diff --git a/SineTools.py b/SineTools.py
index 6379d58bf88918e25cce4849f8099d490b556952..1526ca0ae155955c57be1b7d3435a84c85bef86e 100644
--- a/SineTools.py
+++ b/SineTools.py
@@ -1,195 +1,1187 @@
-<!DOCTYPE html>
-<html class="devise-layout-html">
-<head prefix="og: http://ogp.me/ns#">
-<meta charset="utf-8">
-<link rel="preload" href="/assets/application_utilities-3676200ca543122eb8a1e1722a7139b82fbc787011ec0c4c17ac75145f60120f.css" as="style" type="text/css">
-<link rel="preload" href="/assets/application-4f233d907f30a050ca7e40fbd91742d444d28e50691c51b742714df8181bf4e7.css" as="style" type="text/css">
-<link rel="preload" href="/assets/highlight/themes/white-21f90a158663d6eabb1646d83d9e353d6904978fbb8391ab39ab4d1e4a1042f3.css" as="style" type="text/css">
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Jun 14 20:36:01 2013
+SineTools.py
+auxiliary functions related to sine-approximation
 
-<meta content="IE=edge" http-equiv="X-UA-Compatible">
+@author: Th. Bruns, B.Seeger
+"""
 
-<meta content="object" property="og:type">
-<meta content="GitLab" property="og:site_name">
-<meta content="Sign in" property="og:title">
-<meta content="GitLab Community Edition" property="og:description">
-<meta content="https://gitlab1.ptb.de/assets/gitlab_logo-7ae504fe4f68fdebb3c2034e36621930cd36ea87924c11ff65dbcb8ed50dca58.png" property="og:image">
-<meta content="64" property="og:image:width">
-<meta content="64" property="og:image:height">
-<meta content="https://gitlab1.ptb.de/users/sign_in" property="og:url">
-<meta content="summary" property="twitter:card">
-<meta content="Sign in" property="twitter:title">
-<meta content="GitLab Community Edition" property="twitter:description">
-<meta content="https://gitlab1.ptb.de/assets/gitlab_logo-7ae504fe4f68fdebb3c2034e36621930cd36ea87924c11ff65dbcb8ed50dca58.png" property="twitter:image">
+import numpy as np
+from scipy import linalg as la
+from scipy.sparse import coo_matrix, hstack
+from scipy.sparse.linalg import lsqr as sp_lsqr
+import matplotlib.pyplot as mp
+import warnings
 
-<title>Sign in ยท GitLab</title>
-<meta content="GitLab Community Edition" name="description">
+import multiprocessing
+from functools import partial
+from multiprocessing import shared_memory
+from tqdm.contrib.concurrent import process_map
+import os
 
-<link rel="shortcut icon" type="image/png" href="/uploads/-/system/appearance/favicon/1/favicon.ico" id="favicon" data-original-href="/uploads/-/system/appearance/favicon/1/favicon.ico" />
-<style>
-@keyframes blinking-dot{0%{opacity:1}25%{opacity:0.4}75%{opacity:0.4}100%{opacity:1}}@keyframes blinking-scroll-button{0%{opacity:0.2}50%{opacity:1}100%{opacity:0.2}}@keyframes gl-spinner-rotate{0%{transform:rotate(0)}100%{transform:rotate(360deg)}}body.ui-indigo .navbar-gitlab{background-color:#292961}body.ui-indigo .navbar-gitlab .navbar-collapse{color:#d1d1f0}body.ui-indigo .navbar-gitlab .container-fluid .navbar-toggler{border-left:1px solid #6868b9;color:#d1d1f0}body.ui-indigo .navbar-gitlab .navbar-sub-nav>li>a:hover,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li>a:focus,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li>button:hover,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li>button:focus,body.ui-indigo .navbar-gitlab .navbar-nav>li>a:hover,body.ui-indigo .navbar-gitlab .navbar-nav>li>a:focus,body.ui-indigo .navbar-gitlab .navbar-nav>li>button:hover,body.ui-indigo .navbar-gitlab .navbar-nav>li>button:focus{background-color:rgba(209,209,240,0.2)}body.ui-indigo .navbar-gitlab .navbar-sub-nav>li.active>a,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li.active>button,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li.dropdown.show>a,body.ui-indigo .navbar-gitlab .navbar-sub-nav>li.dropdown.show>button,body.ui-indigo .navbar-gitlab .navbar-nav>li.active>a,body.ui-indigo .navbar-gitlab .navbar-nav>li.active>button,body.ui-indigo .navbar-gitlab .navbar-nav>li.dropdown.show>a,body.ui-indigo .navbar-gitlab .navbar-nav>li.dropdown.show>button{color:#292961;background-color:#fff}body.ui-indigo .navbar-gitlab .navbar-sub-nav>li.line-separator,body.ui-indigo .navbar-gitlab .navbar-nav>li.line-separator{border-left:1px solid rgba(209,209,240,0.2)}body.ui-indigo .navbar-gitlab .navbar-sub-nav{color:#d1d1f0}body.ui-indigo .navbar-gitlab .nav>li{color:#d1d1f0}body.ui-indigo .navbar-gitlab .nav>li>a .notification-dot{border:2px solid #292961}body.ui-indigo .navbar-gitlab .nav>li>a.header-help-dropdown-toggle .notification-dot{background-color:#d1d1f0}body.ui-indigo .navbar-gitlab .nav>li>a.header-user-dropdown-toggle .header-user-avatar{border-color:#d1d1f0}@media (min-width: 576px){body.ui-indigo .navbar-gitlab .nav>li>a:hover,body.ui-indigo .navbar-gitlab .nav>li>a:focus{background-color:rgba(209,209,240,0.2)}}body.ui-indigo .navbar-gitlab .nav>li>a:hover svg,body.ui-indigo .navbar-gitlab .nav>li>a:focus svg{fill:currentColor}body.ui-indigo .navbar-gitlab .nav>li>a:hover .notification-dot,body.ui-indigo .navbar-gitlab .nav>li>a:focus .notification-dot{will-change:border-color, background-color;border-color:#4a4a82}body.ui-indigo .navbar-gitlab .nav>li>a:hover.header-help-dropdown-toggle .notification-dot,body.ui-indigo .navbar-gitlab .nav>li>a:focus.header-help-dropdown-toggle .notification-dot{background-color:#fff}body.ui-indigo .navbar-gitlab .nav>li.active>a,body.ui-indigo .navbar-gitlab .nav>li.dropdown.show>a{color:#292961;background-color:#fff}body.ui-indigo .navbar-gitlab .nav>li.active>a:hover svg,body.ui-indigo .navbar-gitlab .nav>li.dropdown.show>a:hover svg{fill:#292961}body.ui-indigo .navbar-gitlab .nav>li.active>a .notification-dot,body.ui-indigo .navbar-gitlab .nav>li.dropdown.show>a .notification-dot{border-color:#fff}body.ui-indigo .navbar-gitlab .nav>li.active>a.header-help-dropdown-toggle .notification-dot,body.ui-indigo .navbar-gitlab .nav>li.dropdown.show>a.header-help-dropdown-toggle .notification-dot{background-color:#292961}body.ui-indigo .navbar-gitlab .nav>li .impersonated-user svg,body.ui-indigo .navbar-gitlab .nav>li .impersonated-user:hover svg{fill:#292961}body.ui-indigo .navbar .title>a:hover,body.ui-indigo .navbar .title>a:focus{background-color:rgba(209,209,240,0.2)}body.ui-indigo .search form{background-color:rgba(209,209,240,0.2)}body.ui-indigo .search form:hover{background-color:rgba(209,209,240,0.3)}body.ui-indigo .search .search-input::placeholder{color:rgba(209,209,240,0.8)}body.ui-indigo .search .search-input-wrap .search-icon,body.ui-indigo .search .search-input-wrap .clear-icon{fill:rgba(209,209,240,0.8)}body.ui-indigo .search.search-active form{background-color:#fff}body.ui-indigo .search.search-active .search-input-wrap .search-icon{fill:rgba(209,209,240,0.8)}body.ui-indigo .nav-sidebar li.active>a{color:#2f2a6b}body.ui-indigo .nav-sidebar .fly-out-top-item a,body.ui-indigo .nav-sidebar .fly-out-top-item a:hover,body.ui-indigo .nav-sidebar .fly-out-top-item.active a,body.ui-indigo .nav-sidebar .fly-out-top-item .fly-out-top-item-container{background-color:#2f2a6b;color:var(--black, #fff)}body.ui-indigo .nav-links li.active a,body.ui-indigo .nav-links li.md-header-tab.active button,body.ui-indigo .nav-links li a.active{border-bottom:2px solid #6666c4}body.ui-indigo .nav-links li.active a .badge.badge-pill,body.ui-indigo .nav-links li.md-header-tab.active button .badge.badge-pill,body.ui-indigo .nav-links li a.active .badge.badge-pill{font-weight:600}body.ui-indigo .emoji-picker-category-active{border-bottom-color:#6666c4}body.ui-indigo .branch-header-title{color:#4b4ba3}body.ui-indigo .ide-sidebar-link.active{color:#4b4ba3}body.ui-indigo .ide-sidebar-link.active.is-right{box-shadow:inset -3px 0 #4b4ba3}
+import os
+from numba import njit, prange
+canUseMP=False
+if os.name == 'nt':
+    print("SineTools Multiprocessing is not impleneted on Windows ")
+if os.name=='posix':
+    canUseMP=True
+    manager = multiprocessing.Manager()
+    mpdata = manager.dict()
 
