0.603000 0.612000 0.621000 0.630000 0.639000 0.648000 0.657000 0.666000 0.675000 0.684000 0.693000 0.702000 0.711000 0.720000 0.729000 0.738000 0.747000 0.756000 0.765000 0.774000 0.783000 0.792000 0.801000 0.810000 0.819000 0.828000 0.837000 0.846000 0.855000 0.864000 0.873000 0.882000 0.891000 0.900000 0.909000 0.918000 0.927000 0.936000 0.945000 0.954000 0.963000 0.972000 0.981000 0.990000 0.999000 1.008000 1.017000 1.026000 1.035000 1.044000 1.053000 1.062000 1.071000 1.080000 1.089000 1.098000 1.107000 1.116000 1.125000 1.134000 1.143000 1.152000 1.161000 1.170000 1.179000 1.188000 1.197000 1.206000 1.215000 1.224000 1.233000 1.242000 1.251000 1.260000 1.269000 1.278000 1.287000 1.296000 1.305000 1.314000 1.323000 1.332000 1.341000 1.350000 1.359000 1.368000 1.377000 1.386000 1.395000 1.404000 1.413000 1.422000 1.431000 1.440000 1.449000 1.458000 1.467000 1.476000 1.485000 1.494000 1.503000 1.512000 1.521000 1.530000 1.539000 1.548000 1.557000 1.566000 1.575000 1.584000 1.593000 1.602000 1.611000 1.620000 1.629000 1.638000 1.647000 1.656000 1.665000 1.674000 1.683000 1.692000 1.701000 1.710000 1.719000 1.728000 1.737000 1.746000 1.755000 1.764000 1.773000 1.782000 1.791000 1.800000 1.809000 1.818000 1.827000 1.836000 1.845000 1.854000 1.863000 1.872000 1.881000 1.890000 1.899000 1.908000 1.917000 1.926000 1.935000 1.944000 1.953000 1.962000 1.971000 1.980000 1.989000 1.998000 2.007000 2.016000 2.025000 2.034000 2.043000 2.052000 2.061000 2.070000 2.079000 2.088000 2.097000 2.106000 2.115000 2.124000 2.133000 2.142000 2.151000 2.160000 2.169000 2.178000 2.187000 2.196000 2.205000 2.214000 2.223000 2.232000 2.241000 2.250000 2.259000 2.268000 2.277000 2.286000 2.295000 2.304000 2.313000 2.322000 2.331000 2.340000 2.349000 2.358000 2.367000 2.376000 2.385000 2.394000 2.403000 2.412000 2.421000 2.430000 2.439000 2.448000 2.457000 2.466000 2.475000 2.484000 2.493000 2.502000 2.511000 2.520000 2.529000 2.538000 2.547000 2.556000 2.565000 2.574000 2.583000 2.592000 2.601000 2.610000 2.619000 2.628000 2.637000 2.646000 2.655000 2.664000 2.673000 2.682000 2.691000 2.700000 2.709000 2.718000 2.727000 2.736000 2.745000 2.754000 2.763000 2.772000 2.781000 2.790000 2.799000 2.808000 2.817000 2.826000 2.835000 2.844000 2.853000 2.862000 2.871000 2.880000 2.889000 2.898000 2.907000 2.916000 2.925000 2.934000 2.943000 2.952000 2.961000 2.970000 2.979000 2.988000 2.997000 3.006000 3.015000 3.024000 3.033000 3.042000 3.051000 3.060000 3.069000 3.078000 3.087000 3.096000 3.105000 3.114000 3.123000 3.132000 3.141000 3.150000 3.159000 3.168000 3.177000 3.186000 3.195000 3.204000 3.213000 3.222000 3.231000 3.240000 3.249000 3.258000 3.267000 3.276000 3.285000 3.294000 3.303000 3.312000 3.321000 3.330000 3.339000 3.348000 3.357000 3.366000 3.375000 3.384000 3.393000 3.402000 3.411000 3.420000 3.429000 3.438000 3.447000 3.456000 3.465000 3.474000 3.483000 3.492000 3.501000 3.510000 3.519000 3.528000 3.537000 3.546000 3.555000 3.564000 3.573000 3.582000 3.591000 3.600000 3.609000 3.618000 3.627000 3.636000 3.645000 3.654000 3.663000 3.672000 3.681000 3.690000 3.699000 3.708000 3.717000 3.726000 3.735000 3.744000 3.753000 3.762000 3.771000 3.780000 3.789000 3.798000 3.807000 3.816000 3.825000 3.834000 3.843000 3.852000 3.861000 3.870000 3.879000 3.888000 3.897000 3.906000 3.915000 3.924000 3.933000 3.942000 3.951000 3.960000 3.969000 3.978000 3.987000 3.996000 4.005000 4.014000 4.023000 4.032000 4.041000 4.050000 4.059000 4.068000 4.077000 4.086000 4.095000 4.104000 4.113000 4.122000 4.131000 4.140000 4.149000 4.158000 4.167000 4.176000 4.185000 4.194000 4.203000 4.212000 4.221000 4.230000 4.239000 4.248000 4.257000 4.266000 4.275000 4.284000 4.293000 4.302000 4.311000 4.320000 4.329000 4.338000 4.347000 4.356000 4.365000 4.374000 4.383000 4.392000 4.401000 4.410000 4.419000 4.428000 4.437000 4.446000 4.455000 4.464000 4.473000 4.482000 4.491000 4.500000 4.509000 4.518000 4.527000 4.536000 4.545000 4.554000 4.563000 4.572000 4.581000 4.590000 4.599000 4.608000 4.617000 4.626000 4.635000 4.644000 4.653000 4.662000 4.671000 4.680000 4.689000 4.698000 4.707000 4.716000 4.725000 4.734000 4.743000 4.752000 4.761000 4.770000 4.779000 4.788000 4.797000 4.806000 4.815000 4.824000 4.833000 4.842000 4.851000 4.860000 4.869000 4.878000 4.887000 4.896000 4.905000 4.914000 4.923000 4.932000 4.941000 4.950000 4.959000 4.968000 4.977000 4.986000 4.995000 5.004000 5.013000 5.022000 5.031000 5.040000 5.049000 5.058000 5.067000 5.076000 5.085000 5.094000 5.103000 5.112000 5.121000 5.130000 5.139000 5.148000 