diff --git a/app/cocal_methods.py b/app/cocal_methods.py index 3a5e7371a0ee66d11e25de43476ae12dcb5b88c1..3c5575b9d68921cd42f568e9c53cf7c34867545b 100644 --- a/app/cocal_methods.py +++ b/app/cocal_methods.py @@ -444,7 +444,19 @@ class CocalMethods: # ) # visualize result - fig, ax = plt.subplots(1, 1, sharex=True, squeeze=False) + fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True, squeeze=False, figsize=(8,5)) + fig.suptitle("Transfer behavior in frequency domain") + + # empirical TF + ax[0, 0].scatter( + self.ref_frequency[mask], + np.abs(h_empirical[mask]), + label="empirical TF", + s=2, + color="black", + ) + + # fitted TF ax[0, 0].plot( f[mask], np.abs(h[mask]), @@ -459,13 +471,8 @@ class CocalMethods: label="unc of fitted TF", color="blue", ) - ax[0, 0].scatter( - self.ref_frequency[mask], - np.abs(h_empirical[mask]), - label="empirical TF", - s=2, - color="black", - ) + + # compensated TF ax[0, 0].scatter( self.ref_frequency[mask], np.abs(h_comp[mask]), @@ -481,12 +488,15 @@ class CocalMethods: label="unc of compensated TF", color="red", ) - + + # ideal ax[0, 0].plot(f, np.ones_like(f), "--r", label="ideal") + ax[0, 0].legend() ax[0, 0].set_xscale("log") ax[0, 0].set_yscale("log") - plt.savefig(self.result_image_path) + fig.tight_layout() + fig.savefig(self.result_image_path) # plt.show() def perform_dummy_computations(self):