Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Introduction

The following document provides information that will assist with completing the Mathmet
Software Quality Assurance Plan. Sections 1 to 6 of this document correspond to
sections 1 to 6 of the quality plan. The remaining sections provide acknowledgements and
references.

The aim of the plan is to supplement, not replace, software development procedures within
Mathmet partner organisations.

It is assumed that an iterative development lifecycle will be used. However, the quality
requirements listed in the plan could be met using other approaches, for example waterfall.
APPENDIX | provides an example lifecycle.

Disclaimer

The Quality Assurance Tools for data, software and guidelines have been provided by the

Members and Partners of the European Metrology Network for Mathematics and Statistics
(Mathmet). EURAMET has no influence on its correctness and completeness and does not
assume any liability for it.

Glossary

Term Definition

Computational aim | Document providing a clear, complete and unambiguous
statement of a mathematical calculation.

SWIL Software integrity level. A value that helps quantify the risk
associated with the software. A SWIL is a number between 1
and 4, where 1 indicates the lowest level of risk and 4 the
highest (typically safety-critical).

Validation Evidence that the software can be used by the users for their
specific tasks.

Verification Evidence that the functional requirements have been met.

For further definitions, unless stated otherwise, this document refers to BS ISO/IEC/IEEE
24765:2017 Systems and software engineering — Vocabulary [1] for definitions of
software engineering terms and the International Vocabulary of Metrology (VIM) [2] for
definitions of terms from metrology.

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 1 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Contents
1. Software details..........oooooeii i 2
2. Document CONLIOlooiii e 2
3. Software integrity level (SWIL) calculation.............ccccceeiiiiiiiiiiiiie e 2
4. Software quality requIremMentsccooiiiiiiiiiii i 5
5. Other information.......... ... s 9
6. Version history of quality plan ... 9
7. Acknowledgementsoooiiiiiiiii i 9
8. REfEIENCES ... s 10
APPENDIX I: LIfeCYCle.....ccoeiieieeee e 11
DocUMENT HISTOIYo e e 12

1. Software details

¢ Software name will be used to identify the software.

o Brief description can provide a brief overview of the software.

¢ Developer(s) can list the developer name(s).

e Software location can, for example, contain a hyperlink to a Git repository, a
SharePoint folder, or a networked drive. It is important that the software is located
somewhere it can be found by others than its original author(s).

e Customer may not be straightforward to determine. However, the matter is worth
considering because it could, for example, help determine the SWIL.:

o

Could the customer be a member of staff, internal to the organisation, acting as a
proxy for an external organisation (for example, a funding body or an industrial
client)?

One definition of customer is the eventual user of the software.

Somebody somewhere will have responsibility for funding the work for which this
software is being developed.

There may not be a direct customer for the software itself, but someone will be
the customer for the output generated by the software.

It is preferable that the customer is a person, rather than a generic term such as
the name of an organisation.

2. Document control

An initial version of the plan should have status DRAFT. Before being used, the plan should
be reviewed by the development team and the status changed to ISSUED. Also see section
6, Version history of this quality plan.

3. Software integrity level (SWIL) calculation

e A SWIL is a number between 1 and 4 where 1 indicates the lowest level of risk and 4 the
highest. The SWIL shall determine the quality requirements for the software.

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 2 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

The term SWIL was adopted for software integrity level, rather than SIL, because of a

clash of terminology with the IEC 61508 series of standards [3] where SIL is used for
Safety Integrity Level. However, the IEC 61508 standards concern hardware as well as

software and focus on functional safety.

The plan refers to [1] for a definition of the term integrity level:

o ...value representing project-unique characteristics, such as complexity,
criticality, risk, safety level, security level, desired performance, and reliability,
that define the importance of the system, software, or hardware to the user.

Further details are provided in Table 1 below.

Table 1: Software Integrity Level (SWIL)

Software Integrity Level | Overview Example
(SWIL)

1 Not critical | Prototype / proof of concept, for example, can
hardware X be used to provide measurement
service Y?

NOTE: Software should not be used to
provide the service itself.

2 Significant | Generates results for research purposes. For
example, the worst that could happen is
retraction of a paper.

3 Substantial | Generates results for a measurement
service, for example, numbers that will be
displayed on a calibration certificate.

4 Life critical | Software that forms part of an avionics
system.

e The SWIL is calculated by selecting values for the Criticality of usage and Complexity

of software.

e These are also values between 1 and 4. Tables 2 and 3 provide further details.

Table 2: Criticality of usage

CU | Criticality of usage Explanation
1 Not critical e No danger of loss of income or reputation.
e Short life, will not require maintenance in future
Significant e Potential for loss of income or reputation.
3 Substantial o Likely to lead to loss of income or reputation.
4 Life critical e May result in personal injury or loss of life.