5.157000 5.166000 5.175000 5.184000 5.193000 5.202000 5.211000 5.220000 5.229000 5.238000 5.247000 5.256000 5.265000 5.274000 5.283000 5.292000 5.301000 5.310000 5.319000 5.328000 5.337000 5.346000 5.355000 5.364000 5.373000 5.382000 5.391000 5.400000 5.409000 5.418000 5.427000 5.436000 5.445000 5.454000 5.463000 5.472000 5.481000 5.490000 5.499000 5.508000 5.517000 5.526000 5.535000 5.544000 5.553000 5.562000 5.571000 5.580000 5.589000 5.598000 5.607000 5.616000 5.625000 5.634000 5.643000 5.652000 5.661000 5.670000 5.679000 5.688000 5.697000 5.706000 5.715000 5.724000 5.733000 5.742000 5.751000 5.760000 5.769000 5.778000 5.787000 5.796000 5.805000 5.814000 5.823000 5.832000 5.841000 5.850000 5.859000 5.868000 5.877000 5.886000 5.895000 5.904000 5.913000 5.922000 5.931000 5.940000 5.949000 5.958000 5.967000 5.976000 5.985000 5.994000 6.003000 6.012000 6.021000 6.030000 6.039000 6.048000 6.057000 6.066000 6.075000 6.084000 6.093000 6.102000 6.111000 6.120000 6.129000 6.138000 6.147000 6.156000 6.165000 6.174000 6.183000 6.192000 6.201000 6.210000 6.219000 6.228000 6.237000 6.246000 6.255000 6.264000 6.273000 6.282000 6.291000 6.300000 6.309000 6.318000 6.327000 6.336000 6.345000 6.354000 6.363000 6.372000 6.381000 6.390000 6.399000 6.408000 6.417000 6.426000 6.435000 6.444000 6.453000 6.462000 6.471000 6.480000 6.489000 6.498000 6.507000 6.516000 6.525000 6.534000 6.543000 6.552000 6.561000 6.570000 6.579000 6.588000 6.597000 6.606000 6.615000 6.624000 6.633000 6.642000 6.651000 6.660000 6.669000 6.678000 6.687000 6.696000 6.705000 6.714000 6.723000 6.732000 6.741000 6.750000 6.759000 6.768000 6.777000 6.786000 6.795000 6.804000 6.813000 6.822000 6.831000 6.840000 6.849000 6.858000 6.867000 6.876000 6.885000 6.894000 6.903000 6.912000 6.921000 6.930000 6.939000 6.948000 6.957000 6.966000 6.975000 6.984000 6.993000 7.002000 7.011000 7.020000 7.029000 7.038000 7.047000 7.056000 7.065000 7.074000 7.083000 7.092000 7.101000 7.110000 7.119000 7.128000 7.137000 7.146000 7.155000 7.164000 7.173000 7.182000 7.191000 7.200000 7.209000 7.218000 7.227000 7.236000 7.245000 7.254000 7.263000 7.272000 7.281000 7.290000 7.299000 7.308000 7.317000 7.326000 7.335000 7.344000 7.353000 7.362000 7.371000 7.380000 7.389000 7.398000 7.407000 7.416000 7.425000 7.434000 7.443000 7.452000 7.461000 7.470000 7.479000 7.488000 7.497000 7.506000 7.515000 7.524000 7.533000 7.542000 7.551000 7.560000 7.569000 7.578000 7.587000 7.596000 7.605000 7.614000 7.623000 7.632000 7.641000 7.650000 7.659000 7.668000 7.677000 7.686000 7.695000 7.704000 7.713000 7.722000 7.731000 7.740000 7.749000 7.758000 7.767000 7.776000 7.785000 7.794000 7.803000 7.812000 7.821000 7.830000 7.839000 7.848000 7.857000 7.866000 7.875000 7.884000 7.893000 7.902000 7.911000 7.920000 7.929000 7.938000 7.947000 7.956000 7.965000 7.974000 7.983000 7.992000 8.001000 8.010000 8.019000 8.028000 8.037000 8.046000 8.055000 8.064000 8.073000 8.082000 8.091000 8.100000 8.109000 8.118000 8.127000 8.136000 8.145000 8.154000 8.163000 8.172000 8.181000 8.190000 8.199000 8.208000 8.217000 8.226000 8.235000 8.244000 8.253000 8.262000 8.271000 8.280000 8.289000 8.298000 8.307000 8.316000 8.325000 8.334000 8.343000 8.352000 8.361000 8.370000 8.379000 8.388000 8.397000 8.406000 8.415000 8.424000 8.433000 8.442000 8.451000 8.460000 8.469000 8.478000 8.487000 8.496000 8.505000 8.514000 8.523000 8.532000 8.541000 8.550000 8.559000 8.568000 8.577000 8.586000 8.595000 8.604000 8.613000 8.622000 8.631000 8.640000 8.649000 8.658000 8.667000 8.676000 8.685000 8.694000 8.703000 8.712000 8.721000 8.730000 8.739000 8.748000 8.757000 8.766000 8.775000 8.784000 8.793000 8.802000 8.811000 8.820000 8.829000 8.838000 8.847000 8.856000 8.865000 8.874000 8.883000 8.892000 8.901000 8.910000 8.919000 8.928000 8.937000 8.946000 8.955000 8.964000 8.973000 8.982000 8.991000 9.000000 ); + +BSy ( 1.250000 1.238841 1.227844 1.217004 1.206318 1.195781 1.185390 1.175142 1.165033 1.155061 1.145221 1.135512 1.125931 1.116474 1.107140 1.097926 1.088829 1.079847 1.070979 1.062222 1.053573 1.045032 1.036596 1.028264 1.020033 1.011901 1.003869 0.995933 0.988092 0.980345 0.972690 0.965127 0.957653 0.950267 0.942968 0.935755 0.928627 0.921582 0.914620 0.907739 0.900938 0.894216 0.887573 0.881007 0.874517 0.868103 0.861764 0.855498 0.849305 0.843183 0.837134 0.831154 0.825245 0.819404 0.813632 0.807927 0.802289 0.796717 0.791211 0.785770 0.780393 0.775079 0.769829 0.764642 0.759516 0.754452 0.749449 0.744506 0.739624 0.734800 0.730035 0.725329 0.720681 0.716091 0.711557 0.707080 