-*,*::before,*::after{box-sizing:border-box}html{font-family:sans-serif;line-height:1.15}header{display:block}body{margin:0;font-family:-apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Noto Sans", Ubuntu, Cantarell, "Helvetica Neue", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";font-size:1rem;font-weight:400;line-height:1.5;color:#303030;text-align:left;background-color:#fff}hr{box-sizing:content-box;height:0;overflow:visible}h1,h3{margin-top:0;margin-bottom:0.25rem}p{margin-top:0;margin-bottom:1rem}a{color:#007bff;text-decoration:none;background-color:transparent}a:not([href]):not([class]){color:inherit;text-decoration:none}img{vertical-align:middle;border-style:none}svg{overflow:hidden;vertical-align:middle}label{display:inline-block;margin-bottom:0.5rem}input{margin:0;font-family:inherit;font-size:inherit;line-height:inherit}input{overflow:visible}[type="submit"]:not(:disabled){cursor:pointer}[type="submit"]::-moz-focus-inner{padding:0;border-style:none}fieldset{min-width:0;padding:0;margin:0;border:0}[hidden]{display:none !important}h1,h3{margin-bottom:0.25rem;font-weight:600;line-height:1.2;color:#303030}h1{font-size:2.1875rem}h3{font-size:1.53125rem}hr{margin-top:0.5rem;margin-bottom:0.5rem;border:0;border-top:1px solid rgba(0,0,0,0.1)}.container{width:100%;padding-right:15px;padding-left:15px;margin-right:auto;margin-left:auto}@media (min-width: 576px){.container{max-width:540px}}@media (min-width: 768px){.container{max-width:720px}}@media (min-width: 992px){.container{max-width:960px}}@media (min-width: 1200px){.container{max-width:1140px}}.row{display:flex;flex-wrap:wrap;margin-right:-15px;margin-left:-15px}.col,.col-sm-5,.col-sm-7,.col-sm-12{position:relative;width:100%;padding-right:15px;padding-left:15px}.col{flex-basis:0;flex-grow:1;max-width:100%}.order-1{order:1}.order-12{order:12}@media (min-width: 576px){.col-sm-5{flex:0 0 41.66667%;max-width:41.66667%}.col-sm-7{flex:0 0 58.33333%;max-width:58.33333%}.col-sm-12{flex:0 0 100%;max-width:100%}.order-sm-1{order:1}.order-sm-12{order:12}}.form-control{display:block;width:100%;height:34px;padding:0.375rem 0.75rem;font-size:0.875rem;font-weight:400;line-height:1.5;color:#303030;background-color:#fff;background-clip:padding-box;border:1px solid #dbdbdb;border-radius:0.25rem}.form-control:-moz-focusring{color:transparent;text-shadow:0 0 0 #303030}.form-control::placeholder{color:#5e5e5e;opacity:1}.form-control:disabled{background-color:#fafafa;opacity:1}.form-group{margin-bottom:1rem}.form-row{display:flex;flex-wrap:wrap;margin-right:-5px;margin-left:-5px}.form-row>.col{padding-right:5px;padding-left:5px}.btn{display:inline-block;font-weight:400;color:#303030;text-align:center;vertical-align:middle;-webkit-user-select:none;user-select:none;background-color:transparent;border:1px solid transparent;padding:0.375rem 0.75rem;font-size:1rem;line-height:20px;border-radius:0.25rem}.btn:disabled{opacity:0.65}.btn:not(:disabled):not(.disabled){cursor:pointer}fieldset:disabled a.btn{pointer-events:none}.navbar{position:relative;display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between;padding:0.25rem 0.5rem}.navbar .container{display:flex;flex-wrap:wrap;align-items:center;justify-content:space-between}.d-block{display:block !important}.d-flex{display:flex !important}.flex-wrap{flex-wrap:wrap !important}.justify-content-between{justify-content:space-between !important}.align-items-center{align-items:center !important}.fixed-top{position:fixed;top:0;right:0;left:0;z-index:1030}.ml-2{margin-left:0.5rem !important}.mt-3{margin-top:1rem !important}.mb-3{margin-bottom:1rem !important}.text-center{text-align:center !important}.font-weight-normal{font-weight:400 !important}.gl-form-input,.gl-form-input.form-control{background-color:#fff;font-family:-apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Noto Sans", Ubuntu, Cantarell, "Helvetica Neue", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji";font-size:0.875rem;line-height:1rem;padding-top:0.5rem;padding-bottom:0.5rem;padding-left:0.75rem;padding-right:0.75rem;height:auto;color:#303030;box-shadow:inset 0 0 0 1px #868686;border-style:none;-webkit-appearance:none;appearance:none;-moz-appearance:none}.gl-form-input:disabled,.gl-form-input:not(.form-control-plaintext):read-only,.gl-form-input.form-control:disabled,.gl-form-input.form-control:not(.form-control-plaintext):read-only{background-color:#fafafa;color:#868686;box-shadow:inset 0 0 0 1px #dbdbdb;cursor:not-allowed}.gl-form-input::placeholder,.gl-form-input.form-control::placeholder{color:#868686}.gl-button{display:inline-flex}.gl-button:not(.btn-link):active{text-decoration:none}.gl-button.gl-button{border-width:0;padding-top:0.5rem;padding-bottom:0.5rem;padding-left:0.75rem;padding-right:0.75rem;background-color:transparent;line-height:1rem;color:#303030;fill:currentColor;box-shadow:inset 0 0 0 1px #bfbfbf;justify-content:center;align-items:center;font-size:0.875rem;border-radius:0.25rem}.gl-button.gl-button .gl-button-icon{height:1rem;width:1rem;flex-shrink:0;margin-right:0.25rem;top:auto}.gl-button.gl-button.btn-default{background-color:#fff}.gl-button.gl-button.btn-default:active{box-shadow:inset 0 0 0 2px #5e5e5e,0 0 0 1px rgba(255,255,255,0.4),0 0 0 4px rgba(31,117,203,0.48);outline:none;background-color:#dbdbdb}.gl-button.gl-button.btn-confirm{color:#fff}.gl-button.gl-button.btn-confirm{background-color:#1f75cb;box-shadow:inset 0 0 0 1px #1068bf}.gl-button.gl-button.btn-confirm:active{box-shadow:inset 0 0 0 2px #033464,0 0 0 1px rgba(255,255,255,0.4),0 0 0 4px rgba(31,117,203,0.48);outline:none;background-color:#0b5cad}body,.form-control{font-size:0.875rem}[type="submit"]{cursor:pointer}h1,h3{margin-top:20px;margin-bottom:10px}a{color:#1068bf}hr{overflow:hidden}.hidden{display:none !important;visibility:hidden !important}.hide{display:none}svg{vertical-align:baseline}html{overflow-y:scroll}body{text-decoration-skip:ink}body.navless{background-color:#fff !important}.container{padding-top:0;z-index:5}.container .content{margin:0}@media (max-width: 575.98px){.container .content{margin-top:20px}}.navless-container{margin-top:40px;padding-top:32px}.btn{border-radius:4px;font-size:0.875rem;font-weight:400;padding:6px 10px;background-color:#fff;border-color:#dbdbdb;color:#303030;color:#303030;white-space:nowrap}.btn:active{background-color:#f0f0f0;box-shadow:none}.btn:active{background-color:#eaeaea;border-color:#e3e3e3;color:#303030}.btn svg{height:15px;width:15px}.btn svg:not(:last-child){margin-right:5px}.light{color:#303030}hr{margin:1.5rem 0;border-top:1px solid #eee}.footer-links{margin-bottom:20px}.footer-links a{margin-right:15px}.flash-container{margin:0;margin-bottom:16px;font-size:14px;position:relative;z-index:1}.flash-container.sticky{position:sticky;top:48px;z-index:251}.flash-container.flash-container-page{margin-bottom:0}.flash-container:empty{margin:0}input{border-radius:0.25rem;color:#303030;background-color:#fff}label{font-weight:600}label.label-bold{font-weight:600}.form-control{border-radius:4px;padding:6px 10px}.form-control::placeholder{color:#868686}.gl-show-field-errors .form-control:not(textarea){height:34px}.gl-show-field-errors .gl-field-hint{color:#303030}.navbar-empty{justify-content:center;height:40px;background:#fff;border-bottom:1px solid #dbdbdb}.navbar-empty .tanuki-logo,.navbar-empty .brand-header-logo{max-height:100%}.tanuki-logo .tanuki-left-ear,.tanuki-logo .tanuki-right-ear,.tanuki-logo .tanuki-nose{fill:#e24329}.tanuki-logo .tanuki-left-eye,.tanuki-logo .tanuki-right-eye{fill:#fc6d26}.tanuki-logo .tanuki-left-cheek,.tanuki-logo .tanuki-right-cheek{fill:#fca326}input::-moz-placeholder{color:#868686;opacity:1}input::-ms-input-placeholder{color:#868686}input:-ms-input-placeholder{color:#868686}svg{fill:currentColor}.login-page .container{max-width:960px}.login-page .navbar-gitlab .container{max-width:none}.login-page .flash-container{margin-bottom:16px}.login-page .brand-holder{font-size:18px;line-height:1.5}.login-page .brand-holder p{font-size:16px;color:#888}.login-page .brand-holder h3{font-size:22px}.login-page .brand-holder img{max-width:100%;margin-bottom:30px}.login-page .brand-holder a{font-weight:600}.login-page p{font-size:13px}.login-page .login-box,.login-page .omniauth-container{box-shadow:0 0 0 1px #dbdbdb;border-radius:0.25rem;padding:15px}.login-page .login-box .login-heading h3,.login-page .omniauth-container .login-heading h3{font-weight:400;line-height:1.5;margin:0 0 10px}.login-page .login-box .login-footer,.login-page .omniauth-container .login-footer{margin-top:10px}.login-page .login-box .login-footer p:last-child,.login-page .omniauth-container .login-footer p:last-child{margin-bottom:0}.login-page .login-box a.forgot,.login-page .omniauth-container a.forgot{float:right;padding-top:6px}.login-page .login-box .nav .active a,.login-page .omniauth-container .nav .active a{background:transparent}.login-page .login-box .login-body,.login-page .omniauth-container .login-body{font-size:13px}.login-page .login-box .login-body input+p,.login-page .login-box .login-body input ~ p.field-validation,.login-page .omniauth-container .login-body input+p,.login-page .omniauth-container .login-body input ~ p.field-validation{margin-top:5px}.login-page .login-box .login-body .username .validation-success,.login-page .omniauth-container .login-body .username .validation-success{color:#217645}.login-page .login-box .login-body .username .validation-error,.login-page .omniauth-container .login-body .username .validation-error{color:#dd2b0e}.login-page .omniauth-container{border-radius:0.25rem;font-size:13px}.login-page .omniauth-container p{margin:0}.login-page .omniauth-container form{width:48%;padding:0;border:0;background:none;margin-bottom:16px}@media (max-width: 991.98px){.login-page .omniauth-container form{width:100%}}.login-page .omniauth-container .omniauth-btn{width:100%}.login-page .new-session-tabs{display:flex;box-shadow:0 0 0 1px #dbdbdb;border-top-right-radius:4px;border-top-left-radius:4px}.login-page .new-session-tabs.custom-provider-tabs{flex-wrap:wrap}.login-page .new-session-tabs.custom-provider-tabs li{min-width:85px;flex-basis:auto}.login-page .new-session-tabs.custom-provider-tabs li:nth-child(n+5){border-top:1px solid #dbdbdb}.login-page .new-session-tabs.custom-provider-tabs a{font-size:16px}.login-page .new-session-tabs li{flex:1;text-align:center;border-left:1px solid #dbdbdb}.login-page .new-session-tabs li:first-of-type{border-left:0;border-top-left-radius:4px}.login-page .new-session-tabs li:last-of-type{border-top-right-radius:4px}.login-page .new-session-tabs li:not(.active){background-color:#fafafa}.login-page .new-session-tabs li a{width:100%;font-size:18px}.login-page .new-session-tabs li.active>a{cursor:default}.login-page .form-control:active,.login-page .form-control:focus{background-color:#fff}.login-page .submit-container{margin-top:16px}.login-page input[type="submit"]{margin-bottom:0;display:block;width:100%}.login-page .devise-errors h2{margin-top:0;font-size:14px;color:#ae1800}@media (max-width: 575.98px){.login-page .col-md-5.float-right{float:none !important;margin-bottom:45px}}.devise-layout-html{margin:0;padding:0;height:100%}.devise-layout-html body{height:calc(100% - 51px);margin:0;padding:0}.devise-layout-html body.navless{height:calc(100% - 11px)}.devise-layout-html body .page-wrap{min-height:100%;position:relative}.devise-layout-html body .footer-container,.devise-layout-html body hr.footer-fixed{position:absolute;bottom:0;left:0;right:0;height:40px;background:#fff}.devise-layout-html body .login-page-broadcast{margin-top:40px}.devise-layout-html body .navless-container{padding:65px 15px}@media (max-width: 575.98px){.devise-layout-html body .navless-container{padding:0 15px 65px}}.gl-border-solid{border-style:solid}.gl-border-gray-100{border-color:#dbdbdb}.gl-border-1{border-width:1px}.gl-rounded-base{border-radius:0.25rem}.gl-text-green-600{color:#217645}.gl-text-red-500{color:#dd2b0e}.gl-display-flex{display:flex}.gl-display-block{display:block}.gl-align-items-center{align-items:center}.gl-w-full{width:100%}.gl-p-2{padding:0.25rem}.gl-p-4{padding:0.75rem}.gl-mt-2{margin-top:0.25rem}.gl-mb-2{margin-bottom:0.25rem}.gl-mb-3{margin-bottom:0.5rem}.gl-mb-5{margin-bottom:1rem}@media (min-width: 36rem){.gl-sm-mt-0{margin-top:0}}.gl-text-left{text-align:left}.content-wrapper>.alert-wrapper,#content-body,.modal-dialog{display:none}
-
-</style>
-
-<link rel="stylesheet" media="print" href="/assets/application-4f233d907f30a050ca7e40fbd91742d444d28e50691c51b742714df8181bf4e7.css" />
-
-<link rel="stylesheet" media="print" href="/assets/application_utilities-3676200ca543122eb8a1e1722a7139b82fbc787011ec0c4c17ac75145f60120f.css" />
-
-
-<link rel="stylesheet" media="print" href="/assets/highlight/themes/white-21f90a158663d6eabb1646d83d9e353d6904978fbb8391ab39ab4d1e4a1042f3.css" />
-<script>
-//<![CDATA[
-document.querySelectorAll('link[media="print"]').forEach(linkTag => {
-  linkTag.setAttribute('data-startupcss', 'loading');
-  const startupLinkLoadedEvent = new CustomEvent('CSSStartupLinkLoaded');
-  linkTag.addEventListener('load',function(){this.media='all';this.setAttribute('data-startupcss', 'loaded');document.dispatchEvent(startupLinkLoadedEvent);},{once: true});
-})
-
-//]]>
-</script>
-
-<script>
-//<![CDATA[
-window.gon={};gon.features={"webauthn":false};
-//]]>
-</script>
-
-
-
-
-
-<script src="/assets/webpack/runtime.f3c0b0d6.bundle.js" defer="defer"></script>
-<script src="/assets/webpack/main.5565962b.chunk.js" defer="defer"></script>
-<script src="/assets/webpack/commons-pages.admin.sessions-pages.ldap.omniauth_callbacks-pages.omniauth_callbacks-pages.profiles.t-f04c18ab.f60a0bce.chunk.js" defer="defer"></script>
-<script src="/assets/webpack/commons-pages.admin.sessions-pages.sessions-pages.sessions.new.d49a906e.chunk.js" defer="defer"></script>
-<script src="/assets/webpack/pages.sessions.new.099e6dce.chunk.js" defer="defer"></script>
-
-<meta name="csrf-param" content="authenticity_token" />
-<meta name="csrf-token" content="XkP21DHJ+s6JVfQJRVi97dJqV3VYF4ACRuPAprbMCJ8+O9yUxU6WeoRbZrUKHT5MbIbtwpoyHoeccY19F+Ydng==" />
-
-<meta name="action-cable-url" content="/-/cable" />
-<meta content="width=device-width, initial-scale=1, maximum-scale=1" name="viewport">
-<meta content="#292961" name="theme-color">
-<link rel="apple-touch-icon" type="image/x-icon" href="/assets/touch-icon-iphone-5a9cee0e8a51212e70b90c87c12f382c428870c0ff67d1eb034d884b78d2dae7.png" />
-<link rel="apple-touch-icon" type="image/x-icon" href="/assets/touch-icon-ipad-a6eec6aeb9da138e507593b464fdac213047e49d3093fc30e90d9a995df83ba3.png" sizes="76x76" />
-<link rel="apple-touch-icon" type="image/x-icon" href="/assets/touch-icon-iphone-retina-72e2aadf86513a56e050e7f0f2355deaa19cc17ed97bbe5147847f2748e5a3e3.png" sizes="120x120" />
-<link rel="apple-touch-icon" type="image/x-icon" href="/assets/touch-icon-ipad-retina-8ebe416f5313483d9c1bc772b5bbe03ecad52a54eba443e5215a22caed2a16a2.png" sizes="152x152" />
-<link color="rgb(226, 67, 41)" href="/assets/logo-d36b5212042cebc89b96df4bf6ac24e43db316143e89926c0db839ff694d2de4.svg" rel="mask-icon">
-<link href="/search/opensearch.xml" rel="search" title="Search GitLab" type="application/opensearchdescription+xml">
-<meta content="/assets/msapplication-tile-1196ec67452f618d39cdd85e2e3a542f76574c071051ae7effbfde01710eb17d.png" name="msapplication-TileImage">
-<meta content="#30353E" name="msapplication-TileColor">
-
-
-
-
-</head>
-
-<body class="ui-indigo login-page application navless gl-browser-generic gl-platform-other" data-page="sessions:new" data-qa-selector="login_page">
-
-<script>
-//<![CDATA[
-gl = window.gl || {};
-gl.client = {"isGeneric":true,"isOther":true};
-
-
-//]]>
-</script>
-<div class="page-wrap">
-<header class="navbar fixed-top navbar-empty">
-<img class="brand-header-logo lazy" data-src="/uploads/-/system/appearance/header_logo/1/ptb_logo.png" src="" />
-</header>
-
-<div class="login-page-broadcast">
-
-
-</div>
-<div class="container navless-container">
-<div class="content">
-<div class="flash-container flash-container-page sticky" data-qa-selector="flash_container">
-<div class="flash-alert mb-2">
-<svg class="s16 align-middle mr-1" data-testid="error-icon"><use xlink:href="/assets/icons-05c4d4d8f3cc1fe0f22064d47d6a57d254ff9686a08abb74993ade21581e46f8.svg#error"></use></svg>
-<span>You need to sign in or sign up before continuing.</span>
-<div class="close-icon-wrapper js-close-icon">
-<svg class="s16 close-icon gl-vertical-align-baseline!" data-testid="close-icon"><use xlink:href="/assets/icons-05c4d4d8f3cc1fe0f22064d47d6a57d254ff9686a08abb74993ade21581e46f8.svg#close"></use></svg>
-</div>
-</div>
-</div>
-
-<div class="row mt-3">
-<div class="col-sm-12">
-<h1 class="mb-3 font-weight-normal">
-GitLab
-</h1>
-</div>
-</div>
-<div class="row mb-3">
-<div class="col-sm-7 order-12 order-sm-1 brand-holder">
-
-<h3 class="gl-sm-mt-0">
-A complete DevOps platform
-</h3>
-<p>
-GitLab is a single application for the entire software development lifecycle. From project planning and source code management to CI/CD, monitoring, and security.
