Contents

Contents

1 Introduction

1.1 The Rust Ownership and Borrow System
1.1.1 Ownership
Resource Handling Strategies

RAII and Drop Responsibilities

Move Semantics

Clone e

COPY « v v o
ManuallyDrop

1.1.2 Borrowing L oo

The Owner of a Borrowed Value

Lexical Lifetimes and Lifetime Analysis

Access Guards

Returning references and Borrow-through

Lifetime Polymorphism

1.1.3 Reference Conversions
AsRef o o

Borrow
Mutable reference conversions

1.1.4 Non-Lexical Lifetimes
1.1.5 Reborrows and Two-Phase Borrowing
Reborrows oo oo
Two-Phase Borrowing

1.1.6 Loans and Regions
Borrow Errors oo
Classic Non-Lexical Lifetimes (NLL)
Poloniuso o
Self-referential Structs
Polonius the Crab
Cyclone

1.2 Contracts and Refinement Types
1.2.1 Contract Programming
1.2.2 Refinement Types
1.2.3 Liquid Types and SMT Solving
1.2.4 Hybrid Type Checking
1.3 Other Extensions to a Type System
1.3.1 Totality and Termination Metrics
1.3.2 (Other) Substructural Types
1.3.3 Purity and (algebraic) Effects

Listings

O © W] DU UL WWNNN

[V e o o o e i i < ol o S O i
©O O 0O 0LV WYWWWYW WWW~] HXUTUTLUL IR WW R R = O O

N
N

1 Introduction

The goal of this thesis is to combine the concept of an Ownership and Borrow
System that the Rust programming language supports with Refinement Types
as found in some functional languages like ATS and Liquid Haskell and theorem
provers like Lean.

In this chapter we will explore these concepts before we try to unify them
in the rest of the thesis. In section 1.1, we look at how Rust’s type system
implements ownership and borrowing, section 1.2 covers refinement types and
related concepts, and section 1.3 briefly discusses further ways to enhance a
type system for a safer language.

1.1 The Rust Ownership and Borrow System

Resource management is hard, especially memory management. This becomes

apparent when looking at a study by Microsoft | | that found out that
the vast majority of security related bugs in their code was due to corrupted
memory.

Therefore, most programming languages automate memory management
with garbage collection (GC). In a garbage collected language, no memory
corruption can happen. Of course, it comes with a drawback: The programmer
has to give up control over when and how GC is run, which is undesirable for
performance critical software.

A different approach is using Resource Acquisition is Initialization (RAII)
like C++ does for some of its types and which does static analysis on the
code to insert cleanup code at the correct places. Rust is a new language
that embraces this kind of memory management in its Ownership and Borrow
System (OBS). In this section we will explore the intricacies of OBS as Rust
uses it.

1.1.1 Ownership

In most programming languages, one can freely create and delete resources.
For example, in C the programmer allocates memory on the heap with malloc
and frees the memory when they don’t need the memory anymore using free.

int xptr = (int*) malloc(sizeof(int));

free(ptr);

Listing 1.1: Memory management in C

Even in languages without manual memory management, the programmer
still must manage other resources. For example, to work with a file in Python
one could write:

\ file = open(’)

|file.close()

Listing 1.2: Manual resource management in Python

Resource Handling Strategies This manual resource management comes
with some difficulties. The programmer has to watch out to always free the
resources after using them, because otherwise the program could leak memory
or unnecessarily inhibit other processes from accessing the resources. On the
other hand, one may also not free the resources too early, which would lead to
a use after free, and also not free resources multiple times. This can be very
tricky in complex programs where resources are shared between threads or over
API boundaries.

That is why several programming languages have ways to make handling
resources easier. Python has context managers that close resources automati-
cally.

with open(,) as file:

Listing 1.3: Context managers in Python

This code is equivalent to the previous one, but even better: It also closes
the file in case of an exception. Programmers can also define custom context
managers for their own resources.

Other languages have different strategies. Go supports the defer statement
which takes an operation that is not to be run immediately but at the end of
the scope.

{
file, err := os.Open()
defer file.Close()

Listing 1.4: The defer statement in Go

These prevent double frees and use after free errors, but they can still be
forgotten. A programmer who wants to use a resource must be aware that it
has to be cleaned up in the end and changes in one line of the code have to
be mirrored in the other. It is not as bad as in manual resource management
because the programmer has to change only one additional line and that line
is usually close.

RAII and Drop Responsibilities A third variant is Resource Acquisition is
Initialization (RAIL), also called Space Bound Resource Management (SBRM),

used by C++ and Rust. This ensures that the destructor of an object is run
when it goes out of scope, which will clean up automatically. An example is
the std::unique_ptr in C4++. The pointer owns the memory it points to,
meaning when it is created, it automatically allocates memory on the heap and
when it goes out of scope, it frees the memory.