0.702659 0.698294 0.693985 0.689730 0.685531 0.681385 0.677293 0.673255 0.669270 0.665337 0.661458 0.657630 0.653854 0.650130 0.646456 0.642834 0.639262 0.635741 0.632269 0.628848 0.625475 0.622152 0.618878 0.615652 0.612475 0.609347 0.606266 0.603232 0.600247 0.597308 0.594417 0.591572 0.588774 0.586022 0.583317 0.580658 0.578044 0.575476 0.572954 0.570476 0.568044 0.565657 0.563315 0.561017 0.558764 0.556555 0.554390 0.552269 0.550192 0.548158 0.546168 0.544222 0.542319 0.540459 0.538642 0.536868 0.535137 0.533449 0.531803 0.530200 0.528639 0.527121 0.525644 0.524210 0.522818 0.521468 0.520159 0.518892 0.517667 0.516484 0.515342 0.514241 0.513182 0.512164 0.511188 0.510252 0.509358 0.508505 0.507693 0.506922 0.506191 0.505502 0.504853 0.504246 0.503679 0.503152 0.502667 0.502222 0.501818 0.501454 0.501131 0.500848 0.500606 0.500405 0.500244 0.500124 0.500044 0.500005 0.500006 0.500047 0.500129 0.500252 0.500415 0.500619 0.500863 0.501148 0.501473 0.501839 0.502246 0.502693 0.503181 0.503709 0.504278 0.504889 0.505518 0.506147 0.506777 0.507406 0.508035 0.508665 0.509294 0.509923 0.510553 0.511182 0.511811 0.512441 0.513070 0.513699 0.514329 0.514958 0.515587 0.516217 0.516846 0.517475 0.518105 0.518734 0.519363 0.519993 0.520622 0.521251 0.521881 0.522510 0.523139 0.523769 0.524398 0.525027 0.525657 0.526286 0.526915 0.527545 0.528174 0.528803 0.529433 0.530062 0.530692 0.531321 0.531950 0.532580 0.533209 0.533838 0.534468 0.535097 0.535726 0.536356 0.536985 0.537614 0.538244 0.538873 0.539502 0.540132 0.540761 0.541390 0.542020 0.542649 0.543278 0.543908 0.544537 0.545166 0.545796 0.546425 0.547054 0.547684 0.548313 0.548942 0.549572 0.550201 0.550830 0.551460 0.552089 0.552718 0.553348 0.553977 0.554606 0.555236 0.555865 0.556494 0.557124 0.557753 0.558383 0.559012 0.559641 0.560271 0.560900 0.561529 0.562159 0.562788 0.563417 0.564047 0.564676 0.565305 0.565935 0.566564 0.567193 0.567823 0.568452 0.569081 0.569711 0.570340 0.570969 0.571599 0.572228 0.572857 0.573487 0.574116 0.574745 0.575375 0.576004 0.576633 0.577263 0.577892 0.578521 0.579151 0.579780 0.580409 0.581039 0.581668 0.582297 0.582927 0.583556 0.584186 0.584815 0.585444 0.586074 0.586703 0.587332 0.587962 0.588591 0.589220 0.589850 0.590479 0.591108 0.591738 0.592367 0.592996 0.593626 0.594255 0.594884 0.595514 0.596143 0.596772 0.597402 0.598031 0.598660 0.599290 0.599919 0.600548 0.601178 0.601807 0.602436 0.603066 0.603695 0.604324 0.604954 0.605583 0.606212 0.606842 0.607471 0.608100 0.608730 0.609359 0.609989 0.610618 0.611247 0.611877 0.612506 0.613135 0.613765 0.614394 0.615023 0.615653 0.616282 0.616911 0.617541 0.618170 0.618799 0.619429 0.620058 0.620687 0.621317 0.621946 0.622575 0.623205 0.623834 0.624463 0.625093 0.625722 0.626351 0.626981 0.627610 0.628239 0.628869 0.629498 0.630127 0.630757 0.631386 0.632015 0.632645 0.633274 0.633903 0.634533 0.635162 0.635792 0.636421 0.637050 0.637680 0.638309 0.638938 0.639568 0.640197 0.640826 0.641456 0.642085 0.642714 0.643344 0.643973 0.644602 0.645232 0.645861 0.646490 0.647120 0.647749 0.648378 0.649008 0.649637 0.650266 0.650896 0.651525 0.652154 0.652784 0.653413 0.654042 0.654672 0.655301 0.655930 0.656560 0.657189 0.657818 0.658448 0.659077 0.659706 0.660336 0.660965 0.661594 0.662224 0.662853 0.663483 0.664112 0.664741 0.665371 0.666000 0.666629 0.667259 0.667888 0.668517 0.669147 0.669776 0.670405 0.671035 0.671664 0.672293 0.672923 0.673552 0.674181 0.674811 0.675440 0.676069 0.676699 0.677328 0.677957 0.678587 0.679216 0.679845 0.680475 0.681104 0.681733 0.682363 0.682992 0.683621 0.684251 0.684880 0.685509 0.686139 0.686768 0.687397 0.688027 0.688656 0.689286 0.689915 0.690544 0.691174 0.691803 0.692432 0.693062 0.693691 0.694320 0.694950 0.695579 0.696208 0.696838 0.697467 0.698096 0.698726 0.699355 0.699984 0.700614 0.701243 0.701872 0.702502 0.703131 0.703760 0.704390 0.705019 0.705648 0.706278 0.706907 0.707536 0.708166 0.708795 0.709424 0.710054 0.710683 0.711312 0.711942 0.712571 0.713200 0.713830 0.714459 0.715089 0.715718 0.716347 0.716977 0.717606 0.718235 0.718865 0.719494 0.720123 0.720753 0.721382 0.722011 0.722641 0.723270 0.723899 0.724529 0.725158 0.725787 0.726417 0.727046 0.727675 0.728305 0.728934 0.729563 0.730193 0.730822 0.731451 0.732081 0.732710 0.733339 0.733969 0.734598 0.735227 0.735857 0.736486 0.737115 0.737745 0.738374 0.739003 0.739633 0.740262 0.740892 0.741521 0.742150 0.742780 0.743409 0.744038 0.744668 0.745297 0.745926 0.746556 0.747185 0.747814 0.748444 0.749073 0.749702 0.750332 0.750961 0.751590 