diff --git a/app/cocal_methods.py b/app/cocal_methods.py index c0fe4834273283be15c9aad085c80ebc2a499713..755c671b50702199cd404fc0b1532245f15fbed2 100644 --- a/app/cocal_methods.py +++ b/app/cocal_methods.py @@ -757,28 +757,29 @@ class CocalMethods: mask_ri = np.r_[mask, mask] # function to draw samples for Monte Carlo - draw_samples = lambda size: real_imag_2_complex( - np.random.normal( - self.ref_spectrum_ri[mask_ri], - self.ref_spectrum_unc_ri[mask_ri], - size=(size, self.ref_spectrum_ri[mask_ri].size), + def draw_samples(size): + return real_imag_2_complex( + np.random.normal( + self.ref_spectrum_ri[mask_ri], + self.ref_spectrum_unc_ri[mask_ri], + size=(size, self.ref_spectrum_ri[mask_ri].size), + ) ) - ) # function to evaluate samples in Monte Carlo w_empirical_exp = ( - np.exp( - -1j * 2 * np.pi * self.ref_frequency[mask] / frame_rate - ), - ) - evaluate = lambda sample: self.fit_filter( - sample, - H_dut=self.dut_spectrum[mask], - theta0=theta0, - Nb=Nb, - w_empirical_exp=w_empirical_exp, + np.exp(-1j * 2 * np.pi * self.ref_frequency[mask] / frame_rate), ) + def evaluate(sample): + return self.fit_filter( + sample, + H_dut=self.dut_spectrum[mask], + theta0=theta0, + Nb=Nb, + w_empirical_exp=w_empirical_exp, + ) + umc_kwargs = { "draw_samples": draw_samples, "evaluate": evaluate,