{

std::unique_ptr<int> ptr = std::make_unique<int>(42);

Listing 1.5: RAII in C++

RAII ensures that resources are always freed when they are not live (that is,
may not be used) anymore. The programmer can’t forget to free the resources
nor cause use after free or double free. While in C++ only certain types
conform to RAII, in Rust every value is owned by a variable. For example, the
Rust analog to an owning pointer is Box.

| {
let ptr = Box::new(42)

Listing 1.6: Heap allocation in Rust

As soon as a variable falls out of scope, it is dropped, meaning all associ-
ated resources are freed. It is said that a variable has a drop responsibility. A
programmer can define custom drop behavior for their own resources by im-
plementing the Drop trait for their type, but normally the compiler does it for
us.

Move Semantics RAII comes with a few disadvantages, though. Since a
value is dropped when its owner goes out of scope, there must always be exactly
one owner for every value. This means that the compiler will transfer ownership
sometimes, like in the following example.

fn print_value(ptr: Box<i3z2>) {
println!("{}", *ptr);

}

fn main() {
let mut ptr = Box::new(s42);
print_value(ptr);
*ptr += 1;

}

Listing 1.7: Ownership transfer

We create a pointer and use it as an argument to a function that prints the
pointee’s value. After that we increment the value. But if we try to compile
this, we get an error:

\error[E®382]: use of moved value: “*ptr’

Because we supplied ptr as an argument to print_value, it took owner-
ship of that value, and now has the drop responsibility. As soon as the call
to print_value is finished, the memory is freed and accessing it afterwards
is a use after free. We say that the value was moved out of ptr and into
print_value.

Clone We can still make it work by cloning ptr and supply the clone as
an argument. ptr.clone() creates a new Box, allocates new memory, and
initializes it with the same value as ptr’s:

fn print_value(ptr: Box<i3z2>) {
println!("{}", *ptr);
}

fn main() {
let ptr = Box::new(42);

print_value(ptr.clone());

*ptr += 1;

Listing 1.8: Usage of Clone

Now everything works but keep in mind that the clone is completely in-
dependent from the original value. If we changed the value of the clone in
print_value, it would not be visible to the outside.

Copy We previously noted that ownership, and therefore move semantics,
apply to every value in Rust. But if we change the code to use an 132 directly
instead of putting it on the heap, we don’t need to clone anything:

fn print_value(number: i32) {
println!("{}", number);

}

fn main() {
let mut number = 42;

print_value(number);

number += 1;

Listing 1.9: Number types are COpy

This compiles and works. That is not because 132 breaks move semantics
but because the type implements the Copy trait. Normally, if a value is moved,

the physical bits making up that value are moved to a new location, e. g. the
new stack frame, and are not available at the previous position anymore. If
a type implements Copy, the bit pattern is instead copied over and retained.
Because 132 doesn’t allocate any heap or handles any resources, such a copy
is valid. A Box is not Copy, because then two owners for the same resource
would exist which would violate drop responsibility. If we want to duplicate a
Box, we need to allocate new memory on the heap and initialize it properly,
which is what clone does.

ManuallyDrop Sometimes we don’t want RAII to happen, we want to free
resources ourselves. If that is the case, we can wrap a value in a ManuallyDrop
which tells the compiler to not drop it for us. This is a general trend in
Rust: The correct way should be the easiest to do, and all potentially unsafe
constructs are opt-in. More information on ManuallyDrop can be found in the
documentation for the type.*

1.1.2 Borrowing

As we have seen, ownership and move semantics ensure memory safety. But
they are not easy to use, cloneing data has a runtime overhead, and many
correct programs are rejected. For example, Listing 1.7 describes a program
that would work if it were not for move semantics.

That is where references and borrowing come in. Instead of taking own-
ership of a value, a function can only borrow it through a reference. Then
the drop responsibility stays with the caller. References, of course, can not be
used for everything, but for our case it is sufficient. We mark the argument
to print_value as a reference using &, and creating a reference from a value
works the same.

fn print_value(ptr: &Box<i3z2>) {
println!("{}", *ptr);

}

fn main() {
let mut ptr = Box::new(42);
print_value(&ptr);
*ptr += 1;

}

Listing 1.10: Borrow using references to prevent a move

Listing 1.10 compiles without an error and does what we would expect.
There are two kinds of references. We just looked at shared or immutable ref-
erences. The other kind is exclusive or mutable references, and they are denoted
with &mut. The different kinds of references have a different semantics attached
to them. While both are used to access values without taking ownership, there
are specific rules for the creation and guarantees associated with each:

*https://doc.rust-lang.org/stable/std/mem/struct.ManuallyDrop.html

https://doc.rust-lang.org/stable/std/mem/struct.ManuallyDrop.html

¢ A shared reference to a value can always be created, as long as there is
no exclusive reference to the same value. It is not possible to mutate
the pointee through a shared reference (which is why it is also called
immutable).

e An exclusive reference can only be created if there is no other reference
to the value at all and the referenced value is declared mutable. An
exclusive reference can do everything the owner can, except dropping.