-</p>
-<p>
-This is a self-managed instance of GitLab.
-</p>
-<p data-sourcepos="1:1-1:66" dir="auto"><strong>New users may self-register with their PTB email address only!</strong></p>&#x000A;<p data-sourcepos="3:1-4:70" dir="auto"><strong>For external users please send a request to gitlab.admin(at)ptb.de</strong>&#x000A;Please provide full name, email and the name of the institute/company.</p>
-
-</div>
-<div class="col-sm-5 order-1 new-session-forms-container order-sm-12">
-
-<div id="signin-container">
-<div class="tab-content">
-<div class="login-box tab-pane active" id="login-pane" role="tabpanel">
-<div class="login-body">
-<form class="new_user gl-show-field-errors" id="new_user" aria-live="assertive" action="/users/sign_in" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="lzyqLM7u0x5ttq0wUUoAbZB3uy1+I7YrDFaKYeY2XST3RIBsOmm/qmC4P4weD4PMLpsBmrwGKK7WxMe6RxxIJQ==" /><div class="form-group">
-<label for="user_login" class="label-bold">Username or email</label>
-<input class="form-control gl-form-input top" autofocus="autofocus" autocapitalize="off" autocorrect="off" required="required" title="This field is required." data-qa-selector="login_field" type="text" name="user[login]" id="user_login" />
-</div>
-<div class="form-group">
-<label class="label-bold" for="user_password">Password</label>
-<input class="form-control gl-form-input bottom" required="required" title="This field is required." data-qa-selector="password_field" type="password" name="user[password]" id="user_password" />
-</div>
-<div class="remember-me">
-<label for="user_remember_me">
-<input name="user[remember_me]" type="hidden" value="0" /><input class="remember-me-checkbox" type="checkbox" value="1" name="user[remember_me]" id="user_remember_me" />
-<span>Remember me</span>
-</label>
-<div class="float-right">
-<a href="/users/password/new">Forgot your password?</a>
-</div>
-</div>
-<div></div>
-<div class="submit-container move-submit-down">
-<input type="submit" name="commit" value="Sign in" class="gl-button btn btn-confirm" data-qa-selector="sign_in_button" data-disable-with="Sign in" />
-</div>
-</form>
-</div>
-</div>
-
-</div>
-<p class="gl-mt-3">
-Don&#39;t have an account yet?
-<a data-qa-selector="register_link" href="/users/sign_up">Register now</a>
-</p>
-</div>
-
-</div>
-</div>
-</div>
-</div>
-<hr class="footer-fixed">
-<div class="container footer-container">
-<div class="footer-links">
-<a href="/explore">Explore</a>
-<a href="/help">Help</a>
-<a href="https://about.gitlab.com/">About GitLab</a>
-</div>
-</div>
-
-
-</div>
-</body>
-</html>
+
+def sampletimes(Fs, T):  #
+    """
+    generate a t_i vector with \n
+    sample rate Fs \n
+    from 0 to T
+    """
+    num = int(np.ceil(T * Fs))
+    return np.linspace(0, T, num, dtype=np.float64)
+
+
+# a = displacement, velocity or acceleration amplitude
+def sinewave(f, a, phi, ti, offset=0, noise=0, absnoise=0, drift=0, ampdrift=0):
+    """
+    generate a sampled sine wave s_i = s(t_i) with \n
+    amplitude a \n
+    initial phase phi \n
+    sample times t_i \n
+    bias offset (default 0)\n
+    noise as multiple of the amplitude in noise level \n
+    absnoise as a additive noise component \n
+    drift as multiples of amplitude per duration in drifting zero \n
+    ampdrift as a drifting amplitude given as multiple of amplitude \n
+    """
+    Tau = ti[-1] - ti[0]
+    n = 0
+    n = 0
+    if noise != 0:
+        n = a * noise * np.random.randn(len(ti))
+    if absnoise != 0:
+        n = n + absnoise * np.random.randn(len(ti))
+
+    d = drift * a / Tau
+
+    s = (
+        a * (1 + ampdrift / Tau * ti) * np.sin(2 * np.pi * f * ti - phi)
+        + n
+        + d * ti
+        + offset
+    )
+    return s
+
+
+def fm_counter_sine(
+    fm, f, x, phi, ti, offset=0, noise=0, absnoise=0, drift=0, ampdrift=0, lamb=633.0e-9
+):
+    """
+    calculate counter value of heterodyne signal at \n
+    carrier freq. fm\n
+    x = displacement amplitude \n
+    initial phase phi \n
+    sample times t_i \n
+    bias or offset (default 0)\n
+    noise as multiple of the amplitude in noise level \n
+    absnoise as a additive noise component \n
+    drift as multiples of amplitude per duration in drifting zero \n
+    ampdrift as a drifting amplitude given as multiple of amplitude \n
+    lamb as wavelength of Laser
+    """
+    Tau = ti[-1] - ti[0]
+    n = 0
+    if noise != 0:
+        n = x * noise * np.random.randn(len(ti))
+    if absnoise != 0:
+        n = n + absnoise * np.random.randn(len(ti))
+
+    d = drift * x / Tau
+
+    s = (
+        1.0
+        / lamb
+        * (
+            x * (1 + ampdrift / Tau * ti) * np.sin(2 * np.pi * f * ti - phi)
+            + n
+            + d * ti
+            + offset
+        )
+    )
+    s = np.floor(s + fm * ti)
+
+    return s
+
+
+# sine fit at known frequency
+@njit
+def threeparsinefit(y, t, f0):
+    """
+    sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    \n
+    returns a vector of coefficients [a,b,c]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    w0 = 2 * np.pi * f0
+    lengtht=int(t.size)
+    a=np.ones((3,lengtht), dtype=np.float64)
+    a[0,:]=np.cos(w0 * t)
+    a[1,:]=np.sin(w0 * t)
+    #a = np.array([np.cos(w0 * t), np.sin(w0 * t), np.ones(t.size)])
+    aT=a.transpose()
+    abc = np.linalg.lstsq(aT, y)
+    return abc[0][0:3]  ## fit vector a*sin+b*cos+c
+
+def threeparsinefitNOJIT(y, t, f0):
+    """
+    sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    \n
+    returns a vector of coefficients [a,b,c]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    w0 = 2 * np.pi * f0
+    lengtht=int(t.size)
+    a=np.ones((3,lengtht), dtype=np.float64)
+    a[0,:]=np.cos(w0 * t)
+    a[1,:]=np.sin(w0 * t)
+    #a = np.array([np.cos(w0 * t), np.sin(w0 * t), np.ones(t.size)])
+    aT=a.transpose()
+    abc = np.linalg.lstsq(aT, y)
+    return abc[0][0:3]  ## fit vector a*sin+b*cos+c
+
+
+# multiprocessing wraper for threeparsinefit
+def multiPrcoess3paramFit(i):
+    """
+    mpdata['t_shared_name'] = shmY.name
+    mpdata['y_shared_name'] = shmT.name
+    mpdata['t_shared_type'] = y.dtype
+    mpdata['y_shared_type'] = t.dtype
+    mpdata['freq'] = f0
+    mpdata['samples_per_block'] = N
+    mpdata['nmumber_of_samples'] = y.size
+    """
+    N=mpdata['samples_per_block']
+
+    existing_shm_t = shared_memory.SharedMemory(name=mpdata['t_shared_name'])
+    t = np.ndarray((mpdata['nmumber_of_samples'],), dtype=mpdata['t_shared_type'], buffer=existing_shm_t.buf)
+    ti = t[i * N: (i + 1) * N]
+
+    existing_shm_y = shared_memory.SharedMemory(name=mpdata['y_shared_name'])
+    y = np.ndarray((mpdata['nmumber_of_samples'],), dtype=mpdata['y_shared_type'], buffer=existing_shm_y.buf)
+    yi = y[i * N: (i + 1) * N]
+    result=threeparsinefit(yi, ti, mpdata['freq'])
+    # Clean up
+    del t  # Unnecessary; merely emphasizing the array is no longer used
+    del y  # Unnecessary; merely emphasizing the array is no longer used
+    existing_shm_t.close()
+    existing_shm_y.close()
+    return result
+
+# sine fit at known frequency and detrending
+def threeparsinefit_lin(y, t, f0):
+    """
+    sine-fit with detrending at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    \n
+    returns a vector of coefficients [a,b,c,d]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c*t + d
+    """
+    w0 = 2 * np.pi * f0
+
+    a = np.array([np.cos(w0 * t), np.sin(w0 * t), np.ones(t.size), t, np.ones(t.size)])
+
+    abc = la.lstsq(a.transpose(), y)
+    return abc[0][0:4]  ## fit vector
+
+
+def calc_threeparsine(abc, t, f0):
+    """
+    return y = abc[0]*sin(2*pi*f0*t) + abc[1]*cos(2*pi*f0*t) + abc[2]
+    """
+    w0 = 2 * np.pi * f0
+    return abc[0] * np.cos(w0 * t) + abc[1] * np.sin(w0 * t) + abc[2]
+
+
+def amplitude(abc):
+    """
+    return the amplitude given the coefficients of\n
+    y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    return np.absolute(abc[1] + 1j * abc[0])
+
+
+def phase(abc, deg=False):
+    """
+    return the (sine-)phase given the coefficients of\n
+    y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c \n
+    returns angle in rad by default, in degree if deg=True
+    """
+    return np.angle(abc[1] + 1j * abc[0], deg=deg)
+
+
+def magnitude(A1, A2):
+    """
+    return the magnitude of the complex ratio of sines A2/A1\n
+    given two sets of coefficients \n
+    A1 = [a1,b1,c1]\n
+    A2 = [a2,b2,c2]
+    """
+    return amplitude(A2) / amplitude(A1)
+
+
+def phase_delay(A1, A2, deg=False):