Table 3: Complexity of software

CP | Complexity of software

Typical features

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 3 of 12

Mathmet Software Quality Assurance Plan Guidance
Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

1 Very simple o

Elementary functionality, easy to understand.
Little or no control of an external system.

Simple mathematics.

Simple .

Simple functionality.
Straightforward control of a system.

Intermediate mathematics.

3 Moderate .

Large or very large programs.
Difficult to modify.

Complicated mathematics.

Complex .

Extremely complex functionality.
Complex feedback systems.

Very complicated mathematics.

o These values are a subjective decision. For example, simple mathematics for some

could be complicated for others.

e A recommended Software Integrity Level (SWIL) is calculated from the above values, as

described in table 4. The values in the cells are SWILs:

Table 4: SWIL calculation

CS1 | CS2 | CS3 | CS4
Cu1 1 1 1 1
cu2 2 2 3 4
cus 3 3 3 4
Ccu4 4 4 4 4

¢ Factors that justify increasing or decreasing the recommended SWIL: The

recommended SWIL can be accepted,

by ticking Is recommended SWIL suitable?

Alternatively, the SWIL could be revised. Some possible moderating factors are listed

below:

Table 5: Moderating factors

Moderating factors Possible effect on SWIL
Alternative means of verification Decrease
Modular approach Decrease
Suitably trained staff available Decrease
Difficult to test Increase
Reliant on key staff Increase
Inexperienced staff Increase

Mathmet Software Quality Assurance Plan Guidance Draft v6

Page 4 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022

For use with PDF Software Quality Assurance Plan Generator Draft v6

Ambitious timescales Increase
Ambitious requirements Increase
New technology Increase
Novel design Increase

e Having selected Reviewed SWIL, tick Confirm SWIL. After clicking:

o The sections for calculating the SWIL will be locked.

o Only the software quality requirements for the confirmed SWIL will be displayed.

o An asterisk will be displayed next to the title of the requirements that are

mandatory.

e If the software is determined to be SWIL 4 then seek quidance from safety critical

software experts.

4. Software quality requirements

This section of the plan lists the quality requirements for the selected SWIL. Mandatory

requirements are indicated with an asterisk.

The plan supports rich and long text and could be sufficient for storing details of the
requirements for very small pieces of software. However, it is usually better practice to
provide a short explanation and a link to a working document, stored in a permanent place
that can be made accessible to others than the original developer(s).

The quality requirements for each SWIL are listed as a series of tables. These tables use the

following key:

Table 6: Key for following tables

X Not required

R | Recommended

M Mandatory

The tables are listed below, followed by some guidance on meeting some of the quality

requirements.

Table 7: User requirements

Quality Requirement SWIL1 | SWIL2 | SWIL3 | SWIL 4

Documented user requirements M M M M
Review by team R M M M
Review by suitably qualified independent X X R M
person

Review by customer or proxy M M M M

Table 8: Functional requirements
Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 5 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4
Documented functional requirements R M M M
Traceable requirements (from user X M M M
requirements through functional requirements to
code and test plan)
Review by team R M M M
Review by suitably qualified independent person X X R M

Table 9: Design

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4
Informal design R M M M
Clear and well-structured documented design X R M M
Review by team R M M M
Review by suitably qualified independent person X X R M

Table 10: Coding

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4
Header to identify program name, author, date M M M M
and version number
Program history R M M M
Coding guidelines X M M M
Review by team R R M M
Review by suitably qualified independent person X X R M

Table 11: Verification

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4
Module testing as coding progresses R M M M
Verification of complete software against R M M M
functional requirements
Review by team R R M M
Review by suitably qualified independent person X X R M

Table 12: Validation

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4
Validation against user requirements R R M M
Review by team M M M M
Review by suitably qualified independent person X X R M

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 6 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Table 13: Delivery, use and maintenance

Quality Requirement SWIL1 | SWIL2 | SWIL 3 | SWIL 4

Version control on release R M M M

Version control before release

Bug tracking/error logging

Traceability of output

User documentation

|| X|X
| 5|0 =™
= =l
2| Z2|Z5|LZ

The following points list some matters to consider when developing software using thisplan:

User requirements: Documented user requirements

User requirements are a statement of what is required from the software, not how it is
going to meet these requirements.

Enter a link to the document that contains the user requirements, or to a folder where the
documents are held. For smaller pieces of software, it may be possible to enter the
requirements directory into the plan.