The part of the compiler that enforces these rules is the borrow checker. The
reasoning behind this is again resource safety, namely preventing unguarded
mutable aliasing. Having multiple readers of the same data doesn’t cause issues,
as long as the data cannot be mutated. Mutating data is fine, as long as no
one else can read and/or mutate the data at the same time. Using these two
kinds of references enforces, at compile time, that we will always stay on the
happy path. But there are some programs that are correct even though they
violate these rules. We will be concerned with extending the borrow checker
to accept more correct programs in later sections.

The Owner of a Borrowed Value References have to agree to these rules,
but the owner has to as well. While shared references exist, the owner may
not mutate, e. g. let mut x = 42; let xref = &x; x += 1 is forbidden.
Similarly, the owner can’t access a value at all as long as there is an exclusive
reference around.

Lexical Lifetimes and Lifetime Analysis The parts of the program in
which a reference is valid is called its lifetime. The borrow checker keeps track
of all references’ lifetimes and their so-called provenances, that is, who the
original owner of the referenced value is. References are values like all others
and so they are dropped at the end of the scope they are defined in. In other
words: Their lifetime starts at their creation and ends at the end of the scope.
This is called a lexical lifetime. Therefore the code in Listing 1.11 does not
compile.

let mut x = 0;

{
let xref = &x;
println!("{xref}");
X += 1;

}

X += 1;

Listing 1.11: Lexical Lifetimes prevent usage

The program in Listing 1.11 is rejected by our borrow checker since it reg-
isters a mutation to x while a reference to it still exists. Only after the block

ends, the borrow is returned to the owner and it can be used again. Similarly,
we would not be able to create an exclusive reference while a shared one exists
and vice versa.

But we can see that the program is correct since xref is never accessed after
x is changed and we can save the code by introducing an additional scope.

let mut x = o;

{
{
let xref = &x;
println!("{xref}");
}
X += 1;
}
X += 1;

Listing 1.12: More scopes make the code check

This is tedious, though, and we would like the borrow checker to recognize
patterns like this automatically. Luckily, Rust implements an improved borrow
checker since version 1.31. Because it is not based on lexical scope for lifetime
analysis anymore, these new lifetimes are called Non-Lexical Lifetimes (NLL).
We will take a closer look at them in subsection 1.1.4.

Access Guards
Sometimes we need access to a resource from multiple places at the same

time, for example when sharing data between threads. For this, Rust provides
the Mutex container type. References to a mutex can be shared freely, but to
change the value in the container, one has to acquire a lock, therefore making
the access guarded. While the mutex is locked, no other thread can access the
data at all, a mutex lock is therefore similar to a &mut but its guarantees are
enforced at runtime. The RwLock type can give out both read and write locks
which have behavior analogous to & and &mut, respectively. There are more
constructs for similar use cases in the standard library, like Arc and Cow.

These data structures are implemented by using a superset of Rust, unsafe
Rust. The main feature of unsafe Rust is access to so-called raw pointers. Raw
pointers are, like pointers in C, not borrow checked by the compiler. Since
borrow checking is undecidable, the compiler sometimes can’t prove that, for
example, two references don’t alias. In these cases, the programmer can step
in, prove the non-aliasing manually, implement a feature using raw pointers
and provide a safe abstraction for consumers of the code.

Returning references and Borrow-through Functions can receive refer-
ences as arguments, but they can also return references. One has to be a bit
careful when doing this, though, since all resources created in the scope of a
function are freed as soon as the function returns. Consider the following:

fn to_ref(number: i32) -> &§i32 {
&number

Listing 1.13: Try to return a reference

This fails because number is owned by to_ref and is dropped as soon as
the function returns. The reference would already be invalid when the caller
gets access to it. But if the function takes a reference as an argument, it can
pass another reference back to the caller. This is called a borrow-through and
looks like the following:

fn to_ref(number: &§i32) -> &§i32 {
&number
|}

Listing 1.14: Borrow-through

Now Rust can couple both references to each other. The returned reference
has the same provenance as the input one, and the borrow checker can check
that the input reference’s lifetime is at least as long as the returned one.