0.752220 0.752849 0.753478 0.754108 0.754737 0.755366 0.755996 0.756625 0.757254 0.757884 0.758513 0.759142 0.759772 0.760401 0.761030 0.761660 0.762289 0.762918 0.763548 0.764177 0.764806 0.765436 0.766065 0.766694 0.767324 0.767953 0.768583 0.769212 0.769841 0.770471 0.771100 0.771729 0.772359 0.772988 0.773617 0.774247 0.774876 0.775505 0.776135 0.776764 0.777393 0.778023 0.778652 0.779281 0.779911 0.780540 0.781169 0.781799 0.782428 0.783057 0.783687 0.784316 0.784945 0.785575 0.786204 0.786833 0.787463 0.788092 0.788721 0.789351 0.789980 0.790609 0.791239 0.791868 0.792497 0.793127 0.793756 0.794386 0.795015 0.795644 0.796274 0.796903 0.797532 0.798162 0.798791 0.799420 0.800050 0.800679 0.801308 0.801938 0.802567 0.803196 0.803826 0.804455 0.805084 0.805714 0.806343 0.806972 0.807602 0.808231 0.808860 0.809490 0.810119 0.810748 0.811378 0.812007 0.812636 0.813266 0.813895 0.814524 0.815154 0.815783 0.816412 0.817042 0.817671 0.818300 0.818930 0.819559 0.820189 0.820818 0.821447 0.822077 0.822706 0.823335 0.823965 0.824594 0.825223 0.825853 0.826482 0.827111 0.827741 0.828370 0.828999 0.829629 0.830258 0.830887 0.831517 0.832146 0.832775 0.833405 0.834034 0.834663 0.835293 0.835922 0.836551 0.837181 0.837810 0.838439 0.839069 0.839698 0.840327 0.840957 0.841586 0.842215 0.842845 0.843474 0.844103 0.844733 0.845362 0.845991 0.846621 0.847250 0.847880 0.848509 0.849138 0.849768 0.850397 0.851026 0.851656 0.852285 0.852914 0.853544 0.854173 0.854802 0.855432 0.856061 0.856690 0.857320 0.857949 0.858578 0.859208 0.859837 0.860466 0.861096 0.861725 0.862354 0.862984 0.863613 0.864242 0.864872 0.865501 0.866130 0.866760 0.867389 0.868018 0.868648 0.869277 0.869906 0.870536 0.871165 0.871794 0.872424 0.873053 0.873683 0.874312 0.874941 0.875571 0.876200 0.876829 0.877459 0.878088 0.878717 0.879347 0.879976 0.880605 0.881235 0.881864 0.882493 0.883123 0.883752 0.884381 0.885011 0.885640 0.886269 0.886899 0.887528 0.888157 0.888787 0.889416 0.890045 0.890675 0.891304 0.891933 0.892563 0.893192 0.893821 0.894451 0.895080 0.895709 0.896339 0.896968 0.897597 0.898227 0.898856 0.899486 0.900115 0.900744 0.901374 0.902003 0.902632 0.903262 0.903891 0.904520 0.905150 0.905779 0.906408 0.907038 0.907667 0.908296 0.908926 0.909555 0.910184 0.910814 0.911443 0.912072 0.912702 0.913331 0.913960 0.914590 0.915219 0.915848 0.916478 0.917107 0.917736 0.918366 0.918995 0.919624 0.920254 0.920883 0.921512 0.922142 0.922771 0.923400 0.924030 0.924659 0.925289 0.925918 0.926547 0.927177 0.927806 0.928435 0.929065 0.929694 0.930323 0.930953 0.931582 0.932211 0.932841 0.933470 0.934099 0.934729 0.935358 0.935987 0.936617 0.937246 0.937875 0.938505 0.939134 0.939763 0.940393 0.941022 0.941651 0.942281 0.942910 0.943539 0.944169 0.944798 0.945427 0.946057 0.946686 0.947315 0.947945 0.948574 0.949203 0.949833 0.950462 0.951091 0.951721 0.952350 0.952980 0.953609 0.954238 0.954868 0.955497 0.956126 0.956756 0.957385 0.958014 0.958644 0.959273 0.959902 0.960532 0.961161 0.961790 0.962420 0.963049 0.963678 0.964308 0.964937 0.965566 0.966196 0.966825 0.967454 0.968084 0.968713 0.969342 0.969972 0.970601 0.971230 0.971860 0.972489 0.973118 0.973748 0.974377 0.975006 0.975636 0.976265 0.976894 0.977524 0.978153 0.978783 0.979412 0.980041 0.980671 0.981300 0.981929 0.982559 0.983188 0.983817 0.984447 0.985076 0.985705 0.986335 0.986964 0.987593 0.988223 0.988852 0.989481 0.990111 0.990740 0.991369 0.991999 0.992628 0.993257 0.993887 0.994516 0.995145 0.995775 0.996404 0.997033 0.997663 0.998292 0.998921 0.999551 1.000180 1.000809 1.001439 1.002068 1.002697 1.003327 1.003956 1.004586 1.005215 1.005844 1.006474 1.007103 1.007732 1.008362 1.008991 1.009620 1.010250 1.010879 1.011508 1.012138 1.012767 1.013396 1.014026 1.014655 1.015284 ); + +BSd 173; \ No newline at end of file diff --git a/Workshop/Output/Meas_Cyl.out b/Workshop/Output/Meas_Cyl.out new file mode 100644 index 0000000000000000000000000000000000000000..c07639c954065cfd9449926539e3b34a3bd8405e --- /dev/null +++ b/Workshop/Output/Meas_Cyl.out @@ -0,0 +1,5 @@ +BSz ( 0.000000 0.008842 0.017684 0.026525 0.035367 0.044209 0.053051 0.061893 0.070734 0.079576 0.088418 0.097260 0.106102 0.114943 0.123785 0.132627 0.141469 0.150311 0.159152 0.167994 0.176836 0.185678 0.194519 0.203361 0.212203 0.221045 0.229887 0.238728 0.247570 0.256412 0.265254 0.274096 0.282937 0.291779 0.300621 0.309463 0.318305 0.327146 0.335988 0.344830 0.353672 0.362514 0.371355 0.380197 0.389039 0.397881 0.406723 0.415564 0.424406 0.433248 0.442090 0.450932 0.459773 0.468681 