+    """
+    return the phase difference of the complex ratio of sines A2/A1\n
+    given two sets of coefficients \n
+    A1 = [a1,b1,c1]\n
+    A2 = [a2,b2,c2]\n
+    returns angle in rad by default, in degree if deg=True
+    """
+    return phase(A2, deg=deg) - phase(A1, deg=deg)
+
+
+# periodical sinefit at known frequency
+def seq_threeparsinefit(y, t, f0, periods=1,multiTasiking=False,returnSectionStartTimes=False):
+    """
+    period-wise sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    periods number of full periods for every fit (default=1)\n
+    \n
+    returns a (n,3)-matrix of coefficient-triplets [[a,b,c], ...]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    if y.size < t.size:
+        raise ValueError("Dimension mismatch in input data y<t")
+    if t.size < y.size:
+        warnings.warn(
+            "Dimension mismatch in input data y>t. fiting only for t.size values",
+            RuntimeWarning,
+        )
+    Tau = 1.0 / f0 *periods 
+    dt = np.mean(np.diff(t))
+    N = int(Tau // dt)  ## samples per section
+    M = int(t.size // N)  ## number of sections or periods
+
+    abc = np.zeros((M, 3))
+
+    if multiTasiking==False:
+        for i in range(int(M)):
+            ti = t[i * N : (i + 1) * N]
+            yi = y[i * N : (i + 1) * N]
+            abc[i, :] = threeparsinefitNOJIT(yi, ti, f0)
+        if returnSectionStartTimes:
+            sectionStartTimes = t[::N][:-1]
+            return abc, sectionStartTimes
+        else:
+            return abc  ## matrix of all fit vectors per period
+    else:
+        if canUseMP==False:
+            raise RuntimeError("SineTools does not support Multi Processing for OS: "+str(os.name))
+        print(int(multiprocessing.cpu_count() - 1))
+        shmY = shared_memory.SharedMemory(create=True, size=y.nbytes)
+        shmT = shared_memory.SharedMemory(create=True, size=t.nbytes)
+        # Now create a NumPy array backed by shared memory
+        #to acces use this
+        tmpY = np.ndarray(y.shape, dtype=y.dtype, buffer=shmY.buf)
+        tmpT = np.ndarray(t.shape, dtype=t.dtype, buffer=shmT.buf)
+        tmpY[:] = y[:]
+        tmpT[:] = t[:]
+        mpdata['t_shared_name'] = shmT.name
+        mpdata['y_shared_name'] = shmY.name
+        mpdata['t_shared_type'] = y.dtype
+        mpdata['y_shared_type'] = t.dtype
+        mpdata['freq'] = f0
+        mpdata['samples_per_block']=N
+        mpdata['nmumber_of_samples']=y.size
+        numCoresToBeUsed=int(multiprocessing.cpu_count()-1)
+        i = np.arange(M)
+        mpchunksize=10
+        #iterMP3paramFit = partial(multiPrcoess3paramFit, mpdata=mpdata)
+        results = process_map(threeparsinefitNOJIT, i,chunksize=mpchunksize, max_workers=numCoresToBeUsed)
+        shmT.close()
+        shmT.unlink()  # Free and release the shared memory block at the very end
+        shmY.close()
+        shmY.unlink()  # Free and release the shared memory block at the very end
+        for i in np.arange(M):
+            abc[i,:]=results[i]
+        if returnSectionStartTimes:
+            sectionStartTimes = t[::N][:-1]
+            return abc, sectionStartTimes
+        else:
+            return abc
+
+# periodical sinefit at known frequency
+@njit(parallel=True)
+def seq_numbathreeparsinefit2(y, t, f0, periods=1,returnSectionStartTimes=False):
+    """
+    period-wise sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    periods number of full periods for every fit (default=1)\n
+    \n
+    returns a (n,3)-matrix of coefficient-triplets [[a,b,c], ...]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    if y.size < t.size:
+        raise ValueError("Dimension mismatch in input data y<t")
+    if t.size < y.size:
+        RuntimeWarning("Dimension mismatch in input data y>t. fiting only for t.size values")
+    Tau = 1.0 / f0 *periods
+    dt = np.mean(np.diff(t))
+    N = int(Tau // dt)  ## samples per section
+    M = int(t.size // N)  ## number of sections or periods
+    w0 = 2 * np.pi * f0
+    abc = np.zeros((M, 3),dtype=np.float64)
+    for i in prange(int(M)):
+        ti = t[i * N : (i + 1) * N]
+        yi = y[i * N : (i + 1) * N]
+        a = np.ones((3, N), dtype=np.float64)
+        a[0, :] = np.cos(w0 * ti)
+        a[1, :] = np.sin(w0 * ti)
+        # a = np.array([np.cos(w0 * t), np.sin(w0 * t), np.ones(t.size)])
+        aT = a.transpose()
+        abc[i, :] = np.linalg.lstsq(aT, yi)[0][0:3]
+    return abc  ## matrix of all fit vectors per period
+
+@njit(parallel=True)
+def seq_numbathreeparsinefit(y, t, f0, periods=1,returnSectionStartTimes=False):
+    """
+    period-wise sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 known frequency\n
+    periods number of full periods for every fit (default=1)\n
+    \n
+    returns a (n,3)-matrix of coefficient-triplets [[a,b,c], ...]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    if y.size < t.size:
+        raise ValueError("Dimension mismatch in input data y<t")
+    if t.size < y.size:
+        RuntimeWarning("Dimension mismatch in input data y>t. fiting only for t.size values")
+    Tau = 1.0 / f0 *periods
+    dt = np.mean(np.diff(t))
+    N = int(Tau // dt)  ## samples per section
+    M = int(t.size // N)  ## number of sections or periods
+
+    abc = np.zeros((M, 3),dtype=np.float64)
+    for i in prange(int(M)):
+        ti = t[i * N : (i + 1) * N]
+        yi = y[i * N : (i + 1) * N]
+        abc[i, :] = threeparsinefit(yi, ti, f0)
+    return abc  ## matrix of all fit vectors per period
+
+
+
+def getFreqOffSetFromSeqThreeSineFitPhaseSlope(abc, sectionStartTimes):
+    Complex = abc[:, 1] + 1j * abc[:, 0]
+    nomalized = Complex / abs(Complex)  # all vectors ar normalized
+    radialCord = np.sum(nomalized) / nomalized.size  # all vectors are added to have one vector pointing in the direction of the mean value
+    deltaAng = np.angle(nomalized) - np.angle(radialCord)  # differences of the angles this value can be bigger than -180 -- 180 deg
+    coef = np.polyfit(sectionStartTimes, deltaAng, 1) # dphi /dt
+    deltaF=coef[0]/(np.pi*2)
+    return deltaF
+
+# four parameter sine-fit (with frequency approximation)
+def fourparsinefit(y, t, f0, tol=1.0e-7, nmax=1000):
+    """
+    y sampled data values \n
+    t sample times of y \n
+    f0 estimate of sine frequency \n
+    tol rel. frequency correction where we stop \n
+    nmax maximum number of iterations taken \n
+    \n
+    returns the vector [a, b, c, w] of  a*sin(w*t)+b*cos(w*t)+c
+    """
+    abcd = threeparsinefit(y, t, f0)
+    w = 2 * np.pi * f0
+    err = 1
+    i = 0
+    while (err > tol) and (i < nmax):
+        D = np.array(
+            [
+                np.cos(w * t),
+                np.sin(w * t),
+                np.ones(t.size),
+                (-1.0) * abcd[0] * t * np.sin(w * t) + abcd[1] * t * np.cos(w * t),
+            ]
+        )
+        abcd = (la.lstsq(D.transpose(), y))[0]
+        dw = abcd[3]
+        w = w + 0.9 * dw
+        i += 1
+        err = np.absolute(dw / w)
+
+    assert i < nmax, "iteration error"
+
+    return np.hstack((abcd[0:3], w / (2 * np.pi)))
+
+# multiprocessing wraper for threeparsinefit
+def multiPrcoess4paramFit(i):
+    """
+    mpdata['t_shared_name'] = shmY.name
+    mpdata['y_shared_name'] = shmT.name
+    mpdata['t_shared_type'] = y.dtype
+    mpdata['y_shared_type'] = t.dtype
+    mpdata['freq'] = f0
+    mpdata['samples_per_block'] = N
+    mpdata['nmumber_of_samples'] = y.size
+    """
+    N=mpdata['samples_per_block']
+
+    existing_shm_t = shared_memory.SharedMemory(name=mpdata['t_shared_name'])
+    t = np.ndarray((mpdata['nmumber_of_samples'],), dtype=mpdata['t_shared_type'], buffer=existing_shm_t.buf)
+    ti = t[i * N: (i + 1) * N]
+
+    existing_shm_y = shared_memory.SharedMemory(name=mpdata['y_shared_name'])
+    y = np.ndarray((mpdata['nmumber_of_samples'],), dtype=mpdata['y_shared_type'], buffer=existing_shm_y.buf)
+    yi = y[i * N: (i + 1) * N]
+    result=fourparsinefit(yi, ti, mpdata['freq'])
+    # Clean up
+    del t  # Unnecessary; merely emphasizing the array is no longer used
+    del y  # Unnecessary; merely emphasizing the array is no longer used
+    existing_shm_t.close()
+    existing_shm_y.close()
+    return result
+
+
+def calc_fourparsine(abcf, t):
+    """
+    return y = abc[0]*sin(2*pi*f0*t) + abc[1]*cos(2*pi*f0*t) + abc[2]
+    """
+    w0 = 2 * np.pi * abcf[3]
+    return abcf[0] * np.cos(w0 * t) + abcf[1] * np.sin(w0 * t) + abcf[2]
+
+
+"""
+from octave ...
