diff --git a/EIVPackage/EIVGeneral/coverage_plotting.py b/EIVPackage/EIVGeneral/coverage_collect.py
similarity index 51%
rename from EIVPackage/EIVGeneral/coverage_plotting.py
rename to EIVPackage/EIVGeneral/coverage_collect.py
index ad944b557d6223f89add11e6dd2d9fcb25008f1a..6a3dbb7a0164f8804606c4eaa0262d1977995254 100644
--- a/EIVPackage/EIVGeneral/coverage_plotting.py
+++ b/EIVPackage/EIVGeneral/coverage_collect.py
@@ -1,30 +1,9 @@
 """
-Get the numerical vs the theoretical coverage for different coverage factors
-and plot them. This module contains
-- The function `get_coverages`, that returns two numpy arrays containing
-  the numerical and theoretical coverage.
-- The function `get_coverages_with_uncertainties`, that runs through several
-  networks and collects the results of `get_coverages`.
-- The function `plot_coverages`, that plots the results of
-  `get_coverage_distribution`.
+Collect coverages for various coverage factors, networks and dataloaders.
 """
-import importlib
-import os
-import argparse
-import json
-
 import numpy as np
 import torch
 import torch.backends.cudnn
-from torch.utils.data import DataLoader
-from tqdm import tqdm
-
-from EIVArchitectures import Networks
-from EIVTrainingRoutines import train_and_store
-from EIVGeneral.coverage_metrics import epistemic_coverage, normalized_std
-from EIVData.repeated_sampling import repeated_sampling
-
-import matplotlib.pyplot as plt
 