0.477588 0.486495 0.495402 0.504310 0.513217 0.522124 0.531031 0.539938 0.548846 0.557753 0.566660 0.575567 0.584475 0.593382 0.602289 0.611196 0.620104 0.629011 0.637918 0.646825 0.655733 0.664640 0.673547 0.682454 0.691361 0.700269 0.709176 0.718083 0.726990 0.735898 0.744805 0.753712 0.762619 0.771527 0.780434 0.789341 0.798248 0.807156 0.816063 0.824970 0.833877 0.842784 0.851692 0.860599 0.869506 0.878413 0.887321 0.896228 0.905135 0.914042 0.922950 0.931857 0.940764 0.949671 0.958579 0.967486 0.976393 0.985300 0.994207 1.003115 1.012022 1.020930 1.029836 1.038744 1.047651 1.056558 1.065465 1.074373 1.083280 1.092187 1.101094 1.110002 1.118909 1.127816 1.136723 1.145631 1.154537 1.163445 1.172352 1.181260 1.190166 1.199074 1.207981 1.216889 1.225795 1.234703 1.243610 1.252517 1.261424 1.270332 1.279239 1.288146 1.297053 1.305961 1.314868 1.323775 1.332683 1.341590 1.350497 1.359404 1.368312 1.377219 1.386126 1.395033 1.403941 1.412847 1.421755 1.430662 1.439570 1.448476 1.457384 1.466291 1.475198 1.484105 1.493013 1.501920 1.510827 1.519734 1.528642 1.537549 1.546456 1.555363 1.564271 1.573177 1.582085 1.590992 1.599900 1.608806 1.617714 1.626621 1.635529 1.644435 1.653343 1.662250 1.671157 1.680064 1.688972 1.697879 1.706786 1.715694 1.724601 1.733508 1.742415 1.751323 1.760230 1.769137 1.778044 1.786952 1.795859 1.804766 1.813673 1.822581 1.831487 1.840395 1.849302 1.858210 1.867116 1.876024 1.884931 1.893839 1.902745 1.911653 1.920560 1.929467 1.938374 1.947282 1.956189 1.965096 1.974003 1.982911 1.991817 2.000725 2.009632 2.018540 2.027446 2.036354 2.045261 2.054169 2.063075 2.071983 2.080890 2.089797 2.098705 2.107612 2.116520 2.125426 2.134334 2.143241 2.152148 2.161055 2.169963 2.178870 2.187777 2.196684 2.205592 2.214499 2.223406 2.232313 2.241160 2.250006 2.258853 2.267700 2.276546 2.285393 2.294240 2.303086 2.311933 2.320780 2.329626 2.338473 2.347320 2.356166 2.365013 2.373860 2.382706 2.391553 2.400399 2.409246 2.418093 2.426939 2.435786 2.444633 2.453479 2.462326 2.471173 2.480019 2.488866 2.497713 2.506559 2.515406 2.524253 2.533099 2.541946 2.550793 2.559639 2.568486 2.577332 2.586179 2.595026 2.603872 2.612719 2.621566 2.630412 2.639259 2.648106 2.656952 2.665799 2.674646 2.683492 2.692339 2.701186 2.710032 2.718879 2.727726 2.736572 2.745419 2.754265 2.763112 2.771959 2.780805 2.789652 2.798499 2.807345 2.816192 2.825039 2.833885 2.842732 2.851579 2.860425 2.869272 2.878119 2.886965 2.895812 2.904659 2.913505 2.922352 2.931198 2.940045 2.948892 2.957738 2.966585 2.975432 2.984278 2.993125 3.001972 3.010818 3.019665 3.028512 3.037358 3.046205 3.055052 3.063898 3.072745 3.081591 3.090438 3.099285 3.108131 3.116978 3.125825 3.134671 3.143518 3.152365 3.161211 3.170058 3.178905 3.187751 3.196598 3.205445 3.214291 3.223138 3.231985 3.240831 3.249678 3.258524 3.267371 3.276218 3.285064 3.293911 3.302758 3.311604 3.320451 3.329298 3.338144 3.346991 3.355838 3.364684 3.373531 3.382378 3.391224 3.400071 3.408918 3.417764 3.426611 3.435457 3.444304 3.453151 3.461997 3.470844 3.479691 3.488537 3.497384 3.506231 3.515077 3.523924 3.532771 3.541617 3.550464 3.559311 3.568157 3.577004 3.585851 3.594697 3.603544 3.612390 3.621237 3.630084 3.638930 3.647777 3.656624 3.665470 3.674317 3.683164 3.692010 3.700857 3.709704 3.718550 3.727397 3.736244 3.745090 3.753937 3.762784 3.771630 3.780477 3.789323 3.798170 3.807017 3.815863 3.824710 3.833557 3.842403 3.851250 3.860097 3.868943 3.877790 3.886637 3.895483 3.904330 3.913177 3.922023 3.930870 3.939716 3.948563 3.957410 3.966256 3.975103 3.983950 3.992796 4.001643 4.010490 4.019336 4.028183 4.037030 4.045876 4.054723 4.063570 4.072416 4.081263 4.090110 4.098956 4.107803 4.116649 4.125496 4.134343 4.143189 4.152036 4.160883 4.169729 4.178576 4.187423 4.196269 4.205116 4.213963 4.222809 4.231656 4.240503 4.249349 4.258196 4.267043 4.275889 4.284736 4.293582 4.302429 4.311276 4.320122 4.328969 4.337816 4.346662 4.355509 4.364356 4.373202 4.382049 4.390896 4.399742 4.408589 4.417436 4.426282 4.435129 4.443976 4.452822 4.461669 4.470515 4.479362 4.488209 4.497055 4.505902 4.514749 4.523595 4.532442 4.541289 4.550135 4.558982 4.567829 4.576675 4.585522 4.594369 4.603215 4.612062 4.620909 4.629755 4.638602 4.647448 4.656295 4.665142 4.673988 4.682835 4.691682 4.700528 4.709375 4.718222 4.727068 4.735915 4.744762 4.753608 4.762455 4.771302 4.780148 4.788995 4.797841 4.806688 4.815535 4.824381 4.833228 4.842075 4.850921 4.859768 4.868615 4.877461 4.886308 4.895155 4.904001 4.912848 4.921695 4.930541 4.939388 4.948235 