diff --git a/Experiments/train_eiv_msd.py b/Experiments/train_eiv_msd.py new file mode 100644 index 0000000000000000000000000000000000000000..16e617f0a64fb8f9567ac2846a22cefff109b901 --- /dev/null +++ b/Experiments/train_eiv_msd.py @@ -0,0 +1,155 @@ +""" +Train EiV model on the million song dataset using different seeds +""" +import random +import os + +import numpy as np +import torch +import torch.backends.cudnn +from torch.utils.data import DataLoader +from torch.utils.tensorboard.writer import SummaryWriter + +from EIVArchitectures import Networks, initialize_weights +from EIVData.million_song import load_data +from EIVTrainingRoutines import train_and_store, loss_functions + +# hyperparameters +lr = 1e-3 +batch_size = 100 +test_batch_size = 600 +number_of_epochs = 10 +unscaled_reg = 10 +report_point = 5 +p = 0.2 +lr_update = 4 +# pretraining = 300 +epoch_offset = 4 +init_std_y_list = [0.5] +gamma = 0.5 +hidden_layers = [1024, 1024, 1024, 1024] +device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') +fixed_std_x = 0.05 + +# reproducability +def set_seeds(seed): + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + torch.manual_seed(seed) +seed_list = range(10) + +# to store the RMSE +rmse_chain = [] + +class UpdatedTrainEpoch(train_and_store.TrainEpoch): + def pre_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch == 0: + self.lr = self.initial_lr + self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) + self.lr_scheduler = torch.optim.lr_scheduler.StepLR( + self.optimizer, lr_update, gamma) + + + def post_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch >= epoch_offset: + net.std_y_par.requires_grad = True + self.lr_scheduler.step() + + def extra_report(self, net, i): + """ + Overwrites the corresponding method + and fed after initialization of this class + """ + rmse = self.rmse(net).item() + rmse_chain.append(rmse) + writer.add_scalar('RMSE', rmse, self.total_count) + writer.add_scalar('train loss', self.last_train_loss, self.total_count) + writer.add_scalar('test loss', self.last_test_loss, self.total_count) + print(f'RMSE {rmse:.3f}') + + def rmse(self, net): + """ + Compute the root mean squared error for `net` + """ + net_train_state = net.training + net_noise_state = net.noise_is_on + net.eval() + net.noise_off() + x, y = next(iter(self.test_dataloader)) + if len(y.shape) <= 1: + y = y.view((-1,1)) + out = net(x.to(device))[0].detach().cpu() + assert out.shape == y.shape + if net_train_state: + net.train() + if net_noise_state: + net.noise_on() + return torch.sqrt(torch.mean((out-y)**2)) + +def train_on_data(init_std_y, seed): + """ + Sets `seed`, loads data and trains an Bernoulli Modell, starting with + `init_std_y`. + """ + # set seed + set_seeds(seed) + # load Datasets + train_data, test_data = load_data(seed=seed, splitting_part=0.8, + normalize=True) + # make dataloaders + train_dataloader = DataLoader(train_data, batch_size=batch_size, + shuffle=True) + test_dataloader = DataLoader(test_data, batch_size=test_batch_size, + shuffle=True) + # create a net + input_dim = train_data[0][0].numel() + output_dim = train_data[0][1].numel() + net = Networks.FNNEIV(p=p, + init_std_y=init_std_y, + h=[input_dim, *hidden_layers, output_dim], + fixed_std_x=fixed_std_x) + net.apply(initialize_weights.glorot_init) + net = net.to(device) + net.std_y_par.requires_grad = False + std_x_map = lambda: net.get_std_x().detach().cpu().item() + std_y_map = lambda: net.get_std_y().detach().cpu().item() + # regularization + reg = unscaled_reg/len(train_data) + # create epoch_map + criterion = loss_functions.nll_eiv + epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader, + test_dataloader=test_dataloader, + criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map, + lr=lr, reg=reg, report_point=report_point, device=device) + # run and save + save_file = os.path.join('saved_networks', + f'eiv_msd'\ + f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\ + f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\ + f'_seed_{seed}.pkl') + train_and_store.train_and_store(net=net, + epoch_map=epoch_map, + number_of_epochs=number_of_epochs, + save_file=save_file) + + +if __name__ == '__main__': + for seed in seed_list: + # Tensorboard monitoring + writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\ + f'run_eiv_msd_lr_{lr:.4f}_seed'\ + f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}'\ + f'_fixed_std_x_{fixed_std_x:.3f}') + print(f'>>>>SEED: {seed}') + for init_std_y in init_std_y_list: + print(f'Using init_std_y={init_std_y:.3f}') + train_on_data(init_std_y, seed) + + diff --git a/Experiments/train_eiv_power.py b/Experiments/train_eiv_power.py new file mode 100644 index 0000000000000000000000000000000000000000..2ddf75af75db7607a21cef6e212c9601d391b421 --- /dev/null +++ b/Experiments/train_eiv_power.py @@ -0,0 +1,153 @@ +""" +Train EiV model on power plant dataset using different seeds +""" +import random +import os + +import numpy as np +import torch +import torch.backends.cudnn +from torch.utils.data import DataLoader +from torch.utils.tensorboard.writer import SummaryWriter + +from EIVArchitectures import Networks, initialize_weights +from EIVData.power_plant import load_data +from EIVTrainingRoutines import train_and_store, loss_functions + +# hyperparameters +lr = 1e-3 +batch_size = 64 +test_batch_size = 600 +number_of_epochs = 35 +unscaled_reg = 10 +report_point = 5 +p = 0.2 +lr_update = 10 +# pretraining = 300 +epoch_offset = 15 +init_std_y_list = [0.5] +gamma = 0.5 +hidden_layers = [1024, 1024, 1024, 1024] +device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') +fixed_std_x = 0.05 + +# reproducability +def set_seeds(seed): + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + torch.manual_seed(seed) +seed_list = range(10) + +# to store the RMSE +rmse_chain = [] + +class UpdatedTrainEpoch(train_and_store.TrainEpoch): + def pre_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch == 0: + self.lr = self.initial_lr + self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) + self.lr_scheduler = torch.optim.lr_scheduler.StepLR( + self.optimizer, lr_update, gamma) + + + def post_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch >= epoch_offset: + net.std_y_par.requires_grad = True + self.lr_scheduler.step() + + def extra_report(self, net, i): + """ + Overwrites the corresponding method + and fed after initialization of this class + """ + rmse = self.rmse(net).item() + rmse_chain.append(rmse) + writer.add_scalar('RMSE', rmse, self.total_count) + writer.add_scalar('train loss', self.last_train_loss, self.total_count) + writer.add_scalar('test loss', self.last_test_loss, self.total_count) + print(f'RMSE {rmse:.3f}') + + def rmse(self, net): + """ + Compute the root mean squared error for `net` + """ + net_train_state = net.training + net_noise_state = net.noise_is_on + net.eval() + net.noise_off() + x, y = next(iter(self.test_dataloader)) + if len(y.shape) <= 1: + y = y.view((-1,1)) + out = net(x.to(device))[0].detach().cpu() + assert out.shape == y.shape + if net_train_state: + net.train() + if net_noise_state: + net.noise_on() + return torch.sqrt(torch.mean((out-y)**2)) + +def train_on_data(init_std_y, seed): + """ + Sets `seed`, loads data and trains an Bernoulli Modell, starting with + `init_std_y`. + """ + # set seed + set_seeds(seed) + # load Datasets + train_data, test_data = load_data(seed=seed, splitting_part=0.8, + normalize=True) + # make dataloaders + train_dataloader = DataLoader(train_data, batch_size=batch_size, + shuffle=True) + test_dataloader = DataLoader(test_data, batch_size=test_batch_size, + shuffle=True) + # create a net + input_dim = train_data[0][0].numel() + output_dim = train_data[0][1].numel() + net = Networks.FNNEIV(p=p, + init_std_y=init_std_y, + h=[input_dim, *hidden_layers, output_dim], + fixed_std_x=fixed_std_x) + net.apply(initialize_weights.glorot_init) + net = net.to(device) + net.std_y_par.requires_grad = False + std_x_map = lambda: net.get_std_x().detach().cpu().item() + std_y_map = lambda: net.get_std_y().detach().cpu().item() + # regularization + reg = unscaled_reg/len(train_data) + # create epoch_map + criterion = loss_functions.nll_eiv + epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader, + test_dataloader=test_dataloader, + criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map, + lr=lr, reg=reg, report_point=report_point, device=device) + # run and save + save_file = os.path.join('saved_networks', + f'eiv_power'\ + f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\ + f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\ + f'_seed_{seed}.pkl') + train_and_store.train_and_store(net=net, + epoch_map=epoch_map, + number_of_epochs=number_of_epochs, + save_file=save_file) + + +if __name__ == '__main__': + for seed in seed_list: + # Tensorboard monitoring + writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\ + f'run_eiv_power_lr_{lr:.4f}_seed'\ + f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}'\ + f'_fixed_std_x_{fixed_std_x:.3f}') + print(f'>>>>SEED: {seed}') + for init_std_y in init_std_y_list: + print(f'Using init_std_y={init_std_y:.3f}') + train_on_data(init_std_y, seed) diff --git a/Experiments/train_eiv_protein.py b/Experiments/train_eiv_protein.py new file mode 100644 index 0000000000000000000000000000000000000000..3801d5e07572a7f37b23b457a3adc8b83f3f8418 --- /dev/null +++ b/Experiments/train_eiv_protein.py @@ -0,0 +1,155 @@ +""" +Train EiV model on protein structure dataset using different seeds +""" +import random +import os + +import numpy as np +import torch +import torch.backends.cudnn +from torch.utils.data import DataLoader +from torch.utils.tensorboard.writer import SummaryWriter + +from EIVArchitectures import Networks, initialize_weights +from EIVData.protein_structure import load_data +from EIVTrainingRoutines import train_and_store, loss_functions + +# hyperparameters +lr = 1e-3 +batch_size = 100 +test_batch_size = 600 +number_of_epochs = 30 +unscaled_reg = 10 +report_point = 5 +p = 0.2 +lr_update = 10 +# pretraining = 300 +epoch_offset = 10 +init_std_y_list = [0.5] +gamma = 0.5 +hidden_layers = [1024, 1024, 1024, 1024] +device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') +fixed_std_x = 0.05 + +# reproducability +def set_seeds(seed): + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + torch.manual_seed(seed) +seed_list = range(10) + +# to store the RMSE +rmse_chain = [] + +class UpdatedTrainEpoch(train_and_store.TrainEpoch): + def pre_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch == 0: + self.lr = self.initial_lr + self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) + self.lr_scheduler = torch.optim.lr_scheduler.StepLR( + self.optimizer, lr_update, gamma) + + + def post_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch >= epoch_offset: + net.std_y_par.requires_grad = True + self.lr_scheduler.step() + + def extra_report(self, net, i): + """ + Overwrites the corresponding method + and fed after initialization of this class + """ + rmse = self.rmse(net).item() + rmse_chain.append(rmse) + writer.add_scalar('RMSE', rmse, self.total_count) + writer.add_scalar('train loss', self.last_train_loss, self.total_count) + writer.add_scalar('test loss', self.last_test_loss, self.total_count) + print(f'RMSE {rmse:.3f}') + + def rmse(self, net): + """ + Compute the root mean squared error for `net` + """ + net_train_state = net.training + net_noise_state = net.noise_is_on + net.eval() + net.noise_off() + x, y = next(iter(self.test_dataloader)) + if