Lifetime Polymorphism Consider a function that takes two references and
returns one reference itself. Imagine for example, we have two slices and want
to create an iterator over all elements of both slices. Then we could try to write
a function like in Listing 1.15. The impl Iterator<Item=&§T> is a so-called
existential type. It just means that we don’t care about what type exactly it
is as long as it is an iterator.

fn both(first: &[i32], second: &§[i32])
-> impl Iterator<Item=§i32>
{

|
\ first.iter().chain(second.iter())
|

}

Listing 1.15: Iterator over two slices

This does not work however.
|error[E0106]: missing lifetime specifier

The compiler is confused because it does not know which provenance and
lifetime to assign to the returned references. We as programmers can see that
the return value depends on both input references, so we can help Rust by
providing lifetime hints.?

fn both<'a>(first: &'a [132], second: &'a [132])
-> impl Iterator<Item=§'a i32>

| {
\ first.iter().chain(second.iter())
|}

Listing 1.16: Iterator over two slices

2 Actually, the compiler could infer these lifetimes but it would rely on global program
analysis to do so. It is also possible to infer function types, but Rust chose to always be
explicit about the types and lifetimes you use and have them be explicit parts of the API of
a function.

'a is a polymorphic lifetime parameter. We tell Rust that the output relies
on both inputs being valid for at least as long as itself. If the output relied on
only one of the arguments, we would mark only one of them with a lifetime
specifier. This would for example be the case if we want to search for an
element in a slice and, if it exists, return a mutable reference to that element.
We implement such a function in Listing 1.17.

fn find_mut<'a>(haystack: &'a mut [i32], needle: §i32)
-> Option<&'a mut i32>
{

|
\ haystack.iter_mut().find(|x| **x = *needle)
|

}

Listing 1.17: The output lifetime depends only on one of the inputs

1.1.3 Reference Conversions

Sometimes, we have a reference to one type but need a reference to another,
similar type. For example, a vector of some type Vec<T> is conceptually the
same as a slice of that same type [T], except that a Vec can grow and shrink
and a slice can not. This means that all functions which operate on slices should
also work with vectors, and in fact there is a library method Vec ::as_slice
that takes a reference to a vector and provides a reference to a slice. Similarly
there is String::as_str which transforms a §String into a &str.

AsRef Generally, there are many types that can act as a substitute for an-
other. The common interface for this behavior is the AsRef trait. There can
be many implementations of this trait for a given type. for example, String
can stand in for str, [u8], 0sStr and Path. Every time a reference to one of
these types are needed, we can use a String instead, if we first call as_ref
on it:

fn needs_bytes(x: &[u8]) { }

|let s = String::from("Hello Bytes");
|needs_bytes(s.as_ref());

Listing 1.18: Use String and as_ref in place of [u8]

Deref Always calling as_ref is a bit cumbersome, especially if it is clear
which type the target should be. For example, if we have a Box<T> there is
really only one reasonable type we want to get out of it, namely a §T. The trait
Deref can be used for that. It specifies a single type which Rust automatically
converts into if it is needed. For example, String has str as its Deref target
which allows us to omit the as_ref in that case and leave the conversion
implicit:

fn needs_str(x: &str) { }

10

|let s = String::from("Hello Bytes");
|needs_bytes(s);

Listing 1.19: Use String in place of [u8]

We couldn’t do the same in Listing 1.18 because [u8] is not Deref target
of String.

Borrow Sometimes we want to express an even stronger connection between
two types. For example, a HashMap needs to take ownership of its entries but
we want to be able to do a lookup even if we only have a reference. But that
requires that the owned and the borrowed value behave exactly the same. This
is what the Borrow trait signals. In particular, x.borrow() = y.borrow()
if and only if x = y and x.hash() = x.borrow().hash().

Mutable reference conversions All three of the aforementioned traits work
for shared references only, but their variants AsMut, DerefMut and BorrowMut
all take and provide an exclusive reference.

1.1.4 Non-Lexical Lifetimes

In Listing 1.11 we saw how lexical lifetimes stood in our way and we had to
manually wrap a reference in an additional block just to make our correct
program pass the borrow checker. This was because the lifetime of any value
is bound to its scope, at the end of which it is dropped. Non-Lexical Lifetimes
are a different approach to lifetime analysis. A reference is live for as long as it
may be used later. The borrow checker determines the points of the program
in which the reference is live by building a control-flow graph (CFG). All nodes
of the CFG that can be reached from the point of creation until the last use of
the reference are where it is live. Consider the program in Listing 1.20.

let mut x = o;

let xref = &x;
println!("{xref}");
X += 1;

Listing 1.20: Simple NLL example

Then the (simplified) CFG looks something like Figure 1. It is quite boring
because the control flow is linear. The nodes with thick borders are where
xref is live. The first node is the one in which the reference is created and the
second one is where it is last used. Because x is not modified in that section
of the CFG, the borrow checker doesn’t complain.