4.957081 4.965928 4.974774 4.983621 4.992468 5.001314 5.010161 5.019008 5.027854 5.036701 5.045548 5.054394 5.063241 5.072088 5.080934 5.089781 5.098628 5.107474 5.116321 5.125168 5.134014 5.142861 5.151707 5.160554 5.169401 5.178247 5.187094 5.195941 5.204787 5.213634 5.222481 5.231327 5.240174 5.249021 5.257867 5.266714 5.275561 5.284407 5.293254 5.302101 5.310947 5.319794 5.328640 5.337487 5.346334 5.355180 5.364027 5.372874 5.381720 5.390567 5.399414 5.408260 5.417107 5.425954 5.434800 5.443647 5.452494 5.461340 5.470187 5.479034 5.487880 5.496727 5.505573 5.514420 5.523267 5.532113 5.540960 5.549807 5.558653 5.567500 5.576347 5.585193 5.594040 5.602887 5.611733 5.620580 5.629427 5.638273 5.647120 5.655966 5.664813 5.673660 5.682506 5.691353 5.700200 5.709046 5.717893 5.726740 5.735586 5.744433 5.753280 5.762126 5.770973 5.779820 5.788666 5.797513 5.806360 5.815206 5.824053 5.832899 5.841746 5.850593 5.859439 5.868286 5.877133 5.885979 5.894826 5.903673 5.912519 5.921366 5.930213 5.939059 5.947906 5.956753 5.965599 5.974446 5.983293 5.992139 6.000986 6.009832 6.018679 6.027526 6.036372 6.045219 6.054066 6.062912 6.071759 6.080606 6.089452 6.098299 6.107146 6.115992 6.124839 6.133686 6.142532 6.151379 6.160226 6.169072 6.177919 6.186765 6.195612 6.204459 6.213305 6.222152 6.230999 6.239845 6.248692 6.257539 6.266385 6.275232 6.284079 6.292925 6.301772 6.310619 6.319465 6.328312 6.337159 6.346005 6.354852 6.363698 6.372545 6.381392 6.390238 6.399085 6.407932 6.416778 6.425625 6.434472 6.443318 6.452165 6.461012 6.469858 6.478705 6.487552 6.496398 6.505245 6.514091 6.522938 6.531785 6.540631 6.549478 6.558325 6.567171 6.576018 6.584865 6.593711 6.602558 6.611405 6.620251 6.629098 6.637945 6.646791 6.655638 6.664485 6.673331 6.682178 6.691024 6.699871 6.708718 6.717564 6.726411 6.735258 6.744104 6.752951 6.761798 6.770644 6.779491 6.788338 6.797184 6.806031 6.814878 6.823724 6.832571 6.841418 6.850264 6.859111 6.867957 6.876804 6.885651 6.894497 6.903344 6.912191 6.921037 6.929884 6.938731 6.947577 6.956424 6.965271 6.974117 6.982964 6.991811 7.000657 7.009504 7.018351 7.027197 7.036044 7.044890 7.053737 7.062584 7.071430 7.080277 7.089124 7.097970 7.106817 7.115664 7.124510 7.133357 7.142204 7.151050 7.159897 7.168744 7.177590 7.186437 7.195284 7.204130 7.212977 7.221823 7.230670 7.239517 7.248363 7.257210 7.266057 7.274903 7.283750 7.292597 7.301443 7.310290 7.319137 7.327983 7.336830 7.345677 7.354523 7.363370 7.372216 7.381063 7.389910 7.398756 7.407603 7.416450 7.425296 7.434143 7.442990 7.451836 7.460683 7.469530 7.478376 7.487223 7.496070 7.504916 7.513763 7.522610 7.531456 7.540303 7.549149 7.557996 7.566843 7.575689 7.584536 7.593383 7.602229 7.611076 7.619923 7.628769 7.637616 7.646463 7.655309 7.664156 7.673003 7.681849 7.690696 7.699543 7.708389 7.717236 7.726082 7.734929 7.743776 7.752622 7.761469 7.770316 7.779162 7.788009 7.796856 7.805702 7.814549 7.823396 7.832242 7.841089 7.849936 7.858782 7.867629 7.876476 7.885322 7.894169 7.903015 7.911862 7.920709 7.929555 7.938402 7.947249 7.956095 7.964942 7.973789 7.982635 7.991482 8.000329 8.009175 8.018022 8.026869 8.035715 8.044562 8.053409 8.062255 8.071102 8.079948 8.088795 8.097642 8.106488 8.115335 8.124182 8.133028 8.141875 8.150722 8.159568 8.168415 8.177262 8.186108 8.194955 8.203802 8.212648 8.221495 8.230341 8.239188 8.248035 8.256881 8.265728 8.274575 8.283421 8.292268 8.301115 8.309961 8.318808 8.327655 8.336501 8.345348 8.354195 8.363041 8.371888 8.380735 8.389581 8.398428 8.407274 8.416121 8.424968 8.433814 8.442661 8.451508 8.460354 8.469201 8.478048 8.486894 8.495741 8.504588 8.513434 8.522281 8.531128 8.539974 8.548821 8.557668 8.566514 8.575361 8.584207 8.593054 8.601901 8.610747 8.619594 8.628441 8.637287 8.646134 8.654981 8.663827 8.672674 8.681521 8.690367 8.699214 8.708061 8.716907 8.725754 8.734601 8.743447 8.752294 8.761140 8.769987 8.778834 8.787680 8.796527 8.805374 8.814220 8.823067 8.831914 8.840760 8.849607 8.858454 8.867300 8.876147 8.884994 8.893840 8.902687 8.911534 8.920380 8.929227 8.938073 8.946920 8.955767 8.964613 8.973460 8.982307 8.991153 9.000000 ); + +BSy ( 1.304710 1.241684 1.198090 1.162804 1.132478 1.105557 1.081170 1.058768 1.037979 1.018536 1.000242 0.982944 0.966523 0.950881 0.935939 0.921630 0.907900 0.894701 0.881992 0.869738 0.857907 0.846472 0.835410 0.824697 0.814316 0.804249 0.794480 0.784994 0.775779 0.766823 0.758115 0.749644 0.741403 0.733381 0.725572 0.717968 0.710562 0.703348 0.696320 0.689472 0.682799 0.676296 0.669959 0.663784 0.657766 0.651901 0.646187 