+function abcw = fourParSinefit(data,w0)
+  abc = threeParSinefit(data,w0);
+  a=abc(1);
+  b=abc(2);
+  c=abc(3);
+  w = w0;
+  
+  do 
+  D = [sin(w.*data(:,1)) , cos(w.*data(:,1)) , ones(rows(data),1) , a.*data(:,1).*cos(w.*data(:,1)) - b.*data(:,1).*sin(w.*data(:,1)) ];
+  
+  s = D \ data(:,2);
+  dw = s(4);
+  w = w+0.9*dw;
+  err = abs(dw/w);
+
+  until (err < 1.0e-8 );
+  
+  abcw = [s(1),s(2),s(3),w];
+  
+endfunction
+"""
+
+# periodical sinefit at known frequency
+def seq_fourparsinefit(y, t, f0, tol=1.0e-7, nmax=1000, periods=1, debug_plot=False, multiTasking=True):
+    """
+    sliced or period-wise sine-fit at a known frequency\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 estimate of excitation frequency\n
+    periods integer number of periods used in each slice for fitting
+    nmax maximum of iteration to improve f0 \n
+    debug_plot Flag for plotting the sequential fit for dubugging \n
+     \n
+    returns a (n,3)-matrix of coefficient-triplets [[a,b,c], ...]\n
+    for y = a*sin(2*pi*f0*t) + b*cos(2*pi*f0*t) + c
+    """
+    if y.size < t.size:
+        raise ValueError("Dimension mismatch in input data y<t")
+    if t.size < y.size:
+        warnings.warn(
+            "Dimension mismatch in input data y>t. fiting only for t.size values",
+            RuntimeWarning,
+        )
+    Tau = 1.0 / f0 *periods
+    dt = np.mean(np.diff(t))
+    N = int(Tau // dt)  ## samples per section
+    M = int(t.size // N)  ## number of sections or periods
+
+    abcd = np.zeros((M, 4))
+    if multiTasking == False:
+        for i in range(M):
+            ti = t[i * N : (i + 1) * N]
+            yi = y[i * N : (i + 1) * N]
+            abcd[i, :] = fourparsinefit(yi, ti, f0, tol=tol, nmax=nmax)
+    else:
+        shmY = shared_memory.SharedMemory(create=True, size=y.nbytes)
+        shmT = shared_memory.SharedMemory(create=True, size=t.nbytes)
+        # Now create a NumPy array backed by shared memory
+        #to accesdta use this
+        tmpY = np.ndarray(y.shape, dtype=y.dtype, buffer=shmY.buf)
+        tmpT = np.ndarray(t.shape, dtype=t.dtype, buffer=shmT.buf)
+        tmpY[:] = y[:]
+        tmpT[:] = t[:]
+        mpdata['t_shared_name'] = shmT.name
+        mpdata['y_shared_name'] = shmY.name
+        mpdata['t_shared_type'] = y.dtype
+        mpdata['y_shared_type'] = t.dtype
+        mpdata['freq'] = f0
+        mpdata['samples_per_block']=N
+        mpdata['nmumber_of_samples']=y.size
+        numCoresToBeUsed=int(multiprocessing.cpu_count()-1)
+
+        i = np.arange(M)
+        mpchunksize=10
+        results = process_map(multiPrcoess4paramFit, i,chunksize=mpchunksize, max_workers=numCoresToBeUsed)
+        shmT.close()
+        shmT.unlink()  # Free and release the shared memory block at the very end
+        shmY.close()
+        shmY.unlink()  # Free and release the shared memory block at the very end
+        for i in np.arange(M):
+            abcd[i,:]=results[i]
+        return abcd
+
+    if debug_plot:
+        mp.ioff()
+        fig = mp.figure("seq_fourparsinefit")
+        fig.clear()
+        p1 = fig.add_subplot(211)
+        p2 = fig.add_subplot(212, sharex=p1)
+
+        for i in range(M):
+            p1.plot(t[i * N : (i + 1) * N], y[i * N : (i + 1) * N], ".")
+            s = calc_fourparsine(
+                abcd[i, :], t[i * N : (i + 1) * N]
+            )  # fitted data to plot
+            p1.plot(t[i * N : (i + 1) * N], s, "-")
+            r = y[i * N : (i + 1) * N] - s  # residuals to plot
+            p2.plot(t[i * N : (i + 1) * N], r, ".")
+            yi = y[i * N : (i + 1) * N]
+        mp.show()
+
+    return abcd  ## matrix of all fit vectors per period
+
+# fitting a pseudo-random multi-sine signal with 2*Nf+1 parameters
+def multi_threeparsinefit(y, t, f0):  # f0 vector of frequencies
+    """
+    fit a time series of a sum of sine-waveforms with a given set of frequencies\n
+    y vector of sample values \n
+    t vector of sample times\n
+    f0 vector of known frequencies\n
+    \n
+    returns a vector of coefficient-triplets [a,b,c] for the frequencies\n
+    for y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
+    """
+    w0 = 2 * np.pi * f0
+    D = np.ones((len(t), 1))  # for the bias
+    # set up design matrix
+    for w in w0[::-1]:
+        D = np.hstack((np.cos(w * t)[:, np.newaxis], np.sin(w * t)[:, np.newaxis], D))
+
+    abc = np.linalg.lstsq(D, y)
+    return abc[0]  ## fit vector a*cos+b*sin+c
+
+
+def multi_amplitude(abc):  # abc = [a1,b1 , a2,b2, ...,bias]
+    """
+    return the amplitudes given the coefficients of a multi-sine\n
+    abc = [a1,b1 , a2,b2, ...,bias] \n
+    y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
+    """
+    x = abc[:-1][1::2] + 1j * abc[:-1][0::2]  # make complex without Bias (last value)
+    return np.absolute(x)
+
+
+def multi_phase(abc, deg=False):  # abc = [bias, a1,b1 , a2,b2, ...]
+    """
+    return the initial phases given the coefficients of a multi-sine\n
+    abc = [a1,b1 , a2,b2, ...,bias] \n
+    y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + c_i
+    """
+    x = abc[:-1][1::2] + 1j * abc[:-1][0::2]  # make complex without Bias (last value)
+    return np.angle(x, deg=deg)
+
+
+def multi_waveform_abc(f, abc, t):
+    """
+    generate a sample time series of a multi-sine from coefficients and frequencies\n
+    f vector of given frequencies \n
+    abc = [a1,ba, a2,b2, ..., bias]\n
+    t vector of sample times t_i\n
+    \n
+    returns the vector \n
+    y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + bias
+    """
+    ret = 0.0 * t + abc[-1]  # bias
+    for fi, a, b in zip(f, abc[0::2], abc[1::2]):
+        ret = ret + a * np.cos(2 * np.pi * fi * t) + b * np.sin(2 * np.pi * fi * t)
+    return ret
+
+
+def multi_waveform_mp(f, m, p, t, bias=0, deg=True):
+    """
+    generate a sample time series of a multi-sine from magnitude/phase and frequencies\n
+    f vector of given frequencies \n
+    m vector of magnitudes \n
+    p vector of phases \n
+    t vector of sample times t_i \n
+    bias scalar value for total bias
+    deg = boolean whether phase is in degree
+    \n
+    returns the vector \n
+    y = sum_i (a_i*sin(2*pi*f0_i*t) + b_i*cos(2*pi*f0_i*t) + bias
+    """
+    ret = 0.0 * t + bias  # init and bias
+    if deg:
+        p = np.deg2rad(p)
+    for fi, m_i, p_i in zip(f, m, p):
+        ret = ret + m_i * np.sin(2 * np.pi * fi * t + p_i)
+    return ret
+
+
+##################################
+# Counter based stuff
+
+# periodical sinefit to the linearly increasing heterodyne counter
+# version based on Blume
+def seq_threeparcounterfit(y, t, f0, diff=False):
+    """
+    period-wise (single-)sinefit to the linearly increasing heterodyne counter
+    version based on "Blume et al. "\n
+    y vector of sampled counter values
+    t vector of sample times
+    f given frequency\n
+    \n
+    returns (n,3)-matrix of coefficient-triplets [a,b,c] per period \n
+    
+    if diff=True use differentiation to remove carrier (c.f. source)
+    """
+    Tau = 1.0 / f0
+    dt = t[1] - t[0]
+    N = int(np.floor(Tau / dt))  ## samples per section
+    M = int(np.floor(t.size / N))  ## number of sections or periods
+
+    remove_counter_carrier(y, diff=diff)
+
+    abc = np.zeros((M, 4))
+
+    for i in range(int(M)):
+        ti = t[i * N : (i + 1) * N]
+        yi = y[i * N : (i + 1) * N]
+
+        abc[i, :] = threeparsinefit_lin(yi, ti, f0)
+    return abc  ## matrix of all fit vectors per period
+
+
+def remove_counter_carrier(y, diff=False):
+    """
+    remove the linear increase in the counter signal
+    generated by the carrier frequency of a heterodyne signal\n
+    y vector of samples of the signal
+    """
+    if diff:
+        d = np.diff(y)
+        d = d - np.mean(d)
+        y = np.hstack((0, np.cumsum(d)))
+    else:
+        slope = y[-1] - y[0]  # slope of linear increment
+        y = y - slope * np.linspace(
+            0.0, 1.0, len(y), endpoint=False
+        )  # removal of linear increment
+    return y
+
+
+# calculate displacement and acceleration to the same analytical s(t)
+# Bsp: fm = 2e7, f=10, s0=0.15, phi0=np.pi/3, ti, drift=0.03, ampdrift=0.03,thd=[0,0.02,0,0.004]