Consider a more complicated example that includes branching in List-
ing 1.21.

let mut x = o;
‘Iet xref = &x;
if xref '= o {
X += 1;
\ println!("xref equals {xref}");
|} else {

11

llet mut x = 0;

Ilet xref = 8x;|

N

println!();

X += 1;

Figure 1: Control-flow diagram for Listing 1.20

println!();
}
X = 42,
Listing 1.21: NLL example with braching

Now the CFG (Figure 2) splits up to accommodate both possible paths the
program could take during execution. At the if, the graph splits into two, but
in the last node, both paths join up again. Here we can see that in the false
branch no problem occurs, but in the true branch we try to modify x even
though xref is used later in the same path. Modifying x on the last line does
not pose any problems since xref is not live anymore on any path that leads to
this point.

llet mut x = 0;

Ilet xref = 8x;|

N

|if xref 1= 8®|

tru
alse

printin!();

println!()i

Figure 2: Control-flow diagram for Listing 1.21

12

1.1.5 Reborrows and Two-Phase Borrowing

NLL give us a lot more freedom when using references, but there are still
programs that are clearly correct but don’t pass the borrow checker, especially
if exclusive references are in play. It is not possible to create a new reference
of some provenance as long as an exclusive reference with the same provenance
is live. This means the code in Listing 1.22 will not compile.

let mut x = 1;

let ref1i = &mut x;
let ref2 = &x;
println!();
*refi = 2;

Listing 1.22: Cannot create a shared reference while an exclusive one exists

But since xs is not live anymore when xu is used, aliasing is never occurring,
and if we hadn’t used an exclusive reference but modified the value directly,
Rust would have been able to see this. Not being able to create references in
this manner is a big thing. Consider the code in Listing 1.23. Here, we create
a reference to an empty Vec and then use it to push a value. This moves
the reference into the push method so that it is dropped when the method
returns. It is no longer valid to use it again in the next line since it has already
been dropped. But in fact this code compiles because Rust implicitly inserts a
reborrow for us.

let mut v = Vec::new();
let vref = &gmut v;
|vref.push(1);
|vref.last();

Listing 1.23: Move a borrow into a function

Reborrows Let’s get back to the example in Listing 1.22 for now. The com-
piler complains because we try to create two conflicting references with the
same provenance. But we can tell the compiler to temporarily deactivate a
reference by borrowing through this reference. This is done in Listing 1.24.

let mut x = 1;

let ref1i = &mut x;
let ref2 = § *refa;
println!();
*ref1 = 2;

Listing 1.24: Reborrow through an exclusive reference

Now we can create and use the ref2 as long as it is not live anymore when
we use refi again. If the last two lines were swapped, the borrow checker
would correctly find the interleaved use and throw an error. It is possible to
nest reborrows, as long as they are never used interleaved. These reborrows
can be imagined as a stack: when creating a reborrow, the new reference is
pushed to the stack, and when using a reference, the stack is popped until it
is on the topmost position. Trying to access a reference that has already been
popped indicates an interleaved use and is a borrow error. The owner of the
value can then be thought of as the bottom element of the stack, and when it

13

goes out of scope, the whole stack is unwound so that the drop function can
access it. In fact, this is exactly how reborrows are modelled in Miri, which
is an interpreter for Rusts Mid-level Intermediate Representation (MIR). Miri
even has borrow stacks for raw pointers.

But why does the code in Listing 1.23 work? The compiler can insert
borrows and reborrows in function calls, so-called autorefs. This is because
it can be sure that the function returns before the reference is accessed again,
meaning that the borrow stack is kept intact. In fact, if the compiler can’t proof
that the borrow stack is valid, it will complain. This can for example happen
when using std:: thread:: spawn which creates a new thread. Because the
child thread could outlive the main thread, Rust can’t verify that all references
are used in the correct order, in particular that the owner is not dropped too
early.

Two-Phase Borrowing Reborrows won'’t solve every problem, though. Con-
sider the code in Listing 1.25. Here we create a vector and then push its length
onto it.

|let mut v = Vec::new();
|v.push(v.len());

Listing 1.25: Borrow twice in one method call

The problem lies in the second line. The first argument to push is an
&mut self, and so the compiler implicitly borrows from v. But then another
(shared) reference is created for the call to len. This is not allowed, and
a reborrow doesn’t help either since the &mut self is currently used. On
the other hand, it is clear that the call to len will definitely return before the
exclusive reference is ever accessed. In fact, we can work around this problem if
we save the result of v.len() in a temporary variable, as shown in Listing 1.26.

|let mut v = Vec::new();
|let vien = v.len();
|v.push(vlen);

Listing 1.26: Workaround for Listing 1.25

This pattern—calling a method with an exclusive reference but also using
shared references in the arguments—is very common and the workaround is
unwieldy. Therefore RFC 2025 introduces the concept of a Two-Phase Borrow
(TPB). In it, the lifetime of an exclusive reference is split up into two phases.
During the reservation phase, it is treated like a shared reference, meaning
more shared references can be created and reads are possible. The activation
happens as soon as the reference is first used to perform a mutation. From this
point on, it is treated as a full exclusive reference.

