diff --git a/Experiments/plot_coverage_vs_q.py b/Experiments/plot_coverage_vs_q.py index b464c28953ca3471f399dd1e8844f7a2f3bbe5d1..6d578e8e214d4b31229547eb5374c89f1a58601c 100644 --- a/Experiments/plot_coverage_vs_q.py +++ b/Experiments/plot_coverage_vs_q.py @@ -12,6 +12,7 @@ import torch import torch.backends.cudnn from torch.utils.data import DataLoader from matplotlib.pyplot import cm +import matplotlib import matplotlib.pyplot as plt from tqdm import tqdm @@ -20,6 +21,11 @@ from EIVTrainingRoutines import train_and_store from EIVGeneral.coverage_collect import get_coverage_distribution from EIVGeneral.manipulate_datasets import VerticalCut +font = {'family' : 'DejaVu Sans', + 'weight' : 'normal', + 'size' : 16} + +matplotlib.rc('font', **font) # coverages to consider q_range = np.linspace(0.1, 0.95) @@ -89,9 +95,8 @@ def coverage_diagonal_plot(eiv_coverages, noneiv_coverages, color, # create figures, together with title and axis labels plt.figure(1) plt.clf() -plt.title('Coverage for datasets with ground truth') plt.xlabel('q') -plt.ylabel('coverage') +plt.ylabel('coverage ground truth') # datasets to plot and their coloring datasets = ['linear', 'quadratic','cubic','sine'] @@ -251,5 +256,6 @@ if __name__ == '__main__': plt.legend() # save and show + plt.tight_layout() plt.savefig('results/figures/true_coverage_vs_q.pdf') plt.show()