+def disp_acc_distorted(fm, f, s0, phi0, ti, drift=0, ampdrift=0, thd=0):
+    """
+    calculate the respective (displacement-) counter and acceleration
+    for a parmeterized distorted sine-wave motion in order to compare accelerometry with interferometry \n
+    fm is heterodyne carrier frequency (after mixing)\n
+    f is mechanical sine frequency (nominal) \n
+    phi_0 accelerometer phase delay \n
+    ti vector of sample times \n
+    drift is displacement zero drift \n
+    ampdrift is displacement amplitude druft\n
+    thd is vector of higher harmonic amplitudes (c.f. source)
+    """
+    om = 2 * np.pi * f
+    om2 = om ** 2
+    tau = ti[-1] - ti[0]
+    disp = np.sin(om * ti + phi0)
+    if thd != 0:
+        i = 2
+        for h in thd:
+            disp = disp + h * np.sin(i * om * ti + phi0)
+            i = i + 1
+    if ampdrift != 0:
+        disp = disp * (1 + ampdrift / tau * ti)
+    if drift != 0:
+        disp = disp + s0 * drift / tau * ti
+    disp = disp * s0
+    disp = np.floor((disp * 2 / 633e-9) + fm * ti)
+
+    acc = -s0 * om2 * (1 + ampdrift / tau * ti) * np.sin(om * ti + phi0)
+    if ampdrift != 0:
+        acc = acc + (2 * ampdrift * s0 * om * np.cos(om * ti + phi0)) / tau
+    if thd != 0:
+        i = 2
+        for h in thd:
+            acc = acc - s0 * h * om2 * (1 + ampdrift / tau * ti) * i ** 2 * np.sin(
+                i * om * ti + phi0
+            )
+            if ampdrift != 0:
+                acc = (
+                    acc
+                    + (2 * ampdrift * s0 * om * i * h * np.cos(om * ti + phi0)) / tau
+                )
+            i = i + 1
+
+    return disp, acc
+
+
+###################################
+# Generation and adaptation of Parameters of the Multi-Sine considering hardware constraints
+def PR_MultiSine_adapt(
+    f1,
+    Nperiods,
+    Nsamples,
+    Nf=8,
+    fs_min=0,
+    fs_max=1e9,
+    frange=10,
+    log=True,
+    phases=None,
+    sample_inkr=1,
+):
+    """
+    Returns an additive normalized Multisine time series. \n
+    f1 = start frequency (may be adapted by the algorithm) \n
+    Nperiods = number of periods of f1 (may be increased by algorithm) \n
+    Nsamples = Minimum Number of samples  \n
+    Nf = number of frequencies in multi frequency mix \n
+    fs_min = minimum sample rate of used device (default 0) \n
+    fs_max = maximum sample rate of used device (default 0) \n
+    frange = range of frequency as a factor relative to f1 (default 10 = decade) \n
+    log = boolean for logarithmic (True, default) or linear (False) frequency scale \n
+    phases = float array of given phases for the frequencies (default=None=random) \n
+    deg= boolean for return phases in deg (True) or rad (False) \n
+    sample_inkr = minimum block of samples to add to a waveform
+    \n
+    returns: freq,phase,fs,ti,multi \n
+    freq= array of frequencies \n
+    phase=used phases in deg or rad \n
+    T1 = (adapted) duration
+    fs=sample rate \n
+    """
+    if (
+        Nsamples // sample_inkr * sample_inkr != Nsamples
+    ):  # check multiplicity of sample_inkr
+        Nsamples = (
+            Nsamples // sample_inkr + 1
+        ) * sample_inkr  # round to next higher multiple
+
+    T0 = Nperiods / f1  # given duration
+    fs0 = Nsamples / T0  # (implicitly) given sample rate
+
+    if False:
+        print("0 Nperiods: " + str(Nperiods))
+        print("0 Nsamples: " + str(Nsamples))
+        print("0 fs: " + str(fs0))
+        print("0 T0: " + str(T0))
+        print("0 f1: " + str(f1))
+
+    fs = fs0
+    if fs0 < fs_min:  # sample rate too low, then set to minimum
+        fs = fs_min
+        print("sample rate increased")
+    elif fs0 > fs_max:  # sample rate too high, set to max-allowed and
+        fs = fs_max
+        Nperiods = np.ceil(
+            Nperiods * fs0 / fs_max
+        )  # increase number of periods to get at least Nsamples samples
+        T0 = Nperiods / f1
+        print("sample rate reduced, Nperiods=" + str(Nperiods))
+
+    Nsamples = T0 * fs
+    if (
+        Nsamples // sample_inkr * sample_inkr != Nsamples
+    ):  # check multiplicity of sample_inkr
+        Nsamples = (
+            Nsamples // sample_inkr + 1
+        ) * sample_inkr  # round to next higher multiple
+
+    T1 = Nsamples / fs  # adapt exact duration
+    f1 = Nperiods / T1  # adapt f1 for complete cycles
+    if False:
+        print("Nperiods: " + str(Nperiods))
+        print("Nsamples: " + str(Nsamples))
+        print("fs: " + str(fs))
+        print("T1: " + str(T1))
+        print("f1: " + str(f1))
+
+    f_res = 1 / T1  # frequency resolution
+    # determine a series of frequencies (freq[])
+    if log:
+        fact = np.power(frange, 1.0 / (Nf - 1))  # factor for logarithmic scale
+        freq = f1 * np.power(fact, np.arange(Nf))
+    else:
+        step = (frange - 1) * f1 / (Nf - 1)
+        freq = np.arange(f1, frange * f1 + step, step)
+
+    # auxiliary function to find the nearest available frequency
+    def find_nearest(
+        x, possible
+    ):  # match the theoretical freqs to the possible periodic freqs
+        idx = (np.absolute(possible - x)).argmin()
+        return possible[idx]
+
+    fi_pos = np.arange(f1, frange * f1 + f_res, f_res)  # possible periodic frequencies
+    f_real = []
+    for f in freq:
+        f_real.append(find_nearest(f, fi_pos))
+    freq = np.hstack(f_real)
+    if True:
+        print("freq: " + str(freq))
+
+    if phases is None:  # generate random phases
+        phase = np.random.randn(Nf) * 2 * np.pi  # random phase
+    else:  # use given phases
+        phase = phases
+
+    return freq, phase, T1, fs
+
+
+###################################
+# Pseudo-Random-MultiSine for "quick calibration"
+def PR_MultiSine(
+    f1,
+    Nperiods,
+    Nsamples,
+    Nf=8,
+    fs_min=0,
+    fs_max=1e9,
+    frange=10,
+    log=True,
+    phases=None,
+    deg=False,
+    sample_inkr=1,
+):
+    """
+    Returns an additive normalized Multisine time series. \n
+    f1 = start frequency (may be adapted) \n
+    Nperiods = number of periods of f1 (may be increased) \n
+    Nsamples = Minimum Number of samples  \n
+    Nf = number of frequencies in multi frequency mix \n
+    fs_min = minimum sample rate of used device (default 0) \n
+    fs_max = maximum sample rate of used device (default 0) \n
+    frange = range of frequency as a factor relative to f1 (default 10 = decade) \n
+    log = boolean for logarithmic (True, default) or linear (False) frequency scale \n
+    phases = float array of given phases for the frequencies (default=None=random) \n
+    deg= boolean for return phases in deg (True) or rad (False) \n
+    sample_inkr = minimum block of samples to add to a waveform
+    \n
+    returns: freq,phase,fs,ti,multi \n
+    freq= array of frequencies \n
+    phase=used phases in deg or rad \n
+    fs=sample rate \n
+    ti=timestamps \n
+    multi=array of time series values \n
+    """
+
+    freq, phase, T1, fs = PR_MultiSine_adapt(
+        f1,
+        Nperiods,
+        Nsamples,
+        Nf=Nf,
+        fs_min=fs_min,
+        fs_max=fs_max,
+        frange=frange,
+        log=log,
+        phases=phases,
+        sample_inkr=sample_inkr,
+    )
+
+    if deg:  # rad -> deg
+        phase = phase * np.pi / 180.0
+
+    ti = np.arange(T1 * fs, dtype=np.float32) / fs
+
+    multi = np.zeros(len(ti), dtype=np.float64)
+    for f, p in zip(freq, phase):
+        multi = multi + np.sin(2 * np.pi * f * ti + p)
+
+    multi = multi / np.amax(np.absolute(multi))  # normalize
+
+    if False:
+        import matplotlib.pyplot as mp
+
+        fig = mp.figure(1)
+        fig.clear()
+        pl1 = fig.add_subplot(211)
+        pl2 = fig.add_subplot(212)
+        pl1.plot(ti, multi, "-o")
+        pl2.plot(np.hstack((ti, ti + ti[-1] + ti[1])), np.hstack((multi, multi)), "-o")
+        mp.show()
+
+    return (
+        freq,
+        phase,
+        fs,
+        multi,
+    )  # frequency series, sample rate, sample timestamps, waveform
+
+
+def seq_multi_threeparam_Dmatrix(f,t,periods=1, progressive=True):
+    """
+    Fit a multi-sinus-signal in slices in one go.