len(y.shape) <= 1: + y = y.view((-1,1)) + out = net(x.to(device))[0].detach().cpu() + assert out.shape == y.shape + if net_train_state: + net.train() + if net_noise_state: + net.noise_on() + return torch.sqrt(torch.mean((out-y)**2)) + +def train_on_data(init_std_y, seed): + """ + Sets `seed`, loads data and trains an Bernoulli Modell, starting with + `init_std_y`. + """ + # set seed + set_seeds(seed) + # load Datasets + train_data, test_data = load_data(seed=seed, splitting_part=0.8, + normalize=True) + # make dataloaders + train_dataloader = DataLoader(train_data, batch_size=batch_size, + shuffle=True) + test_dataloader = DataLoader(test_data, batch_size=test_batch_size, + shuffle=True) + # create a net + input_dim = train_data[0][0].numel() + output_dim = train_data[0][1].numel() + net = Networks.FNNEIV(p=p, + init_std_y=init_std_y, + h=[input_dim, *hidden_layers, output_dim], + fixed_std_x=fixed_std_x) + net.apply(initialize_weights.glorot_init) + net = net.to(device) + net.std_y_par.requires_grad = False + std_x_map = lambda: net.get_std_x().detach().cpu().item() + std_y_map = lambda: net.get_std_y().detach().cpu().item() + # regularization + reg = unscaled_reg/len(train_data) + # create epoch_map + criterion = loss_functions.nll_eiv + epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader, + test_dataloader=test_dataloader, + criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map, + lr=lr, reg=reg, report_point=report_point, device=device) + # run and save + save_file = os.path.join('saved_networks', + f'eiv_protein'\ + f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\ + f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\ + f'_seed_{seed}.pkl') + train_and_store.train_and_store(net=net, + epoch_map=epoch_map, + number_of_epochs=number_of_epochs, + save_file=save_file) + + +if __name__ == '__main__': + for seed in seed_list: + # Tensorboard monitoring + writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\ + f'run_eiv_protein_lr_{lr:.4f}_seed'\ + f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}'\ + f'_fixed_std_x_{fixed_std_x:.3f}') + print(f'>>>>SEED: {seed}') + for init_std_y in init_std_y_list: + print(f'Using init_std_y={init_std_y:.3f}') + train_on_data(init_std_y, seed) + + diff --git a/Experiments/train_eiv_wine.py b/Experiments/train_eiv_wine.py new file mode 100644 index 0000000000000000000000000000000000000000..ca561adc2e4d3f9a37060d90b370d21a06ed01d0 --- /dev/null +++ b/Experiments/train_eiv_wine.py @@ -0,0 +1,155 @@ +""" +Train EiV model on wine quality dataset using different seeds +""" +import random +import os + +import numpy as np +import torch +import torch.backends.cudnn +from torch.utils.data import DataLoader +from torch.utils.tensorboard.writer import SummaryWriter + +from EIVArchitectures import Networks, initialize_weights +from EIVData.wine_quality import load_data +from EIVTrainingRoutines import train_and_store, loss_functions + +# hyperparameters +lr = 1e-3 +batch_size = 32 +test_batch_size = 800 +number_of_epochs = 100 +unscaled_reg = 10 +report_point = 5 +p = 0.2 +lr_update = 30 +# pretraining = 300 +epoch_offset = 50 +init_std_y_list = [0.5] +gamma = 0.5 +hidden_layers = [1024, 1024, 1024, 1024] +device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') +fixed_std_x = 0.05 + +# reproducability +def set_seeds(seed): + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + torch.manual_seed(seed) +seed_list = range(10) + +# to store the RMSE +rmse_chain = [] + +class UpdatedTrainEpoch(train_and_store.TrainEpoch): + def pre_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch == 0: + self.lr = self.initial_lr + self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) + self.lr_scheduler = torch.optim.lr_scheduler.StepLR( + self.optimizer, lr_update, gamma) + + + def post_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch >= epoch_offset: + net.std_y_par.requires_grad = True + self.lr_scheduler.step() + + def extra_report(self, net, i): + """ + Overwrites the corresponding method + and fed after initialization of this class + """ + rmse = self.rmse(net).item() + rmse_chain.append(rmse) + writer.add_scalar('RMSE', rmse, self.total_count) + writer.add_scalar('train loss', self.last_train_loss, self.total_count) + writer.add_scalar('test loss', self.last_test_loss, self.total_count) + print(f'RMSE {rmse:.3f}') + + def rmse(self, net): + """ + Compute the root mean squared error for `net` + """ + net_train_state = net.training + net_noise_state = net.noise_is_on + net.eval() + net.noise_off() + x, y = next(iter(self.test_dataloader)) + if len(y.shape) <= 1: + y = y.view((-1,1)) + out = net(x.to(device))[0].detach().cpu() + assert out.shape == y.shape + if net_train_state: + net.train() + if net_noise_state: + net.noise_on() + return torch.sqrt(torch.mean((out-y)**2)) + +def train_on_data(init_std_y, seed): + """ + Sets `seed`, loads data and trains an Bernoulli Modell, starting with + `init_std_y`. + """ + # set seed + set_seeds(seed) + # load Datasets + train_data, test_data = load_data(seed=seed, splitting_part=0.8, + normalize=True) + # make dataloaders + train_dataloader = DataLoader(train_data, batch_size=batch_size, + shuffle=True) + test_dataloader = DataLoader(test_data, batch_size=test_batch_size, + shuffle=True) + # create a net + input_dim = train_data[0][0].numel() + output_dim = train_data[0][1].numel() + net = Networks.FNNEIV(p=p, + init_std_y=init_std_y, + h=[input_dim, *hidden_layers, output_dim], + fixed_std_x=fixed_std_x) + net.apply(initialize_weights.glorot_init) + net = net.to(device) + net.std_y_par.requires_grad = False + std_x_map = lambda: net.get_std_x().detach().cpu().item() + std_y_map = lambda: net.get_std_y().detach().cpu().item() + # regularization + reg = unscaled_reg/len(train_data) + # create epoch_map + criterion = loss_functions.nll_eiv + epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader, + test_dataloader=test_dataloader, + criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map, + lr=lr, reg=reg, report_point=report_point, device=device) + # run and save + save_file = os.path.join('saved_networks', + f'eiv_wine'\ + f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\ + f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\ + f'_seed_{seed}.pkl') + train_and_store.train_and_store(net=net, + epoch_map=epoch_map, + number_of_epochs=number_of_epochs, + save_file=save_file) + + +if __name__ == '__main__': + for seed in seed_list: + # Tensorboard monitoring + writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\ + f'run_eiv_wine_lr_{lr:.4f}_seed'\ + f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}'\ + f'_fixed_std_x_{fixed_std_x:.3f}') + print(f'>>>>SEED: {seed}') + for init_std_y in init_std_y_list: + print(f'Using init_std_y={init_std_y:.3f}') + train_on_data(init_std_y, seed) + + diff --git a/Experiments/train_eiv_yacht.py b/Experiments/train_eiv_yacht.py new file mode 100644 index 0000000000000000000000000000000000000000..2c9ee88853d77b99fefc3f2507ad827597895d61 --- /dev/null +++ b/Experiments/train_eiv_yacht.py @@ -0,0 +1,153 @@ +""" +Train EiV model on the yacht hydrodynamics dataset using different seeds +""" +import random +import os + +import numpy as np +import torch +import torch.backends.cudnn +from torch.utils.data import DataLoader +from torch.utils.tensorboard.writer import SummaryWriter + +from EIVArchitectures import Networks, initialize_weights +from EIVData.yacht_hydrodynamics import load_data +from EIVTrainingRoutines import train_and_store, loss_functions + +# hyperparameters +lr = 1e-3 +batch_size = 32 +test_batch_size = 600 +number_of_epochs = 1200 +unscaled_reg = 10 +report_point = 5 +p = 0.2 +lr_update = 200 +# pretraining = 300 +epoch_offset = 250 +init_std_y_list = [0.5] +gamma = 0.5 +hidden_layers = [1024, 1024, 1024, 1024] +device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') +fixed_std_x = 0.05 + +# reproducability +def set_seeds(seed): + torch.backends.cudnn.benchmark = False + np.random.seed(seed) + random.seed(seed) + torch.manual_seed(seed) +seed_list = range(10) + +# to store the RMSE +rmse_chain = [] + +class UpdatedTrainEpoch(train_and_store.TrainEpoch): + def pre_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch == 0: + self.lr = self.initial_lr + self.optimizer = torch.optim.Adam(net.parameters(), lr=self.lr) + self.lr_scheduler = torch.optim.lr_scheduler.StepLR( + self.optimizer, lr_update, gamma) + + + def post_epoch_update(self, net, epoch): + """ + Overwrites the corresponding method + """ + if epoch >= epoch_offset: + net.std_y_par.requires_grad = True + self.lr_scheduler.step() + + def extra_report(self, net, i): + """ + Overwrites the corresponding method + and fed after initialization of this class + """ + rmse = self.rmse(net).item() + rmse_chain.append(rmse) + writer.add_scalar('RMSE', rmse, self.total_count) + writer.add_scalar('train loss', self.last_train_loss, self.total_count) + writer.add_scalar('test loss', self.last_test_loss, self.total_count) + print(f'RMSE {rmse:.3f}') + + def rmse(self, net): + """ + Compute the root mean squared error for `net` + """ + net_train_state = net.training + net_noise_state = net.noise_is_on + net.eval() + net.noise_off() + x, y = next(iter(self.test_dataloader)) + if len(y.shape) <= 1: + y = y.view((-1,1)) + out = net(x.to(device))[0].detach().cpu() + assert out.shape == y.shape + if net_train_state: + net.train() + if net_noise_state: + net.noise_on() + return torch.sqrt(torch.mean((out-y)**2)) + +def train_on_data(init_std_y, seed): + """ + Sets `seed`, loads data and trains an Bernoulli Modell, starting with + `init_std_y`. + """ + # set seed + set_seeds(seed) + # load Datasets + train_data, test_data = load_data(seed=seed, splitting_part=0.8, + normalize=True) + # make dataloaders + train_dataloader = DataLoader(train_data, batch_size=batch_size, + shuffle=True) + test_dataloader = DataLoader(test_data, batch_size=test_batch_size, + shuffle=True) + # create a net + input_dim = train_data[0][0].numel() + output_dim = train_data[0][1].numel() + net = Networks.FNNEIV(p=p, + init_std_y=init_std_y, + h=[input_dim, *hidden_layers, output_dim], + fixed_std_x=fixed_std_x) + net.apply(initialize_weights.glorot_init) + net = net.to(device) + net.std_y_par.requires_grad = False + std_x_map = lambda: net.get_std_x().detach().cpu().item() + std_y_map = lambda: net.get_std_y().detach().cpu().item() + # regularization + reg = unscaled_reg/len(train_data) + # create epoch_map + criterion = loss_functions.nll_eiv + epoch_map = UpdatedTrainEpoch(train_dataloader=train_dataloader, + test_dataloader=test_dataloader, + criterion=criterion, std_y_map=std_y_map, std_x_map=std_x_map, + lr=lr, reg=reg, report_point=report_point, device=device) + # run and save + save_file = os.path.join('saved_networks', + f'eiv_yacht'\ + f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\ + f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\ + f'_seed_{seed}.pkl') + train_and_store.train_and_store(net=net, + epoch_map=epoch_map, + number_of_epochs=number_of_epochs, + save_file=save_file) + + +if __name__ == '__main__': + for seed in seed_list: + # Tensorboard monitoring + writer = SummaryWriter(log_dir=f'/home/martin09/tmp/tensorboard/'\ + f'run_eiv_yacht_lr_{lr:.4f}_seed'\ + f'_{seed}_uregu_{unscaled_reg:.1f}_p_{p:.2f}'\ + f'_fixed_std_x_{fixed_std_x:.3f}') + print(f'>>>>SEED: {seed}') + for init_std_y in init_std_y_list: + print(f'Using init_std_y={init_std_y:.3f}') + train_on_data(init_std_y, seed)