from EIVData.csv_dataset import CSVData from torch.utils.data import random_split def load_data(seed=0, splitting_part=0.8, normalize=True): """ Loads the california housing dataset :param seed: Seed for splitting and shuffling the data. Defaults to 0. :param splitting_part: Which fraction of the data to use as training data. Defaults to 0.8. :normalize: Whether to normalize the data, defaults to True. :returns: california_trainset, california_testset """ california_dataset = CSVData('~/SharedData/AI/datasets/california_housing/housing_reduced.csv', class_name='median_house_value', shuffle_seed=seed, normalize=normalize) dataset_len = len(california_dataset) train_len = int(dataset_len*splitting_part) test_len = dataset_len - train_len california_trainset, california_testset = random_split(california_dataset , lengths=[train_len, test_len]) return california_trainset, california_testset