0.640619 0.635194 0.629910 0.624763 0.619750 0.614441 0.609778 0.605116 0.600719 0.596533 0.592476 0.588328 0.584004 0.579940 0.576147 0.572706 0.569290 0.565788 0.562435 0.559243 0.556156 0.552863 0.549895 0.547283 0.544489 0.541813 0.539245 0.536626 0.534136 0.531879 0.529593 0.527476 0.525556 0.523777 0.522055 0.520287 0.518725 0.517416 0.516229 0.514833 0.513560 0.512646 0.511979 0.511247 0.510555 0.509919 0.509438 0.509006 0.508559 0.508217 0.507734 0.507327 0.507100 0.506846 0.506679 0.506599 0.506411 0.506240 0.506056 0.505914 0.505739 0.505523 0.505263 0.505070 0.505007 0.504795 0.504587 0.504455 0.504787 0.505135 0.505387 0.505408 0.505491 0.505565 0.505603 0.505646 0.505664 0.505598 0.505462 0.505350 0.505255 0.505219 0.505347 0.505501 0.505475 0.505402 0.505396 0.505423 0.505372 0.505424 0.505455 0.505372 0.505360 0.505354 0.505409 0.505492 0.505525 0.505483 0.505379 0.505335 0.505269 0.505246 0.505368 0.505261 0.505251 0.505367 0.505343 0.505129 0.505064 0.504927 0.504828 0.504590 0.504249 0.503934 0.503632 0.503352 0.503235 0.503130 0.503084 0.503118 0.503242 0.503242 0.503079 0.502914 0.502734 0.502557 0.502423 0.502363 0.502297 0.502184 0.502194 0.502093 0.501899 0.501716 0.501605 0.501544 0.501323 0.501178 0.501005 0.500811 0.500694 0.500650 0.500681 0.500681 0.500594 0.500433 0.500255 0.500151 0.500078 0.500029 0.500059 0.500046 0.500015 0.500009 0.500000 0.500074 0.500174 0.500225 0.500292 0.500413 0.500576 0.500802 0.501112 0.501575 0.502026 0.502336 0.502618 0.502972 0.503373 0.503821 0.504233 0.504721 0.505329 0.505887 0.506235 0.507023 0.507878 0.508488 0.509032 0.509690 0.510218 0.510659 0.511116 0.511681 0.512213 0.512782 0.513385 0.514047 0.514806 0.515508 0.516016 0.516550 0.517255 0.517949 0.518649 0.519300 0.519851 0.520182 0.520644 0.521124 0.521653 0.522399 0.523137 0.523931 0.524798 0.525452 0.526105 0.526759 0.527412 0.528065 0.528719 0.529372 0.530025 0.530679 0.531332 0.531985 0.532639 0.533292 0.533945 0.534599 0.535252 0.535905 0.536559 0.537212 0.537866 0.538519 0.539172 0.539826 0.540479 0.541132 0.541786 0.542439 0.543092 0.543746 0.544399 0.545052 0.545706 0.546359 0.547012 0.547666 0.548319 0.548973 0.549626 0.550279 0.550933 0.551586 0.552239 0.552893 0.553546 0.554199 0.554853 0.555506 0.556159 0.556813 0.557466 0.558119 0.558773 0.559426 0.560080 0.560733 0.561386 0.562040 0.562693 0.563346 0.564000 0.564653 0.565306 0.565960 0.566613 0.567266 0.567920 0.568573 0.569226 0.569880 0.570533 0.571187 0.571840 0.572493 0.573147 0.573800 0.574453 0.575107 0.575760 0.576413 0.577067 0.577720 0.578373 0.579027 0.579680 0.580333 0.580987 0.581640 0.582294 0.582947 0.583600 0.584254 0.584907 0.585560 0.586214 0.586867 0.587520 0.588174 0.588827 0.589480 0.590134 0.590787 0.591440 0.592094 0.592747 0.593401 0.594054 0.594707 0.595361 0.596014 0.596667 0.597321 0.597974 0.598627 0.599281 0.599934 0.600587 0.601241 0.601894 0.602547 0.603201 0.603854 0.604508 0.605161 0.605814 0.606468 0.607121 0.607774 0.608428 0.609081 0.609734 0.610388 0.611041 0.611694 0.612348 0.613001 0.613654 0.614308 0.614961 0.615614 0.616268 0.616921 0.617575 0.618228 0.618881 0.619535 0.620188 0.620841 0.621495 0.622148 0.622801 0.623455 0.624108 0.624761 0.625415 0.626068 0.626721 0.627375 0.628028 0.628682 0.629335 0.629988 0.630642 0.631295 0.631948 0.632602 0.633255 0.633908 0.634562 0.635215 0.635868 0.636522 0.637175 0.637828 0.638482 0.639135 0.639789 0.640442 0.641095 0.641749 0.642402 0.643055 0.643709 0.644362 0.645015 0.645669 0.646322 0.646975 0.647629 0.648282 0.648935 0.649589 0.650242 0.650896 0.651549 0.652202 0.652856 0.653509 0.654162 0.654816 0.655469 0.656122 0.656776 0.657429 0.658082 0.658736 0.659389 0.660042 0.660696 0.661349 0.662003 0.662656 0.663309 0.663963 0.664616 0.665269 0.665923 0.666576 0.667229 0.667883 0.668536 0.669189 0.669843 0.670496 0.671149 0.671803 0.672456 0.673110 0.673763 0.674416 0.675070 0.675723 0.676376 0.677030 0.677683 0.678336 0.678990 0.679643 0.680296 0.680950 0.681603 0.682256 0.682910 0.683563 0.684217 0.684870 0.685523 0.686177 0.686830 0.687483 0.688137 0.688790 0.689443 0.690097 0.690750 0.691403 0.692057 0.692710 0.693363 0.694017 0.694670 0.695324 0.695977 0.696630 0.697284 0.697937 0.698590 0.699244 0.699897 0.700550 0.701204 0.701857 0.702510 0.703164 0.703817 0.704470 0.705124 0.705777 0.706431 0.707084 0.707737 0.708391 0.709044 0.709697 0.710351 0.711004 0.711657 0.712311 0.712964 0.713617 0.714271 0.714924 0.715577 0.716231 0.716884 0.717538 0.718191 0.718844 0.719498 0.720151 0.720804 