Matters to consider in user requirements, before development begins, include:

o User friendly GUI

o Data/statistical analysis

o Data visualisation and graphics

o Notifications and alerts

o Clear documentation for users
The Mathmet quality assurance tools provide a template that can help with requirements
capture. If an alternative template is considered more appropriate, use that instead.
User requirements: Review: team / independent / customer
Enter link(s) to evidence of review.
Functional requirements: Documented functional requirements

Non-trivial mathematics is highly likely to underpin most of the software developed with
the assistance ofthis plan. A clear, complete and unambiguous statement of the
mathematics will allow it to be verified without having to examine any code. It must not
be necessary to examine the code of even the shortest script to determine the
mathematics implemented.

An online database of documents called computational aims [4], developed as part of
the EURAMET Traceability for computationally intensive metrology (TraCIM) project [5],
provides an example of specifying mathematical calculations.

Other matters to consider in functional requirements, before development begins,
include report generation and input/output data formats. For software that will form part
of a calibration system also consider:

o Calculations for the calibration of a measuring instrument,

o Determination of uncertainties

o Easy upload of measurement and calibration data

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 7 of 12

Mathmet Software Quality Assurance Plan Guidance
Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Recording of calculation results

Analysis of trends on historical data (measuring instruments, standards and
calibrations items)

Notifications of acceptance criteria and measurement requirements
Publication of calibration certificates

¢ Functional requirements: Traceable requirements

Functional requirements should be labelled in a way that allows them to be traceable
from the user requirements to the code and tests that help verify the code.

Functional o Code .

req. | modules(s) *| Code test
Userreq [~ Functional > Code » Code test

req. modules(s)

Figure 1: Requirements traceability

¢ Design: Informal design / Clear and well-structured documented design

Enter link(s) to document(s) providing the software design. For much of the software
developed with the assistance of thisplan, a simple block diagram may well be sufficient
for both informal and well-structured documented design. For example, software that
consists of a few MATLAB scripts could have its design documented with a block
diagram illustrating which script calls which script and which is the main script.

Consider the provenance of packages and libraries. For example, a richly featured, but
new and experimental, library may be appropriate for SWIL 1 or 2 software but not SWIL
3 or 4. There are often no “right” or “wrong” answers, just decisions to made,
documented and reviewed.

Other matters to consider include:
o Modular structure
o Ease of maintenance
o Ability to incorporate new functionality
e Coding: Header to identify program name, author, date and version number

Variables that identify the software name, version and date of release are important for
even the smallest script. It is important the user is left in no doubt as to the name and
version number of the software being run. Such information is key to traceability of
output, as will be noted in delivery, use and maintenance below.

e Coding: Coding guidelines

The use of guidelines, such as the PEP 8 — Style Guide for Python Code [6] or other
guidelines [7] defined or recommended within an organisation will aid development of
cleaner, neater, more easily readable, and therefore maintainable, code.

Enter link(s) to guidelines(s) used.

¢ Verification of complete software against functional requirements

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 8 of 12

Mathmet Software Quality Assurance Plan Guidance
Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Enter a link to evidence that the functional requirements have been met. For software
developed with the assistance of thisplan, evidence that non-trivial mathematics has
been implemented correctly is a key component of verification.

As noted in functional requirements a clear, concise and unambiguous statement of
the mathematics eases verification. An alternative implementation of selected
calculations could be implemented using an alternative platform such as a spreadsheet.

e Validation against user requirements

Enter a link to evidence that the user requirements have been met. One definition from
[1] states “Validation demonstrates that the system can be used by the users for their
specific tasks”.

¢ Delivery, use and maintenance: Version control

Enter details of how version control will be achieved, for example using a tool such as
Git or Subversion. For very simple pieces of software an appropriate file or folder naming
convention may be sufficient.

e Delivery, use and maintenance: Traceability of output

Enter details of how the outputs generated by the software, for example results to be
presented in customer certificates or research papers, can be traced to the name and
version of the software that generated them. Other information, such as date and time
of execution, identifier of operator/user and location of raw data may also be necessary.

Reproducibility of results [8] can be made easier by making such data available.

5. Other information

e This section provides details such as the platform, for example, operating system and
hardware, on which the software will run. Any specific requirements for the software, for
example minimum hardware requirements, could also be listed in this section.

¢ One possible difficulty could be presented by Responsibilities for testing. As
discussed in section 1, who the customer is may not necessarily be easy to determine.

e Selecting Mathematical Area(s) and Metrology Area(s) will be helpful when
considering how the software should be verified and validated. Such information is also
useful documentation.

6. Version history of quality plan

e This section should be straightforward to complete, although consideration is required as
to who will approve ISSUED versions of the plan.

o |[f sufficient space has not been provided in this section, a supplementary document can
be created.

7. Acknowledgements

e The European Metrology Network for Mathematics and Statistics is supported by the
Joint Network Project ‘Support for a European Metrology Network for mathematics and
statistics’ (18BNET05 MATHMET). The project 18NET05 MATHMET has received
funding from the EMPIR programme co-financed by the Participating States and from
the European Union’s Horizon 2020 research and innovation programme.

