diff --git a/EIVPackage/EIVData/repeated_sampling.py b/EIVPackage/EIVData/repeated_sampling.py index 9d87db6185eacc8fd2506aaac710bfcce0dd82fe..bff0c9fd73c9c08bb75acfbf82184842f343c1c6 100644 --- a/EIVPackage/EIVData/repeated_sampling.py +++ b/EIVPackage/EIVData/repeated_sampling.py @@ -34,7 +34,12 @@ class repeated_sampling(): _, _, true_trainset, true_testset\ = self.dataclass.load_data( seed=self.fixed_seed, splitting_part=splitting_part, + normalize=False, return_ground_truth=True) + full_noisy_x = torch.concat((true_trainset.tensors[2], + true_testset.tensors[2]), dim=0) + full_noisy_y = torch.concat((true_trainset.tensors[3], + true_testset.tensors[3]), dim=0) true_train_x, true_train_y = true_trainset.tensors[:2] true_test_x, true_test_y = true_testset.tensors[:2] random_generator = torch.Generator().manual_seed(seed) @@ -45,13 +50,12 @@ class repeated_sampling(): add_noise((true_train_x, true_train_y), (self.x_noise_strength, self.y_noise_strength), seeds, normalize=normalize, - normalization_list=true_trainset.tensors[2:]) + normalization_list=[full_noisy_x, full_noisy_y]) (noisy_test_x, noisy_test_y), (true_test_x, true_test_y) =\ add_noise((true_test_x, true_test_y), (self.x_noise_strength, self.y_noise_strength), seeds, normalize=normalize, - # normalize both datasets with train set - normalization_list=true_trainset.tensors[2:]) + normalization_list=[full_noisy_x, full_noisy_y]) trainset = TensorDataset(noisy_train_x, noisy_train_y) testset = TensorDataset(noisy_test_x, noisy_test_y) true_trainset = TensorDataset(true_train_x, true_train_y, @@ -62,5 +66,3 @@ class repeated_sampling(): return trainset, testset else: return trainset, testset, true_trainset, true_testset - -