Right now, two-phase borrowing works only for method calls where the first
argument is &mut self, and it is not resolved if generalized TPB should even
be supported.

14

1.1.6 Loans and Regions

Previously, we looked at the advantages of Non-Lexical Lifetimes over standard
lexical ones. But lifetimes have a general defect and are supposed to be replaced
by an approach using regions employed by the Polonius borrow checker, which
is currently in an experimental stage. Here, we will explore how NLL and
regions work under the hood, and what the advantage of using regions is.

Borrow Errors We need to define some vocabulary first: A path is an iden-
tifier like x, or is built from a path by a field access x.f, a dereference *x, or
an index x[1]. Those can be freely combined, so that for example (*x)[5].f
is a valid path.3

A loan is the result of a borrow expression. It consists of the path which is
borrowed from and a mode, that is shared or exclusive.

A loan L is violated if its path Pis accessed in an incompatible way, that is,
P is mutated when the L is shared, or P is accessed at all when L is exclusive.
Note that an access can also be indirect if P is shows up somewhere in the
expression. For example, (¥x)[5].f accesses (¥x)[51], *x, and x indirectly.
Note also that a loan to an index ignores the index variable, that is x[5]
and x[4] produce the same loan to x[_]. This is because Rust can generally
not know at compile time if two index operations alias. It means that it is
impossible to have two exclusive references to different parts of a data structure
like in Listing 1.27.

|let mut v = vec![1, 2];
| two_refs(&émut v[o], &mut v[1]);

Listing 1.27: Indexing twice into a vector is illlegal

Now we can define when a borrow error should occur. There are three
conditions which all have to be met:

1. A path Pis accessed at some node N of the CFG,
2. accessing P at IV would violate some loan L, and

3. L is live at N.

Different approaches to borrow checking only differ in determining when L
is live. For example, with lexical lifetimes a loan is simply live from its creation
until the end of the lexical scope. We are now prepared to dive into liveness
analysis in NLL and Polonius.

Classic NLL Under NLL the liveness of a loan is derived from the lifetime of
a reference. As discussed in subsection 1.1.4, a reference is live in a node of
the CFG if it may be used later. This means that we walk forward along the
CFG to determine the liveness of the reference and the corresponding loan is
live exactly when the reference is. Crucially, if a function returns a reference,
it is live for the whole body of the function.

3Paths have a rough equivalent in C and C++ lvalues.

15

fn first_or_insert(v: &mut Vec<i3z2>) -> &§i32 {
let fst = v.first();
match fst {
Some(x) => x,
None => {v.push(1); &v[el},

Listing 1.28: NLL reject correct program

Listing 1.28 shows an example. In the Some branch, x is returned from the
function, which in turn depends on the reference produced by fst. Because x
is returned from the function, it needs to be live at least until the end of the
body of first_or_insert. But since x is derived from fst, that reference
must outlive x, hence being live for the whole function body as well. In the
None branch, an exclusive reference to v is created for the call to push. This
produces an error because that node lies on a path between the creation of fst
and the return point.

This should not happen. We can see that fst is not actually used when
we go through the None arm because a different reference is returned in that
case. However, NLL can’t accommodate this situation because fst may be
used later, see Figure 3. A similar problem for map data structures has led to
the Entry Application Programming Interface (API) which uses unsafe Rust
to work around this limitation.

Ilet fst = v.first();l

match fst

Jone
v.push(a);

Figure 3: Control-flow diagram for Listing 1.28.

Polonius With lifetimes, we looked forwards from the borrow expression to
see how long a reference (and therefore the loan) is live. Polonius goes back-
wards from a point of use to see if there is still a live reference. Polonius doesn’t
use lifetimes but regions to determine the liveness of a loan.

A regiont is a set of loans. FEach reference has a region consisting of all
loans it may depend on. A fresh reference created from an owned value has
a region consisting of just one loan, but a reference, e.g. if returned by a
function, could depend on several inputs and therefore have a region of several
loans. Note that in this step we don’t care about how long a reference is valid,

4Polonius calls regions origins, which is a more telling name, but regions is the more
standard term.

16

we don’t go forward in the CFG. Instead, we only consider previous nodes to
determine regions.

Now, a loan L is live at some node N, if there is some variable which is live
at N and contains L in its region. This difference means that different paths
through the CFG are independent from each other, because a node in one path
can’t see a node in the other one by walking back the CFG.

Let’s look at the example from Listing 1.28 with all regions made explicit.
x'{L1, L2} denotes that expression x has a region consisting of the two loans
L1 and L2.

fn first_or_insert(v'{Lo}: &mut Vec<iz2>)
-> &§'{Lo, L1, L3} i32
{
let fst'{Lo, L1} = v.first()'{Lo, L1};
match fst {
Some(x'{Lo, L1}) => x,
None => {v.push(1)'{Lo, L2}; &v[o]l'{Lo, L3}},
}
}

Listing 1.29: Example with region annotations

In Listing 1.29 we can see that there are four relevant loans: Lo is the loan
of the reference we got passed in. All references depend on it. first creates
a reference with loan L1 that is returned in the Some branch, push implicitly
reborrows to push a value onto *v. The final reference is created by the index
operation and it may also be returned. Therefore, the return value has a region
"{Lo, L1, L2}, because those three loans are what it may depend on.

Under NLL, the push was not possible because x being live and depending
on fst meant that fst was live. With Polonius, we must check if there is any
live variable that has a nonempty intersection with '{Leo, L2}. fst and x are
not live, so they don’t pose a problem, even if the regions overlap. v is live and
there is a region overlap, but since the compiler inserts a reborrow, it is not a
problem. There could still be an error if the borrow stack were invalidated at a
later point, but since Polonius is only looking backwards, this is not something
we have to consider here. There are no more live variables, so the node passes
the borrow check.

Self-referential Structs Sometimes we want to have structures that contain
references to parts of itself.> Consider the struct in Listing 1.30, in which we
store some data and additionally provide a view into a part of the data. The
window field contains a reference and it must be tied to soe value on the stack,
but it is impossible to assign a lifetime to it. Putting a 'data is not valid Rust
at the moment.

With regions, however, this could work. Polonius could check that when
creating a View, the reference supplied to the constructor is pointing to the
data argument.

|struct View<T> {

5A real-world example of this are futures which must store the point of execution they
are in. Currently they are a special case in the compiler and can’t be expressed in user-code.

17

data: Vec<T>,
window: &'data [T]
|}

Listing 1.30: Self-referential struct

Polonius the Crab Since Polonius is still unstable and will be so for the
forseeable future, there is a library® defining a macro which implements the
Polonius logic in stable Rust, using some unsafe code.

Cyclone Cyclone |] is a dialect of C that introduces additional safe
pointer types which are checked using regions. Instead of Polonius’ abstract
regions, the regions in Cyclone represent concrete parts of memory.

1.2 Contracts and Refinement Types

Every interface, be it a function, a library, or an HTTP server, comes with
a contract: The interface expects data in a certain, well-defined form, and
guarantees—given the input complies with this form—certain properties of the
output. On the other hand, if the input is not well-formed, no guarantees on
the output are made whatsoever. This principle is called “garbage in, garbage
out”. If the interface exposes data, there are normally also some invariants that
these data are supposed to conform to for the whole program run.

Normally, these contracts are implicit and it is the burden of the author
of an interface to carefully document them and the burden of the consumer of
the interface to carefully follow them. This is not only a lot of work but also
a large source for errors. This is why many programming languages offer some
facilities to help users documenting and enforcing these contracts, the most
notable being types. The input and output types of a function are part of its
contract that can be extracted by a documentation tool and checked by the
compiler.

Strong typing rejects some correct programs but also prevents many po-
tential bugs and thus are used in many languages. The difficulties lie in how
a type system should be designed. If a type system is too weak, it can’t find
mistakes and is not very useful. On the other hand, strong type systems like
the calculus of constructions allow programmers to specify contracts down to
the last detail and proof that an implementation follows this specification, but
are very difficult to use and unwieldy.”

In this section, we will focus on two related approaches of specifying con-
tracts: Contract programming inserts explicit run-time checks into a program
to ensure that it is never in an illegal state. Refinement types introduce
compile-time checks. Finally, we will discuss hybrid typing, an approach to
combine contract programming and refinement types.

Shttps://docs.rs/polonius-the-crab/0.3.0/polonius_the_crab/
7 A proof for the correctness of QuickSort in the language Coq spans several hundred lines:
https://gist.github.com/RyanGlScott/ff36cd6f6479b33becca83379a36ce49

18

citation

https://docs.rs/polonius-the-crab/0.3.0/polonius_the_crab/
https://gist.github.com/RyanGlScott/ff36cd6f6479b33becca83379a36ce49

1.2.1 Contract Programming
1. Preconditions, Postconditions, Invariants
2. Hoare Logic

Contracts are a Runtime Check

Are there first-class contracts?

Higher-order contracts (Findler, Felleisen)

I A ol

Loop invariants

1.2.2 Refinement Types

1. Independent Refinement Types
2. Dependent Refinement Types/Refined Function Types

3. Refinement Types are “first-class”

1.2.3 Liquid Types and SMT Solving
1. Refinement Types are not decidable
2. SAT is decidable
3. SMT is decidable
4. Liquid Types = {T : RefinementType | decidable T}
5. SMT-LIB2 and Z3

1.2.4 Hybrid Type Checking
1. Idea: Combine Contracts and Liquid Types
2. Sprinkle in casts everywhere an assertion is made

3. If the compiler can prove that this is ok or not ok, remove the cast (and
potentially throw a compiler error)

4. All other casts are dynamic and lead to a panic if they fail.

5. In Rust, Result and ? could be used instead. Problem: The error must
be handled somewhere.

19

https://www2.ccs.neu.edu/racket/pubs/icfp2002-ff.pdf

1.3

Other Extensions to a Type System

1.3.1 Totality and Termination Metrics

1.

2.

Some functions can panic or loop indefinitely

In Rust, ! as return type helps (such a function does definitely not ter-
minate)

There is no “may not terminate”, though, so you have to rely on the
documentation

You can prove that a loop/recursion finishes by termination metrics

Panics can technically occur in every function (every function call needs
memory space for a stack frame)

But you can prove that there are no “high-level” panics in any execution
path within a function

1.3.2 (Other) Substructural Types

1.

I A

What are structural rules? Exchange, Weakening, Contraction
Move semantics are affine types

Clone and Copy is weakening

#Hmust_use] and relevant types

Linear types

The borrow stack is ordered types

Uniqueness types: There is only one reference (in contrast to linear types:
no more references can be created)

1.3.3 Purity and (algebraic) Effects

1.

A N

Effects

Handling (Example: Exceptions)

Algebraic Effects

Pure functions don’t have unhandled effects

What counts as an effect (10, allocation, computation)

non-totality is an effect, but do termination metrics fit in?

7. Weakening and Contraction are effects, but what about borrowing?

Refinements N Effects

20

Abbreviations

RAII
API
SBRM
NLL
CFG
MIR
RFC
TPB
GC
OBS
HTTP

Resource Acquisition is Initialization
Application Programming Interface.
Space Bound Resource Management
Non-Lexical Lifetimes
control-flow graph o o oL
Mid-level Intermediate Representation
Request For Comments

Two-Phase Borrow o
garbage collection L L
Ownership and Borrow System

Hypertext Transfer Protocol

Listings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30

Memory management in C
Manual resource management in Python
Context managers in Python
The defer statement in Go
RAIIin CH++ e
Heap allocationin Rust
Ownership transfer00
Usageof Clone
Number types are Copy L oo
Borrow using references to prevent a move
Lexical Lifetimes prevent usage
More scopes make the code check
Try to return a reference
Borrow-through oo
Tterator over two slices
Iterator over two slices
The output lifetime depends only on one of the inputs
Use String and as_ref in place of [u8]
Use Stringin placeof [u81
Simple NLL example
NLL example with braching
Cannot create a shared reference while an exclusive one exists .
Move a borrow into a function
Reborrow through an exclusive reference
Borrow twice in one method call
Workaround for Listing 1.25
Indexing twice into a vector isilllegal
NLL reject correct program
Example with region annotations
Self-referential struct

22

© © © 000~ DU U i b W W NN

= T S O ST S
N U R W W W R OO O

	Contents
	Introduction
	The Rust Ownership and Borrow System
	Ownership
	Resource Handling Strategies
	RAII and Drop Responsibilities
	Move Semantics
	Clone
	Copy
	ManuallyDrop

	Borrowing
	The Owner of a Borrowed Value
	Lexical Lifetimes and Lifetime Analysis
	Access Guards
	Returning references and Borrow-through
	Lifetime Polymorphism

	Reference Conversions
	AsRef
	Deref
	Borrow
	Mutable reference conversions

	Non-Lexical Lifetimes
	Reborrows and Two-Phase Borrowing
	Reborrows
	Two-Phase Borrowing

	Loans and Regions
	Borrow Errors
	Classic NLL
	Polonius
	Self-referential Structs
	Polonius the Crab
	Cyclone

	Contracts and Refinement Types
	Contract Programming
	Refinement Types
	Liquid Types and SMT Solving
	Hybrid Type Checking

	Other Extensions to a Type System
	Totality and Termination Metrics
	(Other) Substructural Types
	Purity and (algebraic) Effects

	Listings