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 9 of 12

Mathmet Software Quality Assurance Plan Guidance

Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

e Many thanks to the Quality Assurance team of the National Physical Laboratory, for their
advice and assistance.

8. References

[1]1 BS ISO/IEC/IEEE 24765:2017 Systems and software engineering — Vocabulary. Online
version retrieved 14/12/2022 from |IEEE:

https://www.computer.org/sevocab

[2] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International vocabulary of
metrology | Basic and general concepts and associated terms (VIM). Joint Committee for
Guides in Metrology, JCGM 200:2012. (3rd edition). URL (Retrieved 14/12//2022 from
BIPM): https://www.bipm.org/documents/20126/2071204/JCGM 200 2012.pdf/f0e1ad45-
d337-bbeb-53a6-15fe649d0ff1[3] What is IEC 615087 Retrieved 14/12/2022 from the 61508
Association:

https://www.61508.org/knowledge/what-is-iec-61508.php

[4] TraCIM computational aims database. Retrieved 14/12/2022 from NPL:
http://www.tracim-cadb.npl.co.uk/

[5] TraCIM project homepage. Retrieved 14/12/2022 from PTB:
https://www.ptb.de/emrp/tcim.html

[6] PEP 8 — Style Guide for Python Code. Retrieved 14/12/2022 from python.org:
https://peps.python.org/pep-0008/

[7] Making the Best Use of C. Retrieved 14/12/2022 from gnu.org:
https://www.gnu.org/prep/standards/html node/Writing-C.html

[8] 1,500 scientists lift the lid on reproducibility. Retrieved 14/12/2022 from Nature:
https://www.nature.com/articles/533452a

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 10 of 12

https://www.computer.org/sevocab
https://www.bipm.org/documents/20126/2071204/JCGM%20200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1
https://www.bipm.org/documents/20126/2071204/JCGM%20200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1
https://www.61508.org/knowledge/what-is-iec-61508.php
http://www.tracim-cadb.npl.co.uk/
https://www.ptb.de/emrp/tcim.html
https://peps.python.org/pep-0008/
https://www.gnu.org/prep/standards/html_node/Writing-C.html
https://www.nature.com/articles/533452a

Mathmet Software Quality Assurance Plan Guidance
Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

APPENDIX I: Lifecycle

h
Start kI/
{ I
Determine mathematical Assess complexity of calculation
area, metrological ares ie.g. discrete, partial differential)
LN
Rizk Analysis
= Develop Software Quality Management (SQM) plan
(
Reference data sets l
=
£ ~ B Review S0k
i E plan
= :
@ b
g Fequirements capture
E Develop verification plan : + - develop computational aim
143
=
=
1] i
5 ‘ P
Reviewverification plan Review reguire me nts
v
[
| P = Designand code —
(]
] Requirements i
Yerify software
I
Yalidate saftware /final l
o review
: I
+
iy
(=]
=
[E} Felease ——— Maintain —FO End

Figure 1: Example software lifecycle

Mathmet Software Quality Assurance Plan Guidance Draft v6 Page 11 of 12

Mathmet Software Quality Assurance Plan Guidance
Version: Draft v6, Date: 20/12/2022
For use with PDF Software Quality Assurance Plan Generator Draft v6

Document History

Version

Date

Revised by

Change(s)

Approved by

Draft v1

10/05/2022

K.Lines, NPL

INITIAL RELEASE

N/A

Draft v2

22/08/2022

K.Lines, NPL

Correct typos. Add “Review by
suitably qualified independent
person” to tables 10 and 11.

N/A

Draft v3

29/08/2022

K.Lines, NPL

Added feedback from WP2
partners. Added further details
about quality requirements.
Release for further review by WP2
partners and other interested
parties.

N/A

Draft v4

16/11/2022

K.Lines, NPL

Added feedback from EURAMET
quality managers. Replaced
references to quality management
system with references to quality
assurance tools. Removed logos
and added disclaimer.

N/A

Draft v5

14/12/2022

K.Lines, NPL

Added feedback from Mathmet
Chair. Modified title and added
further details to
acknowledgements.

N/A

Draft v6

20/12/2022

K.Lines, NPL

Added reference to latest version
of Software Quality Assurance Plan
Generator.

N/A

Mathmet Software Quality Assurance Plan Guidance Draft v6

Page 12 of 12

	1. Software details
	2. Document control
	3. Software integrity level (SWIL) calculation
	4. Software quality requirements
	5. Other information
	6. Version history of quality plan
	7. Acknowledgements
	8. References
	APPENDIX I: Lifecycle
	Document History