+
+    Parameters
+    ----------
+    f : numpy.array of floats
+        list of frequencies in the signal
+    t : numpy.array of floats
+        timestamps of y (typically seconds) 
+    periods : float, optional
+        the number of periods of each frequncy used for each fit. The default is 1.
+
+    Returns
+    -------
+    
+    fr,  : 1-d numpy.array of floats
+          frequencies related to slices
+    D    : 2-d numpy.array of floats 
+          Design matrix for the fit 
+
+    """
+    T = t[-1]-t[0]
+    col = 0
+    data = np.array([])
+    ci = []
+    ri = []
+    fr = []
+    # Designmatrix for sin/cos
+    for fi, omi in zip(f,2*np.pi*f):
+        Nri = 0 # counter for the current row index
+        if progressive:
+            tau = np.ceil(f[0]/fi*periods)/fi # approximately same abs. slice length for all fi  
+        else:
+            tau = 1/fi*periods  # slice length in seconds for periods of fi
+        t_sl = np.array_split(t,np.ceil(T/tau)) # array of slices of sample times
+        fr = fr + [fi]*len(t_sl) # len(t_sl) times frequency fi in Design matrix
+        for ti in t_sl: # loop over slices fo one frequncy
+            sin = np.sin(omi * ti)
+            cos = np.cos(omi * ti)
+            
+            data = np.hstack((data,cos))  # data vector
+            ci = ci+[col]*len(ti)  # column index vector
+            col = col+1
+            ri = ri+ [Nri+i for i in range(len(ti))] # row index vector
+            
+            data = np.hstack((data,sin))  # data vector
+            ci = ci+[col]*len(ti)  # column index vector
+            col = col+1
+            ri = ri+ [Nri+i for i in range(len(ti))] # row index vector
+
+            Nri = Nri+len(ti)
+
+    # Designmatrix for Bias
+    data = np.hstack((data,np.ones((len(t)))))
+    ci = ci = ci+[col]*len(t)
+    ri = ri + [i for i in range(len(t))]
+    col = col+1
+
+    # build sparse matrix, init as coo, map to csr
+    D = coo_matrix((data,(ri,ci)),shape=(len(t),col)).tocsr()
+    return np.array(fr), D
+
+def seq_multi_threeparsinefit(f,y,t,periods=1, D_fr=None, abc0=None, progressive=True):
+    """
+    performs a simultanius, sliced three-parameter fit on a multisine signal y
+
+    Parameters
+    ----------
+    f : 1-d numpy.array of floats
+        frequencies in the signal
+    y : 1-d numpy.array
+        samples of the signal
+    t : 1-d numpy.array
+        vector of sample times
+    periods : float
+        (fractional) number of periods in one slice. The default is 1.
+
+    Returns
+    -------
+    f_ab_c : 2-d numpy.array of floats
+        frequencies, a/b-coefficients and bias related to given frequencies [f1,f1,f1,f2,f2, ...fn, fn, f=0=bias]
+    y0 : 1-d numpy.array of floats
+        samples of the optimal fit
+    resid : 1-d numpy.array of floats
+        Residuals = Difference =(y-y0)
+
+    """
+    if D_fr is None:
+        fr, D = seq_multi_threeparam_Dmatrix(f,t,periods, progressive=progressive)  # calculate the design matrix (as sparse matrix)
+    else:
+        D = D_fr[0]
+        fr = D_fr[1]
+            
+    abc = sp_lsqr(D,y,x0=abc0, atol=1.0e-9, btol=1.0e-9)
+    y0 = D.dot(abc[0])
+    
+    #print(abc)
+    f_ab_c =[]
+    k=0
+    for fi in fr:
+        f_ab_c = f_ab_c+ [fi, abc[0][k],abc[0][k+1]]
+        k=k+2
+    f_ab_c = f_ab_c + [0.0,abc[0][-1],0.0]
+    f_ab_c = np.array(f_ab_c).reshape((len(f_ab_c)//3,3))
+    
+    #print(f_ab_c)
+    return f_ab_c, y0, y-y0  # coefficients, fit signal, residuals
+
+
+def seq_multi_fourparam_sineFit(f,y,t,periods=1, tol=1.0e-6, n_max=100):
+    """
+    Fit a multi-sinus-signal in slices in one go. With a frequency correction 
+    universal for all frequncies (time-stretch)
+
+    Parameters
+    ----------
+    f : numpy.array of floats
+        list of frequencies in the signal
+    t : numpy.array of floats
+        timestamps of y (typically seconds) 
+    periods : float, optional
+        the number of periods of each frequncy used for each fit. The default is 1.
+    tol : float, optional
+        frequency correction factor (1-tol) when convergence is assumed default 1.0e-6
+    n_max : uint, optional
+        maximum number of iterations performed.
+
+    Returns
+    -------
+    
+    fr,  : 1-d numpy.array of floats
+          frequencies related to slices
+    D    : 2-d numpy.array of floats 
+          Design matrix for the fit 
+
+    """
+    T = t[-1]-t[0]
+    dw = 1.0
+    lam=1.0
+    itr=0
+    while (np.abs(dw) > tol) and (itr<n_max):
+        itr += 1
+        # Designmatrix for three paramsin/cos
+        fr,D = seq_multi_threeparam_Dmatrix(f, t, periods=periods, progressive=False)
+        # initial ab 
+        f_ab_c = seq_multi_threeparsinefit(f, y, t, D_fr=(D,fr))[0]
+        last_col = np.zeros(len(t))
+        for fi, omi in zip(f,2*np.pi*f):
+            tau = 1/fi*periods  # slice length in seconds
+            t_sl = np.array_split(t,np.ceil(T/tau)) # array of slices of sample times
+            sin_cos=np.array([])
+            for i,ti in enumerate(t_sl): # loop over slices for one frequncy
+                si = -f_ab_c[i,1]*omi*ti*np.sin(omi * ti)
+                co = f_ab_c[i,2]*omi*ti*np.cos(omi * ti)
+                
+                sin_cos = np.hstack((sin_cos,si+co))  # data vector
+            last_col = last_col+sin_cos
+        last_col = coo_matrix((last_col,([i for i in range(len(last_col))],[0 for i in range(len(last_col))])),shape=(len(last_col),1)).tocsr()
+        D = hstack((D, last_col))
+        abc = sp_lsqr(D,y)[0]
+        dw = abc[-1]
+        f = (1-0.9*dw)*f
+        lam=lam*(1-dw)
+        if False:
+            print("abc:")
+            print(abc)
+            print("f=")
+            print(f)
+        print("cor. = %f" %(lam))
+        print("took %d iterations" % (itr))
+    f_ab_c, y0, res  = seq_multi_threeparsinefit(f, y, t, D_fr=None)
+
+    return f_ab_c, y0, y-y0  # coefficients, fit signal, residuals
+
+def seq_multi_amplitude(f_ab_c):
+    """
+    return the amplitude(s) of a sequentially fit multi-sine signal, 
+    i.e. amplitudes encoded in the return value of seq_multi_threeparsinefit.
+
+    Parameters
+    ----------
+    f_ab_c : 2-d numpy array of floats (Nx3) 
+        f,a,b in a row for several rows, as returned by seq_multi_threeparsinefit.
+        
+    Returns
+    -------
+    2d-numpy-array of floats (Nx2)
+        frequency and associated amplitude. 
+
+    """
+    #print("Test")
+    N = f_ab_c.shape[0]-1
+    amp = np.array([1j*np.abs(f_ab_c[i,1]+f_ab_c[i][2]) for i in range(f_ab_c.shape[0]-1)]).reshape((N,1))
+    return np.hstack((f_ab_c[:-1,0].reshape((N,1)), amp))
+
+def seq_multi_phase(f_ab_c, deg=True):
+    """
+    Calculates the initial phase of a sequentially fit multi-sine signal, 
+    i.e. initial phases encoded in the return value of seq_multi_threeparsinefit.
+    result is either in degrees (deg=True) or rad (deg=False).
+
+    Parameters
+    ----------
+    f_ab_c : 2-d numpy array of floats (Nx3) 
+        f,a,b in a row for several rows, as returned by seq_multi_threeparsinefit.
+    deg : Boolean, optional
+        Flag whether result is in degrees or rad. The default is True (Degrees).
+
+    Returns
+    -------
+    2d-numpy-array of floats (Nx2)
+        frequency and associated initial phase. 
+
+    """
+    N = f_ab_c.shape[0]-1
+    phase = np.array([1j*np.angle(f_ab_c[i,1]+f_ab_c[i][2],deg=deg) for i in range(f_ab_c.shape[0]-1)]).reshape((N,1))
+    return np.hstack((f_ab_c[:-1,0].reshape((N,1)), phase))
+
+def seq_multi_bias(f_ab_c):
+    """
+    Returns the single bias of a sequentially fit multi-sine signal, 
+    i.e. bias encoded in the return value of seq_multi_threeparsinefit.
+
+    Parameters
+    ----------
+    f_ab_c : 2-d numpy array of floats (Nx3) 
+        f,a,b in a row for several rows, as returned by seq_multi_threeparsinefit.
+
+    Returns
+    -------
+    float
+        Bias of the signal.
+
+    """
+    return f_ab_c[-1][1] 
+    
+if __name__ == '__main__':
+    print("Sine Tools is not Intended to be run as main Programm")
+    sampleTimes = sampletimes(20e6, 25)
+    sw = sinewave(1000, 1, 0.1, sampleTimes)
+    seq_numbathreeparsinefit(sw, sampleTimes, 1000, periods=100)
+    threeparsinefit.parallel_diagnostics(level=4)
+    seq_numbathreeparsinefit.parallel_diagnostics(level=4)