 def get_coverages(not_averaged_predictions, y,\
         q_range=np.linspace(0.1,0.9,num=30)):
@@ -96,85 +75,10 @@ def get_coverage_distribution(net_iterator, dataloader_iterator,
                 y_collection = torch.concat(y_collection, dim=0)
                 numerical_coverage, theoretical_coverage = get_coverages(
                         not_averaged_predictions=not_av_pred_collection,
-                        y=y_collection)
+                        y=y_collection, q_range=q_range)
                 num_coverage_collection.append(numerical_coverage)
                 th_coverage_collection.append(theoretical_coverage)
     if stack:
         num_coverage_collection = np.stack(num_coverage_collection, axis=-1)
         th_coverage_collection = np.stack(th_coverage_collection, axis=-1)
     return num_coverage_collection, th_coverage_collection
-
-                
-
-
-
-
-
-#######
-
-# data = 'linear'
-# # load hyperparameters from JSON file
-# with open(os.path.join('/home/martin09/san/Projects/journal_eiv/Experiments/configurations',f'eiv_{data}.json'),'r') as conf_file:
-#     eiv_conf_dict = json.load(conf_file)
-# with open(os.path.join('/home/martin09/san/Projects/journal_eiv/Experiments/configurations',f'noneiv_{data}.json'),'r') as conf_file:
-#     noneiv_conf_dict = json.load(conf_file)
-# seed = 0
-# long_dataname = eiv_conf_dict["long_dataname"]
-# short_dataname = eiv_conf_dict["short_dataname"]
-# load_data = importlib.import_module(f'EIVData.{long_dataname}').load_data
-# train, test = load_data()
-# test_dataloader = DataLoader(test, batch_size=1000)
-# device = torch.device('cuda:0')
-# x,y = next(iter(test_dataloader))
-# if len(y.shape) <= 1:
-#     y = y.view((-1,1))
-# if len(x.shape) <= 1:
-#     x = x.view((-1,1))
-# x,y = x.to(device), y.to(device)
-# input_dim = x.shape[1]
-# output_dim = y.shape[1]
-# init_std_y = noneiv_conf_dict["init_std_y_list"][0]
-# unscaled_reg = noneiv_conf_dict["unscaled_reg"]
-# p = noneiv_conf_dict["p"]
-# hidden_layers = noneiv_conf_dict["hidden_layers"]
-# saved_file = os.path.join('saved_networks',
-#             f'noneiv_{short_dataname}'\
-#                     f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\
-#                     f'_p_{p:.2f}_seed_{seed}.pkl')
-# noneiv_net = Networks.FNNBer(p=p, init_std_y=init_std_y,
-#         h=[input_dim, *hidden_layers, output_dim]).to(device)
-# train_and_store.open_stored_training(saved_file=saved_file,
-#         net=noneiv_net, device=device)
-# # EiV
-# init_std_y = eiv_conf_dict["init_std_y_list"][0]
-# unscaled_reg = eiv_conf_dict["unscaled_reg"]
-# p = eiv_conf_dict["p"]
-# hidden_layers = eiv_conf_dict["hidden_layers"]
-# fixed_std_x = eiv_conf_dict["fixed_std_x"]
-# saved_file = os.path.join('saved_networks',
-#         f'eiv_{short_dataname}'\
-#                 f'_init_std_y_{init_std_y:.3f}_ureg_{unscaled_reg:.1f}'\
-#                 f'_p_{p:.2f}_fixed_std_x_{fixed_std_x:.3f}'\
-#                 f'_seed_{seed}.pkl')
-# eiv_net = Networks.FNNEIV(p=p, init_std_y=init_std_y,
-#         h=[input_dim, *hidden_layers, output_dim],
-#         fixed_std_x=fixed_std_x).to(device)
-# def eiv_net_iterator(seed_range=range(0,10)):
-
-# train_and_store.open_stored_training(saved_file=saved_file,
-#         net=eiv_net, device=device)
-
-# noneiv_not_averaged_predictions = noneiv_net.predict(x,\
-#         number_of_draws=100, 
-#         take_average_of_prediction=False)
-# noneiv_num_cov, noneiv_th_cov = get_coverages(noneiv_not_averaged_predictions, y,\
-#         q_range=np.linspace(0.01,0.99,num=30))
-# eiv_not_averaged_predictions = eiv_net.predict(x,\
-#         number_of_draws=[100,5], 
-#         take_average_of_prediction=False)
-# eiv_num_cov, eiv_th_cov = get_coverages(eiv_not_averaged_predictions, y,\
-#         q_range=np.linspace(0.01,0.99,num=30))
-# lin_x = np.linspace(np.min(noneiv_th_cov), np.max(noneiv_th_cov))
-# plt.plot(lin_x, lin_x)
-# plt.plot(noneiv_th_cov, noneiv_num_cov)
-# plt.plot(eiv_th_cov, eiv_num_cov)
diff --git a/Experiments/plot_coverage.py b/Experiments/plot_coverage.py
index 81b3f146815a07d66aebb93f0ccbb0721bdc500f..cac67c28a61983e1149652971a749856b422b8b2 100644
--- a/Experiments/plot_coverage.py
+++ b/Experiments/plot_coverage.py
@@ -4,29 +4,22 @@ Results will be stored in the results folder
 """
 import importlib
 import os
-import argparse
 import json
 
 import numpy as np
 import torch
 import torch.backends.cudnn
 from torch.utils.data import DataLoader
-from tqdm import tqdm
 import matplotlib.pyplot as plt
 
 from EIVArchitectures import Networks
 from EIVTrainingRoutines import train_and_store
-from EIVGeneral.coverage_plotting import get_coverage_distribution
+from EIVGeneral.coverage_collect import get_coverage_distribution
 from EIVGeneral.manipulate_datasets import VerticalCut
 
 
 # read in data via --data option
-parser = argparse.ArgumentParser()
-parser.add_argument("--data", help="Loads data", default='naval')
-parser.add_argument("--no-autoindent", help="",
-        action="store_true") # to avoid conflics in IPython
-args = parser.parse_args()
-data = args.data
+data = 'linear'
 
 # load hyperparameters from JSON file
 with open(os.path.join('configurations',f'eiv_{data}.json'),'r') as conf_file:
@@ -114,7 +107,7 @@ def net_iterator(eiv=True, seed_list=seed_list):
 
 # dataloaders
 def dataloader_iterator(seed_list=seed_list, use_ground_truth=False,
-        batch_size = 1000):
+        batch_size = 100):
     for seed in seed_list:
         if not use_ground_truth:
             train_data, test_data = load_data(seed=seed)