0.721458 0.722111 0.722764 0.723418 0.724071 0.724724 0.725378 0.726031 0.726684 0.727338 0.727991 0.728645 0.729298 0.729951 0.730605 0.731258 0.731911 0.732565 0.733218 0.733871 0.734525 0.735178 0.735831 0.736485 0.737138 0.737791 0.738445 0.739098 0.739751 0.740405 0.741058 0.741712 0.742365 0.743018 0.743672 0.744325 0.744978 0.745632 0.746285 0.746938 0.747592 0.748245 0.748898 0.749552 0.750205 0.750858 0.751512 0.752165 0.752819 0.753472 0.754125 0.754779 0.755432 0.756085 0.756739 0.757392 0.758045 0.758699 0.759352 0.760005 0.760659 0.761312 0.761965 0.762619 0.763272 0.763926 0.764579 0.765232 0.765886 0.766539 0.767192 0.767846 0.768499 0.769152 0.769806 0.770459 0.771112 0.771766 0.772419 0.773072 0.773726 0.774379 0.775033 0.775686 0.776339 0.776993 0.777646 0.778299 0.778953 0.779606 0.780259 0.780913 0.781566 0.782219 0.782873 0.783526 0.784179 0.784833 0.785486 0.786140 0.786793 0.787446 0.788100 0.788753 0.789406 0.790060 0.790713 0.791366 0.792020 0.792673 0.793326 0.793980 0.794633 0.795286 0.795940 0.796593 0.797247 0.797900 0.798553 0.799207 0.799860 0.800513 0.801167 0.801820 0.802473 0.803127 0.803780 0.804433 0.805087 0.805740 0.806393 0.807047 0.807700 0.808354 0.809007 0.809660 0.810314 0.810967 0.811620 0.812274 0.812927 0.813580 0.814234 0.814887 0.815540 0.816194 0.816847 0.817500 0.818154 0.818807 0.819461 0.820114 0.820767 0.821421 0.822074 0.822727 0.823381 0.824034 0.824687 0.825341 0.825994 0.826647 0.827301 0.827954 0.828607 0.829261 0.829914 0.830568 0.831221 0.831874 0.832528 0.833181 0.833834 0.834488 0.835141 0.835794 0.836448 0.837101 0.837754 0.838408 0.839061 0.839714 0.840368 0.841021 0.841675 0.842328 0.842981 0.843635 0.844288 0.844941 0.845595 0.846248 0.846901 0.847555 0.848208 0.848861 0.849515 0.850168 0.850821 0.851475 0.852128 0.852781 0.853435 0.854088 0.854742 0.855395 0.856048 0.856702 0.857355 0.858008 0.858662 0.859315 0.859968 0.860622 0.861275 0.861928 0.862582 0.863235 0.863888 0.864542 0.865195 0.865849 0.866502 0.867155 0.867809 0.868462 0.869115 0.869769 0.870422 0.871075 0.871729 0.872382 0.873035 0.873689 0.874342 0.874995 0.875649 0.876302 0.876956 0.877609 0.878262 0.878916 0.879569 0.880222 0.880876 0.881529 0.882182 0.882836 0.883489 0.884142 0.884796 0.885449 0.886102 0.886756 0.887409 0.888063 0.888716 0.889369 0.890023 0.890676 0.891329 0.891983 0.892636 0.893289 0.893943 0.894596 0.895249 0.895903 0.896556 0.897209 0.897863 0.898516 0.899170 0.899823 0.900476 0.901130 0.901783 0.902436 0.903090 0.903743 0.904396 0.905050 0.905703 0.906356 0.907010 0.907663 0.908316 0.908970 0.909623 0.910277 0.910930 0.911583 0.912237 0.912890 0.913543 0.914197 0.914850 0.915503 0.916157 0.916810 0.917463 0.918117 0.918770 0.919423 0.920077 0.920730 0.921384 0.922037 0.922690 0.923344 0.923997 0.924650 0.925304 0.925957 0.926610 0.927264 0.927917 0.928570 0.929224 0.929877 0.930530 0.931184 0.931837 0.932491 0.933144 0.933797 0.934451 0.935104 0.935757 0.936411 0.937064 0.937717 0.938371 0.939024 0.939677 0.940331 0.940984 0.941637 0.942291 0.942944 0.943598 0.944251 0.944904 0.945558 0.946211 0.946864 0.947518 0.948171 0.948824 0.949478 0.950131 0.950784 0.951438 0.952091 0.952744 0.953398 0.954051 0.954705 0.955358 0.956011 0.956665 0.957318 0.957971 0.958625 0.959278 0.959931 0.960585 0.961238 0.961891 0.962545 0.963198 0.963851 0.964505 0.965158 0.965811 0.966465 0.967118 0.967772 0.968425 0.969078 0.969732 0.970385 0.971038 0.971692 0.972345 0.972998 0.973652 0.974305 0.974958 0.975612 0.976265 0.976918 0.977572 0.978225 0.978879 0.979532 0.980185 0.980839 0.981492 0.982145 0.982799 0.983452 0.984105 0.984759 0.985412 0.986065 0.986719 0.987372 0.988025 0.988679 0.989332 0.989986 0.990639 0.991292 0.991946 0.992599 0.993252 0.993906 0.994559 0.995212 0.995866 0.996519 0.997172 0.997826 0.998479 0.999132 0.999786 1.000439 1.001093 1.001746 1.002399 1.003053 1.003706 1.004359 1.005013 1.005666 1.006319 1.006973 1.007626 1.008279 1.008933 1.009586 1.010239 1.010893 1.011546 1.012200 1.012853 1.013506 1.014160 1.014813 1.015466 1.016120 1.016773 1.017426 1.018080 1.018733 1.019386 1.020040 1.020693 1.021346 1.022000 1.022653 1.023307 1.023960 1.024613 ); + +BSd 201; \ No newline at end of file diff --git a/Workshop/Presentation/20230615_CFD_Workshop_Part_3.pptx b/Workshop/Presentation/20230615_CFD_Workshop_Part_3.pptx new file mode 100644 index 0000000000000000000000000000000000000000..ef7bb08a3a2a76a459d08c8b69c37afb00b25e08 Binary files /dev/null and b/Workshop/Presentation/20230615_CFD_Workshop